]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/proc/task_mmu.c
Merge tag 'for-linus-5.15-1' of git://github.com/cminyard/linux-ipmi
[mirror_ubuntu-jammy-kernel.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 struct proc_maps_private *priv = m->private;
129 unsigned long last_addr = *ppos;
130 struct mm_struct *mm;
131 struct vm_area_struct *vma;
132
133 /* See m_next(). Zero at the start or after lseek. */
134 if (last_addr == -1UL)
135 return NULL;
136
137 priv->task = get_proc_task(priv->inode);
138 if (!priv->task)
139 return ERR_PTR(-ESRCH);
140
141 mm = priv->mm;
142 if (!mm || !mmget_not_zero(mm)) {
143 put_task_struct(priv->task);
144 priv->task = NULL;
145 return NULL;
146 }
147
148 if (mmap_read_lock_killable(mm)) {
149 mmput(mm);
150 put_task_struct(priv->task);
151 priv->task = NULL;
152 return ERR_PTR(-EINTR);
153 }
154
155 hold_task_mempolicy(priv);
156 priv->tail_vma = get_gate_vma(mm);
157
158 vma = find_vma(mm, last_addr);
159 if (vma)
160 return vma;
161
162 return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *next, *vma = v;
169
170 if (vma == priv->tail_vma)
171 next = NULL;
172 else if (vma->vm_next)
173 next = vma->vm_next;
174 else
175 next = priv->tail_vma;
176
177 *ppos = next ? next->vm_start : -1UL;
178
179 return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 struct proc_maps_private *priv = m->private;
185 struct mm_struct *mm = priv->mm;
186
187 if (!priv->task)
188 return;
189
190 release_task_mempolicy(priv);
191 mmap_read_unlock(mm);
192 mmput(mm);
193 put_task_struct(priv->task);
194 priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 const struct seq_operations *ops, int psize)
199 {
200 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202 if (!priv)
203 return -ENOMEM;
204
205 priv->inode = inode;
206 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 if (IS_ERR(priv->mm)) {
208 int err = PTR_ERR(priv->mm);
209
210 seq_release_private(inode, file);
211 return err;
212 }
213
214 return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 struct seq_file *seq = file->private_data;
220 struct proc_maps_private *priv = seq->private;
221
222 if (priv->mm)
223 mmdrop(priv->mm);
224
225 return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops)
230 {
231 return proc_maps_open(inode, file, ops,
232 sizeof(struct proc_maps_private));
233 }
234
235 /*
236 * Indicate if the VMA is a stack for the given task; for
237 * /proc/PID/maps that is the stack of the main task.
238 */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 /*
242 * We make no effort to guess what a given thread considers to be
243 * its "stack". It's not even well-defined for programs written
244 * languages like Go.
245 */
246 return vma->vm_start <= vma->vm_mm->start_stack &&
247 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251 unsigned long start, unsigned long end,
252 vm_flags_t flags, unsigned long long pgoff,
253 dev_t dev, unsigned long ino)
254 {
255 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 seq_put_hex_ll(m, NULL, start, 8);
257 seq_put_hex_ll(m, "-", end, 8);
258 seq_putc(m, ' ');
259 seq_putc(m, flags & VM_READ ? 'r' : '-');
260 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 seq_put_hex_ll(m, " ", pgoff, 8);
264 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 seq_put_decimal_ull(m, " ", ino);
267 seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 vm_flags_t flags = vma->vm_flags;
276 unsigned long ino = 0;
277 unsigned long long pgoff = 0;
278 unsigned long start, end;
279 dev_t dev = 0;
280 const char *name = NULL;
281
282 if (file) {
283 struct inode *inode = file_inode(vma->vm_file);
284 dev = inode->i_sb->s_dev;
285 ino = inode->i_ino;
286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 }
288
289 start = vma->vm_start;
290 end = vma->vm_end;
291 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_file_path(m, file, "\n");
300 goto done;
301 }
302
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 if (!mm) {
312 name = "[vdso]";
313 goto done;
314 }
315
316 if (vma->vm_start <= mm->brk &&
317 vma->vm_end >= mm->start_brk) {
318 name = "[heap]";
319 goto done;
320 }
321
322 if (is_stack(vma))
323 name = "[stack]";
324 }
325
326 done:
