]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/task_mmu.c
Merge remote-tracking branches 'asoc/topic/davinci', 'asoc/topic/fsl-card' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr);
179 if (vma && (vma = m_next_vma(priv, vma)))
180 return vma;
181 }
182
183 m->version = 0;
184 if (pos < mm->map_count) {
185 for (vma = mm->mmap; pos; pos--) {
186 m->version = vma->vm_start;
187 vma = vma->vm_next;
188 }
189 return vma;
190 }
191
192 /* we do not bother to update m->version in this case */
193 if (pos == mm->map_count && priv->tail_vma)
194 return priv->tail_vma;
195
196 vma_stop(priv);
197 return NULL;
198 }
199
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202 struct proc_maps_private *priv = m->private;
203 struct vm_area_struct *next;
204
205 (*pos)++;
206 next = m_next_vma(priv, v);
207 if (!next)
208 vma_stop(priv);
209 return next;
210 }
211
212 static void m_stop(struct seq_file *m, void *v)
213 {
214 struct proc_maps_private *priv = m->private;
215
216 if (!IS_ERR_OR_NULL(v))
217 vma_stop(priv);
218 if (priv->task) {
219 put_task_struct(priv->task);
220 priv->task = NULL;
221 }
222 }
223
224 static int proc_maps_open(struct inode *inode, struct file *file,
225 const struct seq_operations *ops, int psize)
226 {
227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229 if (!priv)
230 return -ENOMEM;
231
232 priv->inode = inode;
233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 if (IS_ERR(priv->mm)) {
235 int err = PTR_ERR(priv->mm);
236
237 seq_release_private(inode, file);
238 return err;
239 }
240
241 return 0;
242 }
243
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246 struct seq_file *seq = file->private_data;
247 struct proc_maps_private *priv = seq->private;
248
249 if (priv->mm)
250 mmdrop(priv->mm);
251
252 return seq_release_private(inode, file);
253 }
254
255 static int do_maps_open(struct inode *inode, struct file *file,
256 const struct seq_operations *ops)
257 {
258 return proc_maps_open(inode, file, ops,
259 sizeof(struct proc_maps_private));
260 }
261
262 /*
263 * Indicate if the VMA is a stack for the given task; for
264 * /proc/PID/maps that is the stack of the main task.
265 */
266 static int is_stack(struct proc_maps_private *priv,
267 struct vm_area_struct *vma, int is_pid)
268 {
269 int stack = 0;
270
271 if (is_pid) {
272 stack = vma->vm_start <= vma->vm_mm->start_stack &&
273 vma->vm_end >= vma->vm_mm->start_stack;
274 } else {
275 struct inode *inode = priv->inode;
276 struct task_struct *task;
277
278 rcu_read_lock();
279 task = pid_task(proc_pid(inode), PIDTYPE_PID);
280 if (task)
281 stack = vma_is_stack_for_task(vma, task);
282 rcu_read_unlock();
283 }
284 return stack;
285 }
286
287 static void
288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
289 {
290 struct mm_struct *mm = vma->vm_mm;
291 struct file *file = vma->vm_file;
292 struct proc_maps_private *priv = m->private;
293 vm_flags_t flags = vma->vm_flags;
294 unsigned long ino = 0;
295 unsigned long long pgoff = 0;
296 unsigned long start, end;
297 dev_t dev = 0;
298 const char *name = NULL;
299
300 if (file) {
301 struct inode *inode = file_inode(vma->vm_file);
302 dev = inode->i_sb->s_dev;
303 ino = inode->i_ino;
304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
305 }
306
307 /* We don't show the stack guard page in /proc/maps */
308 start = vma->vm_start;
309 if (stack_guard_page_start(vma, start))
310 start += PAGE_SIZE;
311 end = vma->vm_end;
312 if (stack_guard_page_end(vma, end))
313 end -= PAGE_SIZE;
314
315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
317 start,
318 end,
319 flags & VM_READ ? 'r' : '-',
320 flags & VM_WRITE ? 'w' : '-',
321 flags & VM_EXEC ? 'x' : '-',
322 flags & VM_MAYSHARE ? 's' : 'p',
323 pgoff,
324 MAJOR(dev), MINOR(dev), ino);
325
326 /*
327 * Print the dentry name for named mappings, and a
328 * special [heap] marker for the heap:
329 */
330 if (file) {
331 seq_pad(m, ' ');
332 seq_file_path(m, file, "\n");
333 goto done;
334 }
335
336 if (vma->vm_ops && vma->vm_ops->name) {
337 name = vma->vm_ops->name(vma);
338 if (name)
339 goto done;
340 }
341
342 name = arch_vma_name(vma);
343 if (!name) {
344 if (!mm) {
345 name = "[vdso]";
346 goto done;
347 }
348
349 if (vma->vm_start <= mm->brk &&
350 vma->vm_end >= mm->start_brk) {
351 name = "[heap]";
352 goto done;
353 }
354
355 if (is_stack(priv, vma, is_pid))
356 name = "[stack]";
357 }
358
359 done:
360 if (name) {
361 seq_pad(m, ' ');
362 seq_puts(m, name);
363 }
364 seq_putc(m, '\n');
365 }
366
367 static int show_map(struct seq_file *m, void *v, int is_pid)
368 {
369 show_map_vma(m, v, is_pid);
370 m_cache_vma(m, v);
371 return 0;
372 }
373
374 static int show_pid_map(struct seq_file *m, void *v)
375 {
376 return show_map(m, v, 1);
377 }
378
379 static int show_tid_map(struct seq_file *m, void *v)
380 {
381 return show_map(m, v, 0);
382 }
383
384 static const struct seq_operations proc_pid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_pid_map
389 };
390
391 static const struct seq_operations proc_tid_maps_op = {
392 .start = m_start,
393 .next = m_next,
394 .stop = m_stop,
395 .show = show_tid_map
396 };
397
398 static int pid_maps_open(struct inode *inode, struct file *file)
399 {
400 return do_maps_open(inode, file, &proc_pid_maps_op);
401 }
402
403 static int tid_maps_open(struct inode *inode, struct file *file)
404 {
405 return do_maps_open(inode, file, &proc_tid_maps_op);
406 }
407
408 const struct file_operations proc_pid_maps_operations = {
409 .open = pid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413 };
414
415 const struct file_operations proc_tid_maps_operations = {
416 .open = tid_maps_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = proc_map_release,
420 };
421
422 /*
423 * Proportional Set Size(PSS): my share of RSS.
424 *
425 * PSS of a process is the count of pages it has in memory, where each
426 * page is divided by the number of processes sharing it. So if a
427 * process has 1000 pages all to itself, and 1000 shared with one other
428 * process, its PSS will be 1500.
429 *
430 * To keep (accumulated) division errors low, we adopt a 64bit
431 * fixed-point pss counter to minimize division errors. So (pss >>
432 * PSS_SHIFT) would be the real byte count.
433 *
434 * A shift of 12 before division means (assuming 4K page size):
435 * - 1M 3-user-pages add up to 8KB errors;
436 * - supports mapcount up to 2^24, or 16M;
437 * - supports PSS up to 2^52 bytes, or 4PB.
438 */
439 #define PSS_SHIFT 12
440
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats {
443 unsigned long resident;
444 unsigned long shared_clean;
445 unsigned long shared_dirty;
446 unsigned long private_clean;
447 unsigned long private_dirty;
448 unsigned long referenced;
449 unsigned long anonymous;
450 unsigned long anonymous_thp;
451 unsigned long swap;
452 unsigned long shared_hugetlb;
453 unsigned long private_hugetlb;
454 u64 pss;
455 u64 swap_pss;
456 bool check_shmem_swap;
457 };
458
459 static void smaps_account(struct mem_size_stats *mss, struct page *page,
460 bool compound, bool young, bool dirty)
461 {
462 int i, nr = compound ? 1 << compound_order(page) : 1;
463 unsigned long size = nr * PAGE_SIZE;
464
465 if (PageAnon(page))
466 mss->anonymous += size;
467
468 mss->resident += size;
469 /* Accumulate the size in pages that have been accessed. */
470 if (young || page_is_young(page) || PageReferenced(page))
471 mss->referenced += size;
472
473 /*
474 * page_count(page) == 1 guarantees the page is mapped exactly once.
475 * If any subpage of the compound page mapped with PTE it would elevate
476 * page_count().
477 */
478 if (page_count(page) == 1) {
479 if (dirty || PageDirty(page))
480 mss->private_dirty += size;
481 else
482 mss->private_clean += size;
483 mss->pss += (u64)size << PSS_SHIFT;
484 return;
485 }
486
487 for (i = 0; i < nr; i++, page++) {
488 int mapcount = page_mapcount(page);
489
490 if (mapcount >= 2) {
491 if (dirty || PageDirty(page))
492 mss->shared_dirty += PAGE_SIZE;
493 else
494 mss->shared_clean += PAGE_SIZE;
495 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
496 } else {
497 if (dirty || PageDirty(page))
498 mss->private_dirty += PAGE_SIZE;
499 else
500 mss->private_clean += PAGE_SIZE;
501 mss->pss += PAGE_SIZE << PSS_SHIFT;
502 }
503 }
504 }
505
506 #ifdef CONFIG_SHMEM
507 static int smaps_pte_hole(unsigned long addr, unsigned long end,
508 struct mm_walk *walk)
509 {
510 struct mem_size_stats *mss = walk->private;
511
512 mss->swap += shmem_partial_swap_usage(
513 walk->vma->vm_file->f_mapping, addr, end);
514
515 return 0;
516 }
517 #endif
518
519 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
520 struct mm_walk *walk)
521 {
522 struct mem_size_stats *mss = walk->private;
523 struct vm_area_struct *vma = walk->vma;
524 struct page *page = NULL;
525
526 if (pte_present(*pte)) {
527 page = vm_normal_page(vma, addr, *pte);
528 } else if (is_swap_pte(*pte)) {
529 swp_entry_t swpent = pte_to_swp_entry(*pte);
530
531 if (!non_swap_entry(swpent)) {
532 int mapcount;
533
534 mss->swap += PAGE_SIZE;
535 mapcount = swp_swapcount(swpent);
536 if (mapcount >= 2) {
537 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
538
539 do_div(pss_delta, mapcount);
540 mss->swap_pss += pss_delta;
541 } else {
542 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
543 }
544 } else if (is_migration_entry(swpent))
545 page = migration_entry_to_page(swpent);
546 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
547 && pte_none(*pte))) {
548 page = find_get_entry(vma->vm_file->f_mapping,
549 linear_page_index(vma, addr));
550 if (!page)
551 return;
552
553 if (radix_tree_exceptional_entry(page))
554 mss->swap += PAGE_SIZE;
555 else
556 page_cache_release(page);
557
558 return;
559 }
560
561 if (!page)
562 return;
563
564 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
565 }
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
569 struct mm_walk *walk)
570 {
571 struct mem_size_stats *mss = walk->private;
572 struct vm_area_struct *vma = walk->vma;
573 struct page *page;
574
575 /* FOLL_DUMP will return -EFAULT on huge zero page */
576 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
577 if (IS_ERR_OR_NULL(page))
578 return;
579 mss->anonymous_thp += HPAGE_PMD_SIZE;
580 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
581 }
582 #else
583 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
584 struct mm_walk *walk)
585 {
586 }
587 #endif
588
589 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
590 struct mm_walk *walk)
591 {
592 struct vm_area_struct *vma = walk->vma;
593 pte_t *pte;
594 spinlock_t *ptl;
595
596 ptl = pmd_trans_huge_lock(pmd, vma);
597 if (ptl) {
598 smaps_pmd_entry(pmd, addr, walk);
599 spin_unlock(ptl);
600 return 0;
601 }
602
603 if (pmd_trans_unstable(pmd))
604 return 0;
605 /*
606 * The mmap_sem held all the way back in m_start() is what
607 * keeps khugepaged out of here and from collapsing things
608 * in here.
609 */
610 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
611 for (; addr != end; pte++, addr += PAGE_SIZE)
612 smaps_pte_entry(pte, addr, walk);
613 pte_unmap_unlock(pte - 1, ptl);
614 cond_resched();
615 return 0;
616 }
617
618 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
619 {
620 /*
621 * Don't forget to update Documentation/ on changes.
622 */
623 static const char mnemonics[BITS_PER_LONG][2] = {
624 /*
625 * In case if we meet a flag we don't know about.
626 */
627 [0 ... (BITS_PER_LONG-1)] = "??",
628
629 [ilog2(VM_READ)] = "rd",
630 [ilog2(VM_WRITE)] = "wr",
631 [ilog2(VM_EXEC)] = "ex",
632 [ilog2(VM_SHARED)] = "sh",
633 [ilog2(VM_MAYREAD)] = "mr",
634 [ilog2(VM_MAYWRITE)] = "mw",
635 [ilog2(VM_MAYEXEC)] = "me",
636 [ilog2(VM_MAYSHARE)] = "ms",
637 [ilog2(VM_GROWSDOWN)] = "gd",
638 [ilog2(VM_PFNMAP)] = "pf",
639 [ilog2(VM_DENYWRITE)] = "dw",
640 #ifdef CONFIG_X86_INTEL_MPX
641 [ilog2(VM_MPX)] = "mp",
642 #endif
643 [ilog2(VM_LOCKED)] = "lo",
644 [ilog2(VM_IO)] = "io",
645 [ilog2(VM_SEQ_READ)] = "sr",
646 [ilog2(VM_RAND_READ)] = "rr",
647 [ilog2(VM_DONTCOPY)] = "dc",
648 [ilog2(VM_DONTEXPAND)] = "de",
649 [ilog2(VM_ACCOUNT)] = "ac",
650 [ilog2(VM_NORESERVE)] = "nr",
651 [ilog2(VM_HUGETLB)] = "ht",
652 [ilog2(VM_ARCH_1)] = "ar",
653 [ilog2(VM_DONTDUMP)] = "dd",
654 #ifdef CONFIG_MEM_SOFT_DIRTY
655 [ilog2(VM_SOFTDIRTY)] = "sd",
656 #endif
657 [ilog2(VM_MIXEDMAP)] = "mm",
658 [ilog2(VM_HUGEPAGE)] = "hg",
659 [ilog2(VM_NOHUGEPAGE)] = "nh",
660 [ilog2(VM_MERGEABLE)] = "mg",
661 [ilog2(VM_UFFD_MISSING)]= "um",
662 [ilog2(VM_UFFD_WP)] = "uw",
663 };
664 size_t i;
665
666 seq_puts(m, "VmFlags: ");
667 for (i = 0; i < BITS_PER_LONG; i++) {
668 if (vma->vm_flags & (1UL << i)) {
669 seq_printf(m, "%c%c ",
670 mnemonics[i][0], mnemonics[i][1]);
671 }
672 }
673 seq_putc(m, '\n');
674 }
675
676 #ifdef CONFIG_HUGETLB_PAGE
677 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
678 unsigned long addr, unsigned long end,
679 struct mm_walk *walk)
680 {
681 struct mem_size_stats *mss = walk->private;
682 struct vm_area_struct *vma = walk->vma;
683 struct page *page = NULL;
684
685 if (pte_present(*pte)) {
686 page = vm_normal_page(vma, addr, *pte);
687 } else if (is_swap_pte(*pte)) {
688 swp_entry_t swpent = pte_to_swp_entry(*pte);
689
690 if (is_migration_entry(swpent))
691 page = migration_entry_to_page(swpent);
692 }
693 if (page) {
694 int mapcount = page_mapcount(page);
695
696 if (mapcount >= 2)
697 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
698 else
699 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
700 }
701 return 0;
702 }
703 #endif /* HUGETLB_PAGE */
704
705 static int show_smap(struct seq_file *m, void *v, int is_pid)
706 {
707 struct vm_area_struct *vma = v;
708 struct mem_size_stats mss;
709 struct mm_walk smaps_walk = {
710 .pmd_entry = smaps_pte_range,
711 #ifdef CONFIG_HUGETLB_PAGE
712 .hugetlb_entry = smaps_hugetlb_range,
713 #endif
714 .mm = vma->vm_mm,
715 .private = &mss,
716 };
717
718 memset(&mss, 0, sizeof mss);
719
720 #ifdef CONFIG_SHMEM
721 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
722 /*
723 * For shared or readonly shmem mappings we know that all
724 * swapped out pages belong to the shmem object, and we can
725 * obtain the swap value much more efficiently. For private
726 * writable mappings, we might have COW pages that are
727 * not affected by the parent swapped out pages of the shmem
728 * object, so we have to distinguish them during the page walk.
729 * Unless we know that the shmem object (or the part mapped by
730 * our VMA) has no swapped out pages at all.
