]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/proc/task_mmu.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 struct mm_struct *mm = priv->mm;
129
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
132 mmput(mm);
133 }
134
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 if (vma == priv->tail_vma)
139 return NULL;
140 return vma->vm_next ?: priv->tail_vma;
141 }
142
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
156
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
159 return NULL;
160
161 priv->task = get_proc_task(priv->inode);
162 if (!priv->task)
163 return ERR_PTR(-ESRCH);
164
165 mm = priv->mm;
166 if (!mm || !mmget_not_zero(mm))
167 return NULL;
168
169 down_read(&mm->mmap_sem);
170 hold_task_mempolicy(priv);
171 priv->tail_vma = get_gate_vma(mm);
172
173 if (last_addr) {
174 vma = find_vma(mm, last_addr - 1);
175 if (vma && vma->vm_start <= last_addr)
176 vma = m_next_vma(priv, vma);
177 if (vma)
178 return vma;
179 }
180
181 m->version = 0;
182 if (pos < mm->map_count) {
183 for (vma = mm->mmap; pos; pos--) {
184 m->version = vma->vm_start;
185 vma = vma->vm_next;
186 }
187 return vma;
188 }
189
190 /* we do not bother to update m->version in this case */
191 if (pos == mm->map_count && priv->tail_vma)
192 return priv->tail_vma;
193
194 vma_stop(priv);
195 return NULL;
196 }
197
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 struct proc_maps_private *priv = m->private;
201 struct vm_area_struct *next;
202
203 (*pos)++;
204 next = m_next_vma(priv, v);
205 if (!next)
206 vma_stop(priv);
207 return next;
208 }
209
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 struct proc_maps_private *priv = m->private;
213
214 if (!IS_ERR_OR_NULL(v))
215 vma_stop(priv);
216 if (priv->task) {
217 put_task_struct(priv->task);
218 priv->task = NULL;
219 }
220 }
221
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 const struct seq_operations *ops, int psize)
224 {
225 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226
227 if (!priv)
228 return -ENOMEM;
229
230 priv->inode = inode;
231 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 if (IS_ERR(priv->mm)) {
233 int err = PTR_ERR(priv->mm);
234
235 seq_release_private(inode, file);
236 return err;
237 }
238
239 return 0;
240 }
241
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 struct seq_file *seq = file->private_data;
245 struct proc_maps_private *priv = seq->private;
246
247 if (priv->mm)
248 mmdrop(priv->mm);
249
250 return seq_release_private(inode, file);
251 }
252
253 static int do_maps_open(struct inode *inode, struct file *file,
254 const struct seq_operations *ops)
255 {
256 return proc_maps_open(inode, file, ops,
257 sizeof(struct proc_maps_private));
258 }
259
260 /*
261 * Indicate if the VMA is a stack for the given task; for
262 * /proc/PID/maps that is the stack of the main task.
263 */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266 /*
267 * We make no effort to guess what a given thread considers to be
268 * its "stack". It's not even well-defined for programs written
269 * languages like Go.
270 */
271 return vma->vm_start <= vma->vm_mm->start_stack &&
272 vma->vm_end >= vma->vm_mm->start_stack;
273 }
274
275 static void show_vma_header_prefix(struct seq_file *m,
276 unsigned long start, unsigned long end,
277 vm_flags_t flags, unsigned long long pgoff,
278 dev_t dev, unsigned long ino)
279 {
280 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 seq_put_hex_ll(m, NULL, start, 8);
282 seq_put_hex_ll(m, "-", end, 8);
283 seq_putc(m, ' ');
284 seq_putc(m, flags & VM_READ ? 'r' : '-');
285 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 seq_put_hex_ll(m, " ", pgoff, 8);
289 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 seq_put_decimal_ull(m, " ", ino);
292 seq_putc(m, ' ');
293 }
294
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
297 {
298 struct mm_struct *mm = vma->vm_mm;
299 struct file *file = vma->vm_file;
300 vm_flags_t flags = vma->vm_flags;
301 unsigned long ino = 0;
302 unsigned long long pgoff = 0;
303 unsigned long start, end;
304 dev_t dev = 0;
305 const char *name = NULL;
306
307 if (file) {
308 struct inode *inode = file_inode(vma->vm_file);
309 dev = inode->i_sb->s_dev;
310 ino = inode->i_ino;
311 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312 }
313
314 start = vma->vm_start;
315 end = vma->vm_end;
316 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317
318 /*
319 * Print the dentry name for named mappings, and a
320 * special [heap] marker for the heap:
321 */
322 if (file) {
323 seq_pad(m, ' ');
324 seq_file_path(m, file, "\n");
325 goto done;
326 }
327
328 if (vma->vm_ops && vma->vm_ops->name) {
329 name = vma->vm_ops->name(vma);
330 if (name)
331 goto done;
332 }
333
334 name = arch_vma_name(vma);
335 if (!name) {
336 if (!mm) {
337 name = "[vdso]";
338 goto done;
339 }
340
341 if (vma->vm_start <= mm->brk &&
342 vma->vm_end >= mm->start_brk) {
343 name = "[heap]";
344 goto done;
345 }
346
347 if (is_stack(vma))
348 name = "[stack]";
349 }
350
351 done:
352 if (name) {
353 seq_pad(m, ' ');
354 seq_puts(m, name);
355 }
356 seq_putc(m, '\n');
357 }
358
359 static int show_map(struct seq_file *m, void *v)
360 {
361 show_map_vma(m, v);
362 m_cache_vma(m, v);
363 return 0;
364 }
365
366 static const struct seq_operations proc_pid_maps_op = {
367 .start = m_start,
368 .next = m_next,
369 .stop = m_stop,
370 .show = show_map
371 };
372
373 static int pid_maps_open(struct inode *inode, struct file *file)
374 {
375 return do_maps_open(inode, file, &proc_pid_maps_op);
376 }
377
378 const struct file_operations proc_pid_maps_operations = {
379 .open = pid_maps_open,
380 .read = seq_read,
381 .llseek = seq_lseek,
382 .release = proc_map_release,
383 };
384
385 /*
386 * Proportional Set Size(PSS): my share of RSS.
387 *
388 * PSS of a process is the count of pages it has in memory, where each
389 * page is divided by the number of processes sharing it. So if a
390 * process has 1000 pages all to itself, and 1000 shared with one other
391 * process, its PSS will be 1500.
392 *
393 * To keep (accumulated) division errors low, we adopt a 64bit
394 * fixed-point pss counter to minimize division errors. So (pss >>
395 * PSS_SHIFT) would be the real byte count.
396 *
397 * A shift of 12 before division means (assuming 4K page size):
398 * - 1M 3-user-pages add up to 8KB errors;
399 * - supports mapcount up to 2^24, or 16M;
400 * - supports PSS up to 2^52 bytes, or 4PB.
401 */
402 #define PSS_SHIFT 12
403
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406 unsigned long resident;
407 unsigned long shared_clean;
408 unsigned long shared_dirty;
409 unsigned long private_clean;
410 unsigned long private_dirty;
411 unsigned long referenced;
412 unsigned long anonymous;
413 unsigned long lazyfree;
414 unsigned long anonymous_thp;
415 unsigned long shmem_thp;
416 unsigned long swap;
417 unsigned long shared_hugetlb;
418 unsigned long private_hugetlb;
419 u64 pss;
420 u64 pss_locked;
421 u64 swap_pss;
422 bool check_shmem_swap;
423 };
424
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426 bool compound, bool young, bool dirty)
427 {
428 int i, nr = compound ? 1 << compound_order(page) : 1;
429 unsigned long size = nr * PAGE_SIZE;
430
431 if (PageAnon(page)) {
432 mss->anonymous += size;
433 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434 mss->lazyfree += size;
435 }
436
437 mss->resident += size;
438 /* Accumulate the size in pages that have been accessed. */
439 if (young || page_is_young(page) || PageReferenced(page))
440 mss->referenced += size;
441
442 /*
443 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 * If any subpage of the compound page mapped with PTE it would elevate
445 * page_count().
446 */
447 if (page_count(page) == 1) {
448 if (dirty || PageDirty(page))
449 mss->private_dirty += size;
450 else
451 mss->private_clean += size;
452 mss->pss += (u64)size << PSS_SHIFT;
453 return;
454 }
455
456 for (i = 0; i < nr; i++, page++) {
457 int mapcount = page_mapcount(page);
458
459 if (mapcount >= 2) {
460 if (dirty || PageDirty(page))
461 mss->shared_dirty += PAGE_SIZE;
462 else
463 mss->shared_clean += PAGE_SIZE;
464 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
465 } else {
466 if (dirty || PageDirty(page))
467 mss->private_dirty += PAGE_SIZE;
468 else
469 mss->private_clean += PAGE_SIZE;
470 mss->pss += PAGE_SIZE << PSS_SHIFT;
471 }
472 }
473 }
474
475 #ifdef CONFIG_SHMEM
476 static int smaps_pte_hole(unsigned long addr, unsigned long end,
477 struct mm_walk *walk)
478 {
479 struct mem_size_stats *mss = walk->private;
480
481 mss->swap += shmem_partial_swap_usage(
482 walk->vma->vm_file->f_mapping, addr, end);
483
484 return 0;
485 }
486 #endif
487
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489 struct mm_walk *walk)
490 {
491 struct mem_size_stats *mss = walk->private;
492 struct vm_area_struct *vma = walk->vma;
493 struct page *page = NULL;
494
495 if (pte_present(*pte)) {
496 page = vm_normal_page(vma, addr, *pte);
497 } else if (is_swap_pte(*pte)) {
498 swp_entry_t swpent = pte_to_swp_entry(*pte);
499
500 if (!non_swap_entry(swpent)) {
501 int mapcount;
502
503 mss->swap += PAGE_SIZE;
504 mapcount = swp_swapcount(swpent);
505 if (mapcount >= 2) {
506 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
507
508 do_div(pss_delta, mapcount);
509 mss->swap_pss += pss_delta;
510 } else {
511 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
512 }
513 } else if (is_migration_entry(swpent))
514 page = migration_entry_to_page(swpent);
515 else if (is_device_private_entry(swpent))
516 page = device_private_entry_to_page(swpent);
517 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
518 && pte_none(*pte))) {
519 page = find_get_entry(vma->vm_file->f_mapping,
520 linear_page_index(vma, addr));
521 if (!page)
522 return;
523
524 if (xa_is_value(page))
525 mss->swap += PAGE_SIZE;
526 else
527 put_page(page);
528
529 return;
530 }
531
532 if (!page)
533 return;
534
535 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
536 }
537
538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540 struct mm_walk *walk)
541 {
542 struct mem_size_stats *mss = walk->private;
543 struct vm_area_struct *vma = walk->vma;
544 struct page *page;
545
546 /* FOLL_DUMP will return -EFAULT on huge zero page */
547 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 if (IS_ERR_OR_NULL(page))
549 return;
550 if (PageAnon(page))
551 mss->anonymous_thp += HPAGE_PMD_SIZE;
552 else if (PageSwapBacked(page))
553 mss->shmem_thp += HPAGE_PMD_SIZE;
554 else if (is_zone_device_page(page))
555 /* pass */;
556 else
557 VM_BUG_ON_PAGE(1, page);
558 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
559 }
560 #else
561 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
562 struct mm_walk *walk)
563 {
564 }
565 #endif
566
567 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
568 struct mm_walk *walk)
569 {
570 struct vm_area_struct *vma = walk->vma;
571 pte_t *pte;
572 spinlock_t *ptl;
573
574 ptl = pmd_trans_huge_lock(pmd, vma);
575 if (ptl) {
576 if (pmd_present(*pmd))
577 smaps_pmd_entry(pmd, addr, walk);
578 spin_unlock(ptl);
579 goto out;
580 }
581
582 if (pmd_trans_unstable(pmd))
583 goto out;
584 /*
585 * The mmap_sem held all the way back in m_start() is what
586 * keeps khugepaged out of here and from collapsing things
587 * in here.
588 */
589 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
590 for (; addr != end; pte++, addr += PAGE_SIZE)
591 smaps_pte_entry(pte, addr, walk);
592 pte_unmap_unlock(pte - 1, ptl);
593 out:
594 cond_resched();
595 return 0;
596 }
597
598 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
599 {
600 /*
601 * Don't forget to update Documentation/ on changes.
602 */
603 static const char mnemonics[BITS_PER_LONG][2] = {
604 /*
605 * In case if we meet a flag we don't know about.
606 */
607 [0 ... (BITS_PER_LONG-1)] = "??",
608
609 [ilog2(VM_READ)] = "rd",
610 [ilog2(VM_WRITE)] = "wr",
611 [ilog2(VM_EXEC)] = "ex",
612 [ilog2(VM_SHARED)] = "sh",
613 [ilog2(VM_MAYREAD)] = "mr",
614 [ilog2(VM_MAYWRITE)] = "mw",
615 [ilog2(VM_MAYEXEC)] = "me",
616 [ilog2(VM_MAYSHARE)] = "ms",
617 [ilog2(VM_GROWSDOWN)] = "gd",
618 [ilog2(VM_PFNMAP)] = "pf",
619 [ilog2(VM_DENYWRITE)] = "dw",
620 #ifdef CONFIG_X86_INTEL_MPX
621 [ilog2(VM_MPX)] = "mp",
622 #endif
623 [ilog2(VM_LOCKED)] = "lo",
624 [ilog2(VM_IO)] = "io",
625 [ilog2(VM_SEQ_READ)] = "sr",
626 [ilog2(VM_RAND_READ)] = "rr",
627 [ilog2(VM_DONTCOPY)] = "dc",
628 [ilog2(VM_DONTEXPAND)] = "de",
629 [ilog2(VM_ACCOUNT)] = "ac",
630 [ilog2(VM_NORESERVE)] = "nr",
631 [ilog2(VM_HUGETLB)] = "ht",
632 [ilog2(VM_SYNC)] = "sf",
633 [ilog2(VM_ARCH_1)] = "ar",
634 [ilog2(VM_WIPEONFORK)] = "wf",
635 [ilog2(VM_DONTDUMP)] = "dd",
636 #ifdef CONFIG_MEM_SOFT_DIRTY
637 [ilog2(VM_SOFTDIRTY)] = "sd",
638 #endif
639 [ilog2(VM_MIXEDMAP)] = "mm",
640 [ilog2(VM_HUGEPAGE)] = "hg",
641 [ilog2(VM_NOHUGEPAGE)] = "nh",
642 [ilog2(VM_MERGEABLE)] = "mg",
643 [ilog2(VM_UFFD_MISSING)]= "um",
644 [ilog2(VM_UFFD_WP)] = "uw",
645 #ifdef CONFIG_ARCH_HAS_PKEYS
646 /* These come out via ProtectionKey: */
647 [ilog2(VM_PKEY_BIT0)] = "",
648 [ilog2(VM_PKEY_BIT1)] = "",
649 [ilog2(VM_PKEY_BIT2)] = "",
650 [ilog2(VM_PKEY_BIT3)] = "",
651 #if VM_PKEY_BIT4
652 [ilog2(VM_PKEY_BIT4)] = "",
653 #endif
654 #endif /* CONFIG_ARCH_HAS_PKEYS */
655 };
656 size_t i;
657
658 seq_puts(m, "VmFlags: ");
659 for (i = 0; i < BITS_PER_LONG; i++) {
660 if (!mnemonics[i][0])
661 continue;
662 if (vma->vm_flags & (1UL << i)) {
663 seq_putc(m, mnemonics[i][0]);
664 seq_putc(m, mnemonics[i][1]);
665 seq_putc(m, ' ');
666 }
667 }
668 seq_putc(m, '\n');
669 }
670
671 #ifdef CONFIG_HUGETLB_PAGE
672 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
673 unsigned long addr, unsigned long end,
674 struct mm_walk *walk)
675 {
676 struct mem_size_stats *mss = walk->private;
677 struct vm_area_struct *vma = walk->vma;
678 struct page *page = NULL;
679
680 if (pte_present(*pte)) {
681 page = vm_normal_page(vma, addr, *pte);
682 } else if (is_swap_pte(*pte)) {
683 swp_entry_t swpent = pte_to_swp_entry(*pte);
684
685 if (is_migration_entry(swpent))
686 page = migration_entry_to_page(swpent);
687 else if (is_device_private_entry(swpent))
688 page = device_private_entry_to_page(swpent);
689 }
690 if (page) {
691 int mapcount = page_mapcount(page);
692
693 if (mapcount >= 2)
694 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
695 else
696 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
697 }
698 return 0;
699 }
700 #endif /* HUGETLB_PAGE */
701
702 static void smap_gather_stats(struct vm_area_struct *vma,
703 struct mem_size_stats *mss)
704 {
705 struct mm_walk smaps_walk = {
706 .pmd_entry = smaps_pte_range,
707 #ifdef CONFIG_HUGETLB_PAGE
708 .hugetlb_entry = smaps_hugetlb_range,
709 #endif
710 .mm = vma->vm_mm,
711 };
712
713 smaps_walk.private = mss;
714
715 #ifdef CONFIG_SHMEM
716 /* In case of smaps_rollup, reset the value from previous vma */
717 mss->check_shmem_swap = false;
718 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
719 /*
720 * For shared or readonly shmem mappings we know that all
721 * swapped out pages belong to the shmem object, and we can
722 * obtain the swap value much more efficiently. For private
723 * writable mappings, we might have COW pages that are
724 * not affected by the parent swapped out pages of the shmem
725 * object, so we have to distinguish them during the page walk.
726 * Unless we know that the shmem object (or the part mapped by
727 * our VMA) has no swapped out pages at all.