731 */
732 unsigned long shmem_swapped = shmem_swap_usage(vma);
733
734 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
735 !(vma->vm_flags & VM_WRITE)) {
736 mss.swap = shmem_swapped;
737 } else {
738 mss.check_shmem_swap = true;
739 smaps_walk.pte_hole = smaps_pte_hole;
740 }
741 }
742 #endif
743
744 /* mmap_sem is held in m_start */
745 walk_page_vma(vma, &smaps_walk);
746
747 show_map_vma(m, vma, is_pid);
748
749 seq_printf(m,
750 "Size: %8lu kB\n"
751 "Rss: %8lu kB\n"
752 "Pss: %8lu kB\n"
753 "Shared_Clean: %8lu kB\n"
754 "Shared_Dirty: %8lu kB\n"
755 "Private_Clean: %8lu kB\n"
756 "Private_Dirty: %8lu kB\n"
757 "Referenced: %8lu kB\n"
758 "Anonymous: %8lu kB\n"
759 "AnonHugePages: %8lu kB\n"
760 "Shared_Hugetlb: %8lu kB\n"
761 "Private_Hugetlb: %7lu kB\n"
762 "Swap: %8lu kB\n"
763 "SwapPss: %8lu kB\n"
764 "KernelPageSize: %8lu kB\n"
765 "MMUPageSize: %8lu kB\n"
766 "Locked: %8lu kB\n",
767 (vma->vm_end - vma->vm_start) >> 10,
768 mss.resident >> 10,
769 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
770 mss.shared_clean >> 10,
771 mss.shared_dirty >> 10,
772 mss.private_clean >> 10,
773 mss.private_dirty >> 10,
774 mss.referenced >> 10,
775 mss.anonymous >> 10,
776 mss.anonymous_thp >> 10,
777 mss.shared_hugetlb >> 10,
778 mss.private_hugetlb >> 10,
779 mss.swap >> 10,
780 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
781 vma_kernel_pagesize(vma) >> 10,
782 vma_mmu_pagesize(vma) >> 10,
783 (vma->vm_flags & VM_LOCKED) ?
784 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
785
786 show_smap_vma_flags(m, vma);
787 m_cache_vma(m, vma);
788 return 0;
789 }
790
791 static int show_pid_smap(struct seq_file *m, void *v)
792 {
793 return show_smap(m, v, 1);
794 }
795
796 static int show_tid_smap(struct seq_file *m, void *v)
797 {
798 return show_smap(m, v, 0);
799 }
800
801 static const struct seq_operations proc_pid_smaps_op = {
802 .start = m_start,
803 .next = m_next,
804 .stop = m_stop,
805 .show = show_pid_smap
806 };
807
808 static const struct seq_operations proc_tid_smaps_op = {
809 .start = m_start,
810 .next = m_next,
811 .stop = m_stop,
812 .show = show_tid_smap
813 };
814
815 static int pid_smaps_open(struct inode *inode, struct file *file)
816 {
817 return do_maps_open(inode, file, &proc_pid_smaps_op);
818 }
819
820 static int tid_smaps_open(struct inode *inode, struct file *file)
821 {
822 return do_maps_open(inode, file, &proc_tid_smaps_op);
823 }
824
825 const struct file_operations proc_pid_smaps_operations = {
826 .open = pid_smaps_open,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = proc_map_release,
830 };
831
832 const struct file_operations proc_tid_smaps_operations = {
833 .open = tid_smaps_open,
834 .read = seq_read,
835 .llseek = seq_lseek,
836 .release = proc_map_release,
837 };
838
839 enum clear_refs_types {
840 CLEAR_REFS_ALL = 1,
841 CLEAR_REFS_ANON,
842 CLEAR_REFS_MAPPED,
843 CLEAR_REFS_SOFT_DIRTY,
844 CLEAR_REFS_MM_HIWATER_RSS,
845 CLEAR_REFS_LAST,
846 };
847
848 struct clear_refs_private {
849 enum clear_refs_types type;
850 };
851
852 #ifdef CONFIG_MEM_SOFT_DIRTY
853 static inline void clear_soft_dirty(struct vm_area_struct *vma,
854 unsigned long addr, pte_t *pte)
855 {
856 /*
857 * The soft-dirty tracker uses #PF-s to catch writes
858 * to pages, so write-protect the pte as well. See the
859 * Documentation/vm/soft-dirty.txt for full description
860 * of how soft-dirty works.
861 */
862 pte_t ptent = *pte;
863
864 if (pte_present(ptent)) {
865 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
866 ptent = pte_wrprotect(ptent);
867 ptent = pte_clear_soft_dirty(ptent);
868 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
869 } else if (is_swap_pte(ptent)) {
870 ptent = pte_swp_clear_soft_dirty(ptent);
871 set_pte_at(vma->vm_mm, addr, pte, ptent);
872 }
873 }
874 #else
875 static inline void clear_soft_dirty(struct vm_area_struct *vma,
876 unsigned long addr, pte_t *pte)
877 {
878 }
879 #endif
880
881 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
882 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
883 unsigned long addr, pmd_t *pmdp)
884 {
885 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
886
887 pmd = pmd_wrprotect(pmd);
888 pmd = pmd_clear_soft_dirty(pmd);
889
890 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
891 }
892 #else
893 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
894 unsigned long addr, pmd_t *pmdp)
895 {
896 }
897 #endif
898
899 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
900 unsigned long end, struct mm_walk *walk)
901 {
902 struct clear_refs_private *cp = walk->private;
903 struct vm_area_struct *vma = walk->vma;
904 pte_t *pte, ptent;
905 spinlock_t *ptl;
906 struct page *page;
907
908 ptl = pmd_trans_huge_lock(pmd, vma);
909 if (ptl) {
910 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
911 clear_soft_dirty_pmd(vma, addr, pmd);
912 goto out;
913 }
914
915 page = pmd_page(*pmd);
916
917 /* Clear accessed and referenced bits. */
918 pmdp_test_and_clear_young(vma, addr, pmd);
919 test_and_clear_page_young(page);
920 ClearPageReferenced(page);
921 out:
922 spin_unlock(ptl);
923 return 0;
924 }
925
926 if (pmd_trans_unstable(pmd))
927 return 0;
928
929 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
930 for (; addr != end; pte++, addr += PAGE_SIZE) {
931 ptent = *pte;
932
933 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
934 clear_soft_dirty(vma, addr, pte);
935 continue;
936 }
937
938 if (!pte_present(ptent))
939 continue;
940
941 page = vm_normal_page(vma, addr, ptent);
942 if (!page)
943 continue;
944
945 /* Clear accessed and referenced bits. */
946 ptep_test_and_clear_young(vma, addr, pte);
947 test_and_clear_page_young(page);
948 ClearPageReferenced(page);
949 }
950 pte_unmap_unlock(pte - 1, ptl);
951 cond_resched();
952 return 0;
953 }
954
955 static int clear_refs_test_walk(unsigned long start, unsigned long end,
956 struct mm_walk *walk)
957 {
958 struct clear_refs_private *cp = walk->private;
959 struct vm_area_struct *vma = walk->vma;
960
961 if (vma->vm_flags & VM_PFNMAP)
962 return 1;
963
964 /*
965 * Writing 1 to /proc/pid/clear_refs affects all pages.