728 */
729 unsigned long shmem_swapped = shmem_swap_usage(vma);
730
731 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
732 !(vma->vm_flags & VM_WRITE)) {
733 mss->swap += shmem_swapped;
734 } else {
735 mss->check_shmem_swap = true;
736 smaps_walk.pte_hole = smaps_pte_hole;
737 }
738 }
739 #endif
740
741 /* mmap_sem is held in m_start */
742 walk_page_vma(vma, &smaps_walk);
743 if (vma->vm_flags & VM_LOCKED)
744 mss->pss_locked += mss->pss;
745 }
746
747 #define SEQ_PUT_DEC(str, val) \
748 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
749
750 /* Show the contents common for smaps and smaps_rollup */
751 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
752 {
753 SEQ_PUT_DEC("Rss: ", mss->resident);
754 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
755 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
756 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
757 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
758 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
759 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
760 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
761 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
762 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
763 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
764 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
765 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
766 mss->private_hugetlb >> 10, 7);
767 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
768 SEQ_PUT_DEC(" kB\nSwapPss: ",
769 mss->swap_pss >> PSS_SHIFT);
770 SEQ_PUT_DEC(" kB\nLocked: ",
771 mss->pss_locked >> PSS_SHIFT);
772 seq_puts(m, " kB\n");
773 }
774
775 static int show_smap(struct seq_file *m, void *v)
776 {
777 struct vm_area_struct *vma = v;
778 struct mem_size_stats mss;
779
780 memset(&mss, 0, sizeof(mss));
781
782 smap_gather_stats(vma, &mss);
783
784 show_map_vma(m, vma);
785
786 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
787 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
788 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
789 seq_puts(m, " kB\n");
790
791 __show_smap(m, &mss);
792
793 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
794
795 if (arch_pkeys_enabled())
796 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
797 show_smap_vma_flags(m, vma);
798
799 m_cache_vma(m, vma);
800
801 return 0;
802 }
803
804 static int show_smaps_rollup(struct seq_file *m, void *v)
805 {
806 struct proc_maps_private *priv = m->private;
807 struct mem_size_stats mss;
808 struct mm_struct *mm;
809 struct vm_area_struct *vma;
810 unsigned long last_vma_end = 0;
811 int ret = 0;
812
813 priv->task = get_proc_task(priv->inode);
814 if (!priv->task)
815 return -ESRCH;
816
817 mm = priv->mm;
818 if (!mm || !mmget_not_zero(mm)) {
819 ret = -ESRCH;
820 goto out_put_task;
821 }
822
823 memset(&mss, 0, sizeof(mss));
824
825 down_read(&mm->mmap_sem);
826 hold_task_mempolicy(priv);
827
828 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
829 smap_gather_stats(vma, &mss);
830 last_vma_end = vma->vm_end;
831 }
832
833 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
834 last_vma_end, 0, 0, 0, 0);
835 seq_pad(m, ' ');
836 seq_puts(m, "[rollup]\n");
837
838 __show_smap(m, &mss);
839
840 release_task_mempolicy(priv);
841 up_read(&mm->mmap_sem);
842 mmput(mm);
843
844 out_put_task:
845 put_task_struct(priv->task);
846 priv->task = NULL;
847
848 return ret;
849 }
850 #undef SEQ_PUT_DEC
851
852 static const struct seq_operations proc_pid_smaps_op = {
853 .start = m_start,
854 .next = m_next,
855 .stop = m_stop,
856 .show = show_smap
857 };
858
859 static int pid_smaps_open(struct inode *inode, struct file *file)
860 {
861 return do_maps_open(inode, file, &proc_pid_smaps_op);
862 }
863
864 static int smaps_rollup_open(struct inode *inode, struct file *file)
865 {
866 int ret;
867 struct proc_maps_private *priv;
868
869 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
870 if (!priv)
871 return -ENOMEM;
872
873 ret = single_open(file, show_smaps_rollup, priv);
874 if (ret)
875 goto out_free;
876
877 priv->inode = inode;
878 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
879 if (IS_ERR(priv->mm)) {
880 ret = PTR_ERR(priv->mm);
881
882 single_release(inode, file);
883 goto out_free;
884 }
885
886 return 0;
887
888 out_free:
889 kfree(priv);
890 return ret;
891 }
892
893 static int smaps_rollup_release(struct inode *inode, struct file *file)
894 {
895 struct seq_file *seq = file->private_data;
896 struct proc_maps_private *priv = seq->private;
897
898 if (priv->mm)
899 mmdrop(priv->mm);
900
901 kfree(priv);
902 return single_release(inode, file);
903 }
904
905 const struct file_operations proc_pid_smaps_operations = {
906 .open = pid_smaps_open,
907 .read = seq_read,
908 .llseek = seq_lseek,
909 .release = proc_map_release,
910 };
911
912 const struct file_operations proc_pid_smaps_rollup_operations = {
913 .open = smaps_rollup_open,
914 .read = seq_read,
915 .llseek = seq_lseek,
916 .release = smaps_rollup_release,
917 };
918
919 enum clear_refs_types {
920 CLEAR_REFS_ALL = 1,
921 CLEAR_REFS_ANON,
922 CLEAR_REFS_MAPPED,
923 CLEAR_REFS_SOFT_DIRTY,
924 CLEAR_REFS_MM_HIWATER_RSS,
925 CLEAR_REFS_LAST,
926 };
927
928 struct clear_refs_private {
929 enum clear_refs_types type;
930 };
931
932 #ifdef CONFIG_MEM_SOFT_DIRTY
933 static inline void clear_soft_dirty(struct vm_area_struct *vma,
934 unsigned long addr, pte_t *pte)
935 {
936 /*
937 * The soft-dirty tracker uses #PF-s to catch writes
938 * to pages, so write-protect the pte as well. See the
939 * Documentation/admin-guide/mm/soft-dirty.rst for full description
940 * of how soft-dirty works.
941 */
942 pte_t ptent = *pte;
943
944 if (pte_present(ptent)) {
945 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
946 ptent = pte_wrprotect(ptent);
947 ptent = pte_clear_soft_dirty(ptent);
948 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
949 } else if (is_swap_pte(ptent)) {
950 ptent = pte_swp_clear_soft_dirty(ptent);
951 set_pte_at(vma->vm_mm, addr, pte, ptent);
952 }
953 }
954 #else
955 static inline void clear_soft_dirty(struct vm_area_struct *vma,
956 unsigned long addr, pte_t *pte)
957 {
958 }
959 #endif
960
961 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
962 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
963 unsigned long addr, pmd_t *pmdp)
964 {
965 pmd_t old, pmd = *pmdp;
966
967 if (pmd_present(pmd)) {
968 /* See comment in change_huge_pmd() */
969 old = pmdp_invalidate(vma, addr, pmdp);
970 if (pmd_dirty(old))
971 pmd = pmd_mkdirty(pmd);
972 if (pmd_young(old))
973 pmd = pmd_mkyoung(pmd);
974
975 pmd = pmd_wrprotect(pmd);
976 pmd = pmd_clear_soft_dirty(pmd);
977
978 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
979 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
980 pmd = pmd_swp_clear_soft_dirty(pmd);
981 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
982 }
983 }
984 #else
985 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
986 unsigned long addr, pmd_t *pmdp)
987 {
988 }
989 #endif
990
991 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
992 unsigned long end, struct mm_walk *walk)
993 {
994 struct clear_refs_private *cp = walk->private;
995 struct vm_area_struct *vma = walk->vma;
996 pte_t *pte, ptent;
997 spinlock_t *ptl;
998 struct page *page;
999
1000 ptl = pmd_trans_huge_lock(pmd, vma);
1001 if (ptl) {
1002 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1003 clear_soft_dirty_pmd(vma, addr, pmd);
1004 goto out;
1005 }
1006
1007 if (!pmd_present(*pmd))
1008 goto out;
1009
1010 page = pmd_page(*pmd);
1011
1012 /* Clear accessed and referenced bits. */
1013 pmdp_test_and_clear_young(vma, addr, pmd);
1014 test_and_clear_page_young(page);
1015 ClearPageReferenced(page);
1016 out:
1017 spin_unlock(ptl);
1018 return 0;
1019 }
1020
1021 if (pmd_trans_unstable(pmd))
1022 return 0;
1023
1024 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1025 for (; addr != end; pte++, addr += PAGE_SIZE) {
1026 ptent = *pte;
1027
1028 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1029 clear_soft_dirty(vma, addr, pte);
1030 continue;
1031 }
1032
1033 if (!pte_present(ptent))
1034 continue;
1035
1036 page = vm_normal_page(vma, addr, ptent);
1037 if (!page)
1038 continue;
1039
1040 /* Clear accessed and referenced bits. */
1041 ptep_test_and_clear_young(vma, addr, pte);
1042 test_and_clear_page_young(page);
1043 ClearPageReferenced(page);
1044 }
1045 pte_unmap_unlock(pte - 1, ptl);
1046 cond_resched();
1047 return 0;
1048 }
1049
1050 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1051 struct mm_walk *walk)
1052 {
1053 struct clear_refs_private *cp = walk->private;
1054 struct vm_area_struct *vma = walk->vma;
1055
1056 if (vma->vm_flags & VM_PFNMAP)
1057 return 1;
1058
1059 /*
1060 * Writing 1 to /proc/pid/clear_refs affects all pages.