966 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
967 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
968 * Writing 4 to /proc/pid/clear_refs affects all pages.
969 */
970 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
971 return 1;
972 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
973 return 1;
974 return 0;
975 }
976
977 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
978 size_t count, loff_t *ppos)
979 {
980 struct task_struct *task;
981 char buffer[PROC_NUMBUF];
982 struct mm_struct *mm;
983 struct vm_area_struct *vma;
984 enum clear_refs_types type;
985 int itype;
986 int rv;
987
988 memset(buffer, 0, sizeof(buffer));
989 if (count > sizeof(buffer) - 1)
990 count = sizeof(buffer) - 1;
991 if (copy_from_user(buffer, buf, count))
992 return -EFAULT;
993 rv = kstrtoint(strstrip(buffer), 10, &itype);
994 if (rv < 0)
995 return rv;
996 type = (enum clear_refs_types)itype;
997 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
998 return -EINVAL;
999
1000 task = get_proc_task(file_inode(file));
1001 if (!task)
1002 return -ESRCH;
1003 mm = get_task_mm(task);
1004 if (mm) {
1005 struct clear_refs_private cp = {
1006 .type = type,
1007 };
1008 struct mm_walk clear_refs_walk = {
1009 .pmd_entry = clear_refs_pte_range,
1010 .test_walk = clear_refs_test_walk,
1011 .mm = mm,
1012 .private = &cp,
1013 };
1014
1015 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1016 /*
1017 * Writing 5 to /proc/pid/clear_refs resets the peak
1018 * resident set size to this mm's current rss value.
1019 */
1020 down_write(&mm->mmap_sem);
1021 reset_mm_hiwater_rss(mm);
1022 up_write(&mm->mmap_sem);
1023 goto out_mm;
1024 }
1025
1026 down_read(&mm->mmap_sem);
1027 if (type == CLEAR_REFS_SOFT_DIRTY) {
1028 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1029 if (!(vma->vm_flags & VM_SOFTDIRTY))
1030 continue;
1031 up_read(&mm->mmap_sem);
1032 down_write(&mm->mmap_sem);
1033 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1034 vma->vm_flags &= ~VM_SOFTDIRTY;
1035 vma_set_page_prot(vma);
1036 }
1037 downgrade_write(&mm->mmap_sem);
1038 break;
1039 }
1040 mmu_notifier_invalidate_range_start(mm, 0, -1);
1041 }
1042 walk_page_range(0, ~0UL, &clear_refs_walk);
1043 if (type == CLEAR_REFS_SOFT_DIRTY)
1044 mmu_notifier_invalidate_range_end(mm, 0, -1);
1045 flush_tlb_mm(mm);
1046 up_read(&mm->mmap_sem);
1047 out_mm:
1048 mmput(mm);
1049 }
1050 put_task_struct(task);
1051
1052 return count;
1053 }
1054
1055 const struct file_operations proc_clear_refs_operations = {
1056 .write = clear_refs_write,
1057 .llseek = noop_llseek,
1058 };
1059
1060 typedef struct {
1061 u64 pme;
1062 } pagemap_entry_t;
1063
1064 struct pagemapread {
1065 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1066 pagemap_entry_t *buffer;
1067 bool show_pfn;
1068 };
1069
1070 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1071 #define PAGEMAP_WALK_MASK (PMD_MASK)
1072
1073 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1074 #define PM_PFRAME_BITS 55
1075 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1076 #define PM_SOFT_DIRTY BIT_ULL(55)
1077 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1078 #define PM_FILE BIT_ULL(61)
1079 #define PM_SWAP BIT_ULL(62)
1080 #define PM_PRESENT BIT_ULL(63)
1081
1082 #define PM_END_OF_BUFFER 1
1083
1084 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1085 {
1086 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1087 }
1088
1089 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1090 struct pagemapread *pm)
1091 {
1092 pm->buffer[pm->pos++] = *pme;
1093 if (pm->pos >= pm->len)
1094 return PM_END_OF_BUFFER;
1095 return 0;
1096 }
1097
1098 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1099 struct mm_walk *walk)
1100 {
1101 struct pagemapread *pm = walk->private;
1102 unsigned long addr = start;
1103 int err = 0;
1104
1105 while (addr < end) {
1106 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1107 pagemap_entry_t pme = make_pme(0, 0);
1108 /* End of address space hole, which we mark as non-present. */
1109 unsigned long hole_end;
1110
1111 if (vma)
1112 hole_end = min(end, vma->vm_start);
1113 else
1114 hole_end = end;
1115
1116 for (; addr < hole_end; addr += PAGE_SIZE) {
1117 err = add_to_pagemap(addr, &pme, pm);
1118 if (err)
1119 goto out;
1120 }
1121
1122 if (!vma)
1123 break;
1124
1125 /* Addresses in the VMA. */
1126 if (vma->vm_flags & VM_SOFTDIRTY)
1127 pme = make_pme(0, PM_SOFT_DIRTY);
1128 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1129 err = add_to_pagemap(addr, &pme, pm);
1130 if (err)
1131 goto out;
1132 }
1133 }
1134 out:
1135 return err;
1136 }
1137
1138 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1139 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1140 {
1141 u64 frame = 0, flags = 0;
1142 struct page *page = NULL;
1143
1144 if (pte_present(pte)) {
1145 if (pm->show_pfn)
1146 frame = pte_pfn(pte);
1147 flags |= PM_PRESENT;
1148 page = vm_normal_page(vma, addr, pte);
1149 if (pte_soft_dirty(pte))
1150 flags |= PM_SOFT_DIRTY;
1151 } else if (is_swap_pte(pte)) {
1152 swp_entry_t entry;
1153 if (pte_swp_soft_dirty(pte))
1154 flags |= PM_SOFT_DIRTY;
1155 entry = pte_to_swp_entry(pte);
1156 frame = swp_type(entry) |
1157 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1158 flags |= PM_SWAP;
1159 if (is_migration_entry(entry))
1160 page = migration_entry_to_page(entry);
1161 }
1162
1163 if (page && !PageAnon(page))
1164 flags |= PM_FILE;
1165 if (page && page_mapcount(page) == 1)
1166 flags |= PM_MMAP_EXCLUSIVE;
1167 if (vma->vm_flags & VM_SOFTDIRTY)
1168 flags |= PM_SOFT_DIRTY;
1169
1170 return make_pme(frame, flags);
1171 }
1172
1173 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1174 struct mm_walk *walk)
1175 {
1176 struct vm_area_struct *vma = walk->vma;
1177 struct pagemapread *pm = walk->private;
1178 spinlock_t *ptl;
1179 pte_t *pte, *orig_pte;
1180 int err = 0;
1181
1182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1183 ptl = pmd_trans_huge_lock(pmdp, vma);
1184 if (ptl) {
1185 u64 flags = 0, frame = 0;
1186 pmd_t pmd = *pmdp;
1187
1188 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1189 flags |= PM_SOFT_DIRTY;
1190
1191 /*
1192 * Currently pmd for thp is always present because thp
1193 * can not be swapped-out, migrated, or HWPOISONed
1194 * (split in such cases instead.)
1195 * This if-check is just to prepare for future implementation.
1196 */
1197 if (pmd_present(pmd)) {
1198 struct page *page = pmd_page(pmd);
1199
1200 if (page_mapcount(page) == 1)
1201 flags |= PM_MMAP_EXCLUSIVE;
1202
1203 flags |= PM_PRESENT;
1204 if (pm->show_pfn)
1205 frame = pmd_pfn(pmd) +
1206 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1207 }
1208
1209 for (; addr != end; addr += PAGE_SIZE) {
1210 pagemap_entry_t pme = make_pme(frame, flags);
1211
1212 err = add_to_pagemap(addr, &pme, pm);
1213 if (err)
1214 break;
1215 if (pm->show_pfn && (flags & PM_PRESENT))
1216 frame++;
1217 }
1218 spin_unlock(ptl);
1219 return err;
1220 }
1221
1222 if (pmd_trans_unstable(pmdp))
1223 return 0;
1224 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1225
1226 /*
1227 * We can assume that @vma always points to a valid one and @end never
1228 * goes beyond vma->vm_end.
1229 */
1230 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1231 for (; addr < end; pte++, addr += PAGE_SIZE) {
1232 pagemap_entry_t pme;
1233
1234 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1235 err = add_to_pagemap(addr, &pme, pm);
1236 if (err)
1237 break;
1238 }
1239 pte_unmap_unlock(orig_pte, ptl);
1240
1241 cond_resched();
1242
1243 return err;
1244 }
1245
1246 #ifdef CONFIG_HUGETLB_PAGE
1247 /* This function walks within one hugetlb entry in the single call */
1248 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1249 unsigned long addr, unsigned long end,
1250 struct mm_walk *walk)
1251 {
1252 struct pagemapread *pm = walk->private;
1253 struct vm_area_struct *vma = walk->vma;
1254 u64 flags = 0, frame = 0;
1255 int err = 0;
1256 pte_t pte;
1257
1258 if (vma->vm_flags & VM_SOFTDIRTY)
1259 flags |= PM_SOFT_DIRTY;
1260
1261 pte = huge_ptep_get(ptep);
1262 if (pte_present(pte)) {
1263 struct page *page = pte_page(pte);
1264
1265 if (!PageAnon(page))
1266 flags |= PM_FILE;
1267
1268 if (page_mapcount(page) == 1)
1269 flags |= PM_MMAP_EXCLUSIVE;
1270
1271 flags |= PM_PRESENT;
1272 if (pm->show_pfn)
1273 frame = pte_pfn(pte) +
1274 ((addr & ~hmask) >> PAGE_SHIFT);
1275 }
1276
1277 for (; addr != end; addr += PAGE_SIZE) {
1278 pagemap_entry_t pme = make_pme(frame, flags);
1279
1280 err = add_to_pagemap(addr, &pme, pm);
1281 if (err)
1282 return err;
1283 if (pm->show_pfn && (flags & PM_PRESENT))
1284 frame++;
1285 }
1286
1287 cond_resched();
1288
1289 return err;
1290 }
1291 #endif /* HUGETLB_PAGE */
1292
1293 /*
1294 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1295 *
1296 * For each page in the address space, this file contains one 64-bit entry
1297 * consisting of the following:
1298 *
1299 * Bits 0-54 page frame number (PFN) if present
1300 * Bits 0-4 swap type if swapped
1301 * Bits 5-54 swap offset if swapped
1302 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1303 * Bit 56 page exclusively mapped
1304 * Bits 57-60 zero
1305 * Bit 61 page is file-page or shared-anon
1306 * Bit 62 page swapped
1307 * Bit 63 page present
1308 *
1309 * If the page is not present but in swap, then the PFN contains an
1310 * encoding of the swap file number and the page's offset into the
1311 * swap. Unmapped pages return a null PFN. This allows determining
1312 * precisely which pages are mapped (or in swap) and comparing mapped
1313 * pages between processes.
1314 *
1315 * Efficient users of this interface will use /proc/pid/maps to
1316 * determine which areas of memory are actually mapped and llseek to
1317 * skip over unmapped regions.