1061 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1062 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1063 * Writing 4 to /proc/pid/clear_refs affects all pages.
1064 */
1065 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1066 return 1;
1067 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1068 return 1;
1069 return 0;
1070 }
1071
1072 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1073 size_t count, loff_t *ppos)
1074 {
1075 struct task_struct *task;
1076 char buffer[PROC_NUMBUF];
1077 struct mm_struct *mm;
1078 struct vm_area_struct *vma;
1079 enum clear_refs_types type;
1080 struct mmu_gather tlb;
1081 int itype;
1082 int rv;
1083
1084 memset(buffer, 0, sizeof(buffer));
1085 if (count > sizeof(buffer) - 1)
1086 count = sizeof(buffer) - 1;
1087 if (copy_from_user(buffer, buf, count))
1088 return -EFAULT;
1089 rv = kstrtoint(strstrip(buffer), 10, &itype);
1090 if (rv < 0)
1091 return rv;
1092 type = (enum clear_refs_types)itype;
1093 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1094 return -EINVAL;
1095
1096 task = get_proc_task(file_inode(file));
1097 if (!task)
1098 return -ESRCH;
1099 mm = get_task_mm(task);
1100 if (mm) {
1101 struct mmu_notifier_range range;
1102 struct clear_refs_private cp = {
1103 .type = type,
1104 };
1105 struct mm_walk clear_refs_walk = {
1106 .pmd_entry = clear_refs_pte_range,
1107 .test_walk = clear_refs_test_walk,
1108 .mm = mm,
1109 .private = &cp,
1110 };
1111
1112 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1113 if (down_write_killable(&mm->mmap_sem)) {
1114 count = -EINTR;
1115 goto out_mm;
1116 }
1117
1118 /*
1119 * Writing 5 to /proc/pid/clear_refs resets the peak
1120 * resident set size to this mm's current rss value.
1121 */
1122 reset_mm_hiwater_rss(mm);
1123 up_write(&mm->mmap_sem);
1124 goto out_mm;
1125 }
1126
1127 down_read(&mm->mmap_sem);
1128 tlb_gather_mmu(&tlb, mm, 0, -1);
1129 if (type == CLEAR_REFS_SOFT_DIRTY) {
1130 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1131 if (!(vma->vm_flags & VM_SOFTDIRTY))
1132 continue;
1133 up_read(&mm->mmap_sem);
1134 if (down_write_killable(&mm->mmap_sem)) {
1135 count = -EINTR;
1136 goto out_mm;
1137 }
1138 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 vma->vm_flags &= ~VM_SOFTDIRTY;
1140 vma_set_page_prot(vma);
1141 }
1142 downgrade_write(&mm->mmap_sem);
1143 break;
1144 }
1145
1146 mmu_notifier_range_init(&range, mm, 0, -1UL);
1147 mmu_notifier_invalidate_range_start(&range);
1148 }
1149 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1150 if (type == CLEAR_REFS_SOFT_DIRTY)
1151 mmu_notifier_invalidate_range_end(&range);
1152 tlb_finish_mmu(&tlb, 0, -1);
1153 up_read(&mm->mmap_sem);
1154 out_mm:
1155 mmput(mm);
1156 }
1157 put_task_struct(task);
1158
1159 return count;
1160 }
1161
1162 const struct file_operations proc_clear_refs_operations = {
1163 .write = clear_refs_write,
1164 .llseek = noop_llseek,
1165 };
1166
1167 typedef struct {
1168 u64 pme;
1169 } pagemap_entry_t;
1170
1171 struct pagemapread {
1172 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1173 pagemap_entry_t *buffer;
1174 bool show_pfn;
1175 };
1176
1177 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1178 #define PAGEMAP_WALK_MASK (PMD_MASK)
1179
1180 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1181 #define PM_PFRAME_BITS 55
1182 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1183 #define PM_SOFT_DIRTY BIT_ULL(55)
1184 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1185 #define PM_FILE BIT_ULL(61)
1186 #define PM_SWAP BIT_ULL(62)
1187 #define PM_PRESENT BIT_ULL(63)
1188
1189 #define PM_END_OF_BUFFER 1
1190
1191 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1192 {
1193 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1194 }
1195
1196 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1197 struct pagemapread *pm)
1198 {
1199 pm->buffer[pm->pos++] = *pme;
1200 if (pm->pos >= pm->len)
1201 return PM_END_OF_BUFFER;
1202 return 0;
1203 }
1204
1205 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1206 struct mm_walk *walk)
1207 {
1208 struct pagemapread *pm = walk->private;
1209 unsigned long addr = start;
1210 int err = 0;
1211
1212 while (addr < end) {
1213 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1214 pagemap_entry_t pme = make_pme(0, 0);
1215 /* End of address space hole, which we mark as non-present. */
1216 unsigned long hole_end;
1217
1218 if (vma)
1219 hole_end = min(end, vma->vm_start);
1220 else
1221 hole_end = end;
1222
1223 for (; addr < hole_end; addr += PAGE_SIZE) {
1224 err = add_to_pagemap(addr, &pme, pm);
1225 if (err)
1226 goto out;
1227 }
1228
1229 if (!vma)
1230 break;
1231
1232 /* Addresses in the VMA. */
1233 if (vma->vm_flags & VM_SOFTDIRTY)
1234 pme = make_pme(0, PM_SOFT_DIRTY);
1235 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1236 err = add_to_pagemap(addr, &pme, pm);
1237 if (err)
1238 goto out;
1239 }
1240 }
1241 out:
1242 return err;
1243 }
1244
1245 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1246 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1247 {
1248 u64 frame = 0, flags = 0;
1249 struct page *page = NULL;
1250
1251 if (pte_present(pte)) {
1252 if (pm->show_pfn)
1253 frame = pte_pfn(pte);
1254 flags |= PM_PRESENT;
1255 page = _vm_normal_page(vma, addr, pte, true);
1256 if (pte_soft_dirty(pte))
1257 flags |= PM_SOFT_DIRTY;
1258 } else if (is_swap_pte(pte)) {
1259 swp_entry_t entry;
1260 if (pte_swp_soft_dirty(pte))
1261 flags |= PM_SOFT_DIRTY;
1262 entry = pte_to_swp_entry(pte);
1263 if (pm->show_pfn)
1264 frame = swp_type(entry) |
1265 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1266 flags |= PM_SWAP;
1267 if (is_migration_entry(entry))
1268 page = migration_entry_to_page(entry);
1269
1270 if (is_device_private_entry(entry))
1271 page = device_private_entry_to_page(entry);
1272 }
1273
1274 if (page && !PageAnon(page))
1275 flags |= PM_FILE;
1276 if (page && page_mapcount(page) == 1)
1277 flags |= PM_MMAP_EXCLUSIVE;
1278 if (vma->vm_flags & VM_SOFTDIRTY)
1279 flags |= PM_SOFT_DIRTY;
1280
1281 return make_pme(frame, flags);
1282 }
1283
1284 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1285 struct mm_walk *walk)
1286 {
1287 struct vm_area_struct *vma = walk->vma;
1288 struct pagemapread *pm = walk->private;
1289 spinlock_t *ptl;
1290 pte_t *pte, *orig_pte;
1291 int err = 0;
1292
1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1294 ptl = pmd_trans_huge_lock(pmdp, vma);
1295 if (ptl) {
1296 u64 flags = 0, frame = 0;
1297 pmd_t pmd = *pmdp;
1298 struct page *page = NULL;
1299
1300 if (vma->vm_flags & VM_SOFTDIRTY)
1301 flags |= PM_SOFT_DIRTY;
1302
1303 if (pmd_present(pmd)) {
1304 page = pmd_page(pmd);
1305
1306 flags |= PM_PRESENT;
1307 if (pmd_soft_dirty(pmd))
1308 flags |= PM_SOFT_DIRTY;
1309 if (pm->show_pfn)
1310 frame = pmd_pfn(pmd) +
1311 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1312 }
1313 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1314 else if (is_swap_pmd(pmd)) {
1315 swp_entry_t entry = pmd_to_swp_entry(pmd);
1316 unsigned long offset;
1317
1318 if (pm->show_pfn) {
1319 offset = swp_offset(entry) +
1320 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1321 frame = swp_type(entry) |
1322 (offset << MAX_SWAPFILES_SHIFT);
1323 }
1324 flags |= PM_SWAP;
1325 if (pmd_swp_soft_dirty(pmd))
1326 flags |= PM_SOFT_DIRTY;
1327 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1328 page = migration_entry_to_page(entry);
1329 }
1330 #endif
1331
1332 if (page && page_mapcount(page) == 1)
1333 flags |= PM_MMAP_EXCLUSIVE;
1334
1335 for (; addr != end; addr += PAGE_SIZE) {
1336 pagemap_entry_t pme = make_pme(frame, flags);
1337
1338 err = add_to_pagemap(addr, &pme, pm);
1339 if (err)
1340 break;
1341 if (pm->show_pfn) {
1342 if (flags & PM_PRESENT)
1343 frame++;
1344 else if (flags & PM_SWAP)
1345 frame += (1 << MAX_SWAPFILES_SHIFT);
1346 }
1347 }
1348 spin_unlock(ptl);
1349 return err;
1350 }
1351
1352 if (pmd_trans_unstable(pmdp))
1353 return 0;
1354 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1355
1356 /*
1357 * We can assume that @vma always points to a valid one and @end never
1358 * goes beyond vma->vm_end.
1359 */
1360 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1361 for (; addr < end; pte++, addr += PAGE_SIZE) {
1362 pagemap_entry_t pme;
1363
1364 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1365 err = add_to_pagemap(addr, &pme, pm);
1366 if (err)
1367 break;
1368 }
1369 pte_unmap_unlock(orig_pte, ptl);
1370
1371 cond_resched();
1372
1373 return err;
1374 }
1375
1376 #ifdef CONFIG_HUGETLB_PAGE
1377 /* This function walks within one hugetlb entry in the single call */
1378 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1379 unsigned long addr, unsigned long end,
1380 struct mm_walk *walk)
1381 {
1382 struct pagemapread *pm = walk->private;
1383 struct vm_area_struct *vma = walk->vma;
1384 u64 flags = 0, frame = 0;
1385 int err = 0;
1386 pte_t pte;
1387
1388 if (vma->vm_flags & VM_SOFTDIRTY)
1389 flags |= PM_SOFT_DIRTY;
1390
1391 pte = huge_ptep_get(ptep);
1392 if (pte_present(pte)) {
1393 struct page *page = pte_page(pte);
1394
1395 if (!PageAnon(page))
1396 flags |= PM_FILE;
1397
1398 if (page_mapcount(page) == 1)
1399 flags |= PM_MMAP_EXCLUSIVE;
1400
1401 flags |= PM_PRESENT;
1402 if (pm->show_pfn)
1403 frame = pte_pfn(pte) +
1404 ((addr & ~hmask) >> PAGE_SHIFT);
1405 }
1406
1407 for (; addr != end; addr += PAGE_SIZE) {
1408 pagemap_entry_t pme = make_pme(frame, flags);
1409
1410 err = add_to_pagemap(addr, &pme, pm);
1411 if (err)
1412 return err;
1413 if (pm->show_pfn && (flags & PM_PRESENT))
1414 frame++;
1415 }
1416
1417 cond_resched();
1418
1419 return err;
1420 }
1421 #endif /* HUGETLB_PAGE */
1422
1423 /*
1424 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1425 *
1426 * For each page in the address space, this file contains one 64-bit entry
1427 * consisting of the following:
1428 *
1429 * Bits 0-54 page frame number (PFN) if present
1430 * Bits 0-4 swap type if swapped
1431 * Bits 5-54 swap offset if swapped
1432 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1433 * Bit 56 page exclusively mapped
1434 * Bits 57-60 zero
1435 * Bit 61 page is file-page or shared-anon
1436 * Bit 62 page swapped
1437 * Bit 63 page present
1438 *
1439 * If the page is not present but in swap, then the PFN contains an
1440 * encoding of the swap file number and the page's offset into the
1441 * swap. Unmapped pages return a null PFN. This allows determining
1442 * precisely which pages are mapped (or in swap) and comparing mapped
1443 * pages between processes.