1318 */
1319 static ssize_t pagemap_read(struct file *file, char __user *buf,
1320 size_t count, loff_t *ppos)
1321 {
1322 struct mm_struct *mm = file->private_data;
1323 struct pagemapread pm;
1324 struct mm_walk pagemap_walk = {};
1325 unsigned long src;
1326 unsigned long svpfn;
1327 unsigned long start_vaddr;
1328 unsigned long end_vaddr;
1329 int ret = 0, copied = 0;
1330
1331 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1332 goto out;
1333
1334 ret = -EINVAL;
1335 /* file position must be aligned */
1336 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1337 goto out_mm;
1338
1339 ret = 0;
1340 if (!count)
1341 goto out_mm;
1342
1343 /* do not disclose physical addresses: attack vector */
1344 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1345
1346 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1347 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1348 ret = -ENOMEM;
1349 if (!pm.buffer)
1350 goto out_mm;
1351
1352 pagemap_walk.pmd_entry = pagemap_pmd_range;
1353 pagemap_walk.pte_hole = pagemap_pte_hole;
1354 #ifdef CONFIG_HUGETLB_PAGE
1355 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1356 #endif
1357 pagemap_walk.mm = mm;
1358 pagemap_walk.private = &pm;
1359
1360 src = *ppos;
1361 svpfn = src / PM_ENTRY_BYTES;
1362 start_vaddr = svpfn << PAGE_SHIFT;
1363 end_vaddr = mm->task_size;
1364
1365 /* watch out for wraparound */
1366 if (svpfn > mm->task_size >> PAGE_SHIFT)
1367 start_vaddr = end_vaddr;
1368
1369 /*
1370 * The odds are that this will stop walking way
1371 * before end_vaddr, because the length of the
1372 * user buffer is tracked in "pm", and the walk
1373 * will stop when we hit the end of the buffer.
1374 */
1375 ret = 0;
1376 while (count && (start_vaddr < end_vaddr)) {
1377 int len;
1378 unsigned long end;
1379
1380 pm.pos = 0;
1381 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1382 /* overflow ? */
1383 if (end < start_vaddr || end > end_vaddr)
1384 end = end_vaddr;
1385 down_read(&mm->mmap_sem);
1386 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1387 up_read(&mm->mmap_sem);
1388 start_vaddr = end;
1389
1390 len = min(count, PM_ENTRY_BYTES * pm.pos);
1391 if (copy_to_user(buf, pm.buffer, len)) {
1392 ret = -EFAULT;
1393 goto out_free;
1394 }
1395 copied += len;
1396 buf += len;
1397 count -= len;
1398 }
1399 *ppos += copied;
1400 if (!ret || ret == PM_END_OF_BUFFER)
1401 ret = copied;
1402
1403 out_free:
1404 kfree(pm.buffer);
1405 out_mm:
1406 mmput(mm);
1407 out:
1408 return ret;
1409 }
1410
1411 static int pagemap_open(struct inode *inode, struct file *file)
1412 {
1413 struct mm_struct *mm;
1414
1415 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1416 if (IS_ERR(mm))
1417 return PTR_ERR(mm);
1418 file->private_data = mm;
1419 return 0;
1420 }
1421
1422 static int pagemap_release(struct inode *inode, struct file *file)
1423 {
1424 struct mm_struct *mm = file->private_data;
1425
1426 if (mm)
1427 mmdrop(mm);
1428 return 0;
1429 }
1430
1431 const struct file_operations proc_pagemap_operations = {
1432 .llseek = mem_lseek, /* borrow this */
1433 .read = pagemap_read,
1434 .open = pagemap_open,
1435 .release = pagemap_release,
1436 };
1437 #endif /* CONFIG_PROC_PAGE_MONITOR */
1438
1439 #ifdef CONFIG_NUMA
1440
1441 struct numa_maps {
1442 unsigned long pages;
1443 unsigned long anon;
1444 unsigned long active;
1445 unsigned long writeback;
1446 unsigned long mapcount_max;
1447 unsigned long dirty;
1448 unsigned long swapcache;
1449 unsigned long node[MAX_NUMNODES];
1450 };
1451
1452 struct numa_maps_private {
1453 struct proc_maps_private proc_maps;
1454 struct numa_maps md;
1455 };
1456
1457 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1458 unsigned long nr_pages)
1459 {
1460 int count = page_mapcount(page);
1461
1462 md->pages += nr_pages;
1463 if (pte_dirty || PageDirty(page))
1464 md->dirty += nr_pages;
1465
1466 if (PageSwapCache(page))
1467 md->swapcache += nr_pages;
1468
1469 if (PageActive(page) || PageUnevictable(page))
1470 md->active += nr_pages;
1471
1472 if (PageWriteback(page))
1473 md->writeback += nr_pages;
1474
1475 if (PageAnon(page))
1476 md->anon += nr_pages;
1477
1478 if (count > md->mapcount_max)
1479 md->mapcount_max = count;
1480
1481 md->node[page_to_nid(page)] += nr_pages;
1482 }
1483
1484 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1485 unsigned long addr)
1486 {
1487 struct page *page;
1488 int nid;
1489
1490 if (!pte_present(pte))
1491 return NULL;
1492
1493 page = vm_normal_page(vma, addr, pte);
1494 if (!page)
1495 return NULL;
1496
1497 if (PageReserved(page))
1498 return NULL;
1499
1500 nid = page_to_nid(page);
1501 if (!node_isset(nid, node_states[N_MEMORY]))
1502 return NULL;
1503
1504 return page;
1505 }
1506
1507 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1508 unsigned long end, struct mm_walk *walk)
1509 {
1510 struct numa_maps *md = walk->private;
1511 struct vm_area_struct *vma = walk->vma;
1512 spinlock_t *ptl;
1513 pte_t *orig_pte;
1514 pte_t *pte;
1515
1516 ptl = pmd_trans_huge_lock(pmd, vma);
1517 if (ptl) {
1518 pte_t huge_pte = *(pte_t *)pmd;
1519 struct page *page;
1520
1521 page = can_gather_numa_stats(huge_pte, vma, addr);
1522 if (page)
1523 gather_stats(page, md, pte_dirty(huge_pte),
1524 HPAGE_PMD_SIZE/PAGE_SIZE);
1525 spin_unlock(ptl);
1526 return 0;
1527 }
1528
1529 if (pmd_trans_unstable(pmd))
1530 return 0;
1531 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1532 do {
1533 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1534 if (!page)
1535 continue;
1536 gather_stats(page, md, pte_dirty(*pte), 1);
1537
1538 } while (pte++, addr += PAGE_SIZE, addr != end);
1539 pte_unmap_unlock(orig_pte, ptl);
1540 return 0;
1541 }
1542 #ifdef CONFIG_HUGETLB_PAGE
1543 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1544 unsigned long addr, unsigned long end, struct mm_walk *walk)
1545 {
1546 pte_t huge_pte = huge_ptep_get(pte);
1547 struct numa_maps *md;
1548 struct page *page;
1549
1550 if (!pte_present(huge_pte))
1551 return 0;
1552
1553 page = pte_page(huge_pte);
1554 if (!page)
1555 return 0;
1556
1557 md = walk->private;
1558 gather_stats(page, md, pte_dirty(huge_pte), 1);
1559 return 0;
1560 }
1561
1562 #else
1563 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1564 unsigned long addr, unsigned long end, struct mm_walk *walk)
1565 {
1566 return 0;
1567 }
1568 #endif
1569
1570 /*
1571 * Display pages allocated per node and memory policy via /proc.