1444 *
1445 * Efficient users of this interface will use /proc/pid/maps to
1446 * determine which areas of memory are actually mapped and llseek to
1447 * skip over unmapped regions.
1448 */
1449 static ssize_t pagemap_read(struct file *file, char __user *buf,
1450 size_t count, loff_t *ppos)
1451 {
1452 struct mm_struct *mm = file->private_data;
1453 struct pagemapread pm;
1454 struct mm_walk pagemap_walk = {};
1455 unsigned long src;
1456 unsigned long svpfn;
1457 unsigned long start_vaddr;
1458 unsigned long end_vaddr;
1459 int ret = 0, copied = 0;
1460
1461 if (!mm || !mmget_not_zero(mm))
1462 goto out;
1463
1464 ret = -EINVAL;
1465 /* file position must be aligned */
1466 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1467 goto out_mm;
1468
1469 ret = 0;
1470 if (!count)
1471 goto out_mm;
1472
1473 /* do not disclose physical addresses: attack vector */
1474 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1475
1476 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1477 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1478 ret = -ENOMEM;
1479 if (!pm.buffer)
1480 goto out_mm;
1481
1482 pagemap_walk.pmd_entry = pagemap_pmd_range;
1483 pagemap_walk.pte_hole = pagemap_pte_hole;
1484 #ifdef CONFIG_HUGETLB_PAGE
1485 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1486 #endif
1487 pagemap_walk.mm = mm;
1488 pagemap_walk.private = &pm;
1489
1490 src = *ppos;
1491 svpfn = src / PM_ENTRY_BYTES;
1492 start_vaddr = svpfn << PAGE_SHIFT;
1493 end_vaddr = mm->task_size;
1494
1495 /* watch out for wraparound */
1496 if (svpfn > mm->task_size >> PAGE_SHIFT)
1497 start_vaddr = end_vaddr;
1498
1499 /*
1500 * The odds are that this will stop walking way
1501 * before end_vaddr, because the length of the
1502 * user buffer is tracked in "pm", and the walk
1503 * will stop when we hit the end of the buffer.
1504 */
1505 ret = 0;
1506 while (count && (start_vaddr < end_vaddr)) {
1507 int len;
1508 unsigned long end;
1509
1510 pm.pos = 0;
1511 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1512 /* overflow ? */
1513 if (end < start_vaddr || end > end_vaddr)
1514 end = end_vaddr;
1515 down_read(&mm->mmap_sem);
1516 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1517 up_read(&mm->mmap_sem);
1518 start_vaddr = end;
1519
1520 len = min(count, PM_ENTRY_BYTES * pm.pos);
1521 if (copy_to_user(buf, pm.buffer, len)) {
1522 ret = -EFAULT;
1523 goto out_free;
1524 }
1525 copied += len;
1526 buf += len;
1527 count -= len;
1528 }
1529 *ppos += copied;
1530 if (!ret || ret == PM_END_OF_BUFFER)
1531 ret = copied;
1532
1533 out_free:
1534 kfree(pm.buffer);
1535 out_mm:
1536 mmput(mm);
1537 out:
1538 return ret;
1539 }
1540
1541 static int pagemap_open(struct inode *inode, struct file *file)
1542 {
1543 struct mm_struct *mm;
1544
1545 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1546 if (IS_ERR(mm))
1547 return PTR_ERR(mm);
1548 file->private_data = mm;
1549 return 0;
1550 }
1551
1552 static int pagemap_release(struct inode *inode, struct file *file)
1553 {
1554 struct mm_struct *mm = file->private_data;
1555
1556 if (mm)
1557 mmdrop(mm);
1558 return 0;
1559 }
1560
1561 const struct file_operations proc_pagemap_operations = {
1562 .llseek = mem_lseek, /* borrow this */
1563 .read = pagemap_read,
1564 .open = pagemap_open,
1565 .release = pagemap_release,
1566 };
1567 #endif /* CONFIG_PROC_PAGE_MONITOR */
1568
1569 #ifdef CONFIG_NUMA
1570
1571 struct numa_maps {
1572 unsigned long pages;
1573 unsigned long anon;
1574 unsigned long active;
1575 unsigned long writeback;
1576 unsigned long mapcount_max;
1577 unsigned long dirty;
1578 unsigned long swapcache;
1579 unsigned long node[MAX_NUMNODES];
1580 };
1581
1582 struct numa_maps_private {
1583 struct proc_maps_private proc_maps;
1584 struct numa_maps md;
1585 };
1586
1587 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1588 unsigned long nr_pages)
1589 {
1590 int count = page_mapcount(page);
1591
1592 md->pages += nr_pages;
1593 if (pte_dirty || PageDirty(page))
1594 md->dirty += nr_pages;
1595
1596 if (PageSwapCache(page))
1597 md->swapcache += nr_pages;
1598
1599 if (PageActive(page) || PageUnevictable(page))
1600 md->active += nr_pages;
1601
1602 if (PageWriteback(page))
1603 md->writeback += nr_pages;
1604
1605 if (PageAnon(page))
1606 md->anon += nr_pages;
1607
1608 if (count > md->mapcount_max)
1609 md->mapcount_max = count;
1610
1611 md->node[page_to_nid(page)] += nr_pages;
1612 }
1613
1614 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1615 unsigned long addr)
1616 {
1617 struct page *page;
1618 int nid;
1619
1620 if (!pte_present(pte))
1621 return NULL;
1622
1623 page = vm_normal_page(vma, addr, pte);
1624 if (!page)
1625 return NULL;
1626
1627 if (PageReserved(page))
1628 return NULL;
1629
1630 nid = page_to_nid(page);
1631 if (!node_isset(nid, node_states[N_MEMORY]))
1632 return NULL;
1633
1634 return page;
1635 }
1636
1637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1639 struct vm_area_struct *vma,
1640 unsigned long addr)
1641 {