1572 */
1573 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1574 {
1575 struct numa_maps_private *numa_priv = m->private;
1576 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1577 struct vm_area_struct *vma = v;
1578 struct numa_maps *md = &numa_priv->md;
1579 struct file *file = vma->vm_file;
1580 struct mm_struct *mm = vma->vm_mm;
1581 struct mm_walk walk = {
1582 .hugetlb_entry = gather_hugetlb_stats,
1583 .pmd_entry = gather_pte_stats,
1584 .private = md,
1585 .mm = mm,
1586 };
1587 struct mempolicy *pol;
1588 char buffer[64];
1589 int nid;
1590
1591 if (!mm)
1592 return 0;
1593
1594 /* Ensure we start with an empty set of numa_maps statistics. */
1595 memset(md, 0, sizeof(*md));
1596
1597 pol = __get_vma_policy(vma, vma->vm_start);
1598 if (pol) {
1599 mpol_to_str(buffer, sizeof(buffer), pol);
1600 mpol_cond_put(pol);
1601 } else {
1602 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1603 }
1604
1605 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1606
1607 if (file) {
1608 seq_puts(m, " file=");
1609 seq_file_path(m, file, "\n\t= ");
1610 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1611 seq_puts(m, " heap");
1612 } else if (is_stack(proc_priv, vma, is_pid)) {
1613 seq_puts(m, " stack");
1614 }
1615
1616 if (is_vm_hugetlb_page(vma))
1617 seq_puts(m, " huge");
1618
1619 /* mmap_sem is held by m_start */
1620 walk_page_vma(vma, &walk);
1621
1622 if (!md->pages)
1623 goto out;
1624
1625 if (md->anon)
1626 seq_printf(m, " anon=%lu", md->anon);
1627
1628 if (md->dirty)
1629 seq_printf(m, " dirty=%lu", md->dirty);
1630
1631 if (md->pages != md->anon && md->pages != md->dirty)
1632 seq_printf(m, " mapped=%lu", md->pages);
1633
1634 if (md->mapcount_max > 1)
1635 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1636
1637 if (md->swapcache)
1638 seq_printf(m, " swapcache=%lu", md->swapcache);
1639
1640 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1641 seq_printf(m, " active=%lu", md->active);
1642
1643 if (md->writeback)
1644 seq_printf(m, " writeback=%lu", md->writeback);
1645
1646 for_each_node_state(nid, N_MEMORY)
1647 if (md->node[nid])
1648 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1649
1650 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1651 out:
1652 seq_putc(m, '\n');
1653 m_cache_vma(m, vma);
1654 return 0;
1655 }
1656
1657 static int show_pid_numa_map(struct seq_file *m, void *v)
1658 {
1659 return show_numa_map(m, v, 1);
1660 }
1661
1662 static int show_tid_numa_map(struct seq_file *m, void *v)
1663 {
1664 return show_numa_map(m, v, 0);
1665 }
1666
1667 static const struct seq_operations proc_pid_numa_maps_op = {
1668 .start = m_start,
1669 .next = m_next,
1670 .stop = m_stop,
1671 .show = show_pid_numa_map,
1672 };
1673
1674 static const struct seq_operations proc_tid_numa_maps_op = {
1675 .start = m_start,
1676 .next = m_next,
1677 .stop = m_stop,
1678 .show = show_tid_numa_map,
1679 };
1680
1681 static int numa_maps_open(struct inode *inode, struct file *file,
1682 const struct seq_operations *ops)
1683 {
1684 return proc_maps_open(inode, file, ops,
1685 sizeof(struct numa_maps_private));
1686 }
1687
1688 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1689 {
1690 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1691 }
1692
1693 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1694 {
1695 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1696 }
1697
1698 const struct file_operations proc_pid_numa_maps_operations = {
1699 .open = pid_numa_maps_open,
1700 .read = seq_read,
1701 .llseek = seq_lseek,
1702 .release = proc_map_release,
1703 };
1704
1705 const struct file_operations proc_tid_numa_maps_operations = {
1706 .open = tid_numa_maps_open,
1707 .read = seq_read,
1708 .llseek = seq_lseek,
1709 .release = proc_map_release,
1710 };
1711 #endif /* CONFIG_NUMA */