1642 struct page *page;
1643 int nid;
1644
1645 if (!pmd_present(pmd))
1646 return NULL;
1647
1648 page = vm_normal_page_pmd(vma, addr, pmd);
1649 if (!page)
1650 return NULL;
1651
1652 if (PageReserved(page))
1653 return NULL;
1654
1655 nid = page_to_nid(page);
1656 if (!node_isset(nid, node_states[N_MEMORY]))
1657 return NULL;
1658
1659 return page;
1660 }
1661 #endif
1662
1663 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1664 unsigned long end, struct mm_walk *walk)
1665 {
1666 struct numa_maps *md = walk->private;
1667 struct vm_area_struct *vma = walk->vma;
1668 spinlock_t *ptl;
1669 pte_t *orig_pte;
1670 pte_t *pte;
1671
1672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1673 ptl = pmd_trans_huge_lock(pmd, vma);
1674 if (ptl) {
1675 struct page *page;
1676
1677 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1678 if (page)
1679 gather_stats(page, md, pmd_dirty(*pmd),
1680 HPAGE_PMD_SIZE/PAGE_SIZE);
1681 spin_unlock(ptl);
1682 return 0;
1683 }
1684
1685 if (pmd_trans_unstable(pmd))
1686 return 0;
1687 #endif
1688 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1689 do {
1690 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1691 if (!page)
1692 continue;
1693 gather_stats(page, md, pte_dirty(*pte), 1);
1694
1695 } while (pte++, addr += PAGE_SIZE, addr != end);
1696 pte_unmap_unlock(orig_pte, ptl);
1697 cond_resched();
1698 return 0;
1699 }
1700 #ifdef CONFIG_HUGETLB_PAGE
1701 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1702 unsigned long addr, unsigned long end, struct mm_walk *walk)
1703 {
1704 pte_t huge_pte = huge_ptep_get(pte);
1705 struct numa_maps *md;
1706 struct page *page;
1707
1708 if (!pte_present(huge_pte))
1709 return 0;
1710
1711 page = pte_page(huge_pte);
1712 if (!page)
1713 return 0;
1714
1715 md = walk->private;
1716 gather_stats(page, md, pte_dirty(huge_pte), 1);
1717 return 0;
1718 }
1719
1720 #else
1721 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1722 unsigned long addr, unsigned long end, struct mm_walk *walk)
1723 {
1724 return 0;
1725 }
1726 #endif
1727
1728 /*
1729 * Display pages allocated per node and memory policy via /proc.
1730 */
1731 static int show_numa_map(struct seq_file *m, void *v)
1732 {
1733 struct numa_maps_private *numa_priv = m->private;
1734 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1735 struct vm_area_struct *vma = v;
1736 struct numa_maps *md = &numa_priv->md;
1737 struct file *file = vma->vm_file;
1738 struct mm_struct *mm = vma->vm_mm;
1739 struct mm_walk walk = {
1740 .hugetlb_entry = gather_hugetlb_stats,
1741 .pmd_entry = gather_pte_stats,
1742 .private = md,
1743 .mm = mm,
1744 };
1745 struct mempolicy *pol;
1746 char buffer[64];
1747 int nid;
1748
1749 if (!mm)
1750 return 0;
1751
1752 /* Ensure we start with an empty set of numa_maps statistics. */
1753 memset(md, 0, sizeof(*md));
1754
1755 pol = __get_vma_policy(vma, vma->vm_start);
1756 if (pol) {
1757 mpol_to_str(buffer, sizeof(buffer), pol);
1758 mpol_cond_put(pol);
1759 } else {
1760 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1761 }
1762
1763 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1764
1765 if (file) {
1766 seq_puts(m, " file=");
1767 seq_file_path(m, file, "\n\t= ");
1768 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1769 seq_puts(m, " heap");
1770 } else if (is_stack(vma)) {
1771 seq_puts(m, " stack");
1772 }
1773
1774 if (is_vm_hugetlb_page(vma))
1775 seq_puts(m, " huge");
1776
1777 /* mmap_sem is held by m_start */
1778 walk_page_vma(vma, &walk);
1779
1780 if (!md->pages)
1781 goto out;
1782
1783 if (md->anon)
1784 seq_printf(m, " anon=%lu", md->anon);
1785
1786 if (md->dirty)
1787 seq_printf(m, " dirty=%lu", md->dirty);
1788
1789 if (md->pages != md->anon && md->pages != md->dirty)
1790 seq_printf(m, " mapped=%lu", md->pages);
1791
1792 if (md->mapcount_max > 1)
1793 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1794
1795 if (md->swapcache)
1796 seq_printf(m, " swapcache=%lu", md->swapcache);
1797
1798 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1799 seq_printf(m, " active=%lu", md->active);
1800
1801 if (md->writeback)
1802 seq_printf(m, " writeback=%lu", md->writeback);
1803
1804 for_each_node_state(nid, N_MEMORY)
1805 if (md->node[nid])
1806 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1807
1808 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1809 out:
1810 seq_putc(m, '\n');
1811 m_cache_vma(m, vma);
1812 return 0;
1813 }
1814
1815 static const struct seq_operations proc_pid_numa_maps_op = {
1816 .start = m_start,
1817 .next = m_next,
1818 .stop = m_stop,
1819 .show = show_numa_map,
1820 };
1821
1822 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1823 {
1824 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1825 sizeof(struct numa_maps_private));
1826 }
1827
1828 const struct file_operations proc_pid_numa_maps_operations = {
1829 .open = pid_numa_maps_open,
1830 .read = seq_read,
1831 .llseek = seq_lseek,
1832 .release = proc_map_release,
1833 };
1834
1835 #endif /* CONFIG_NUMA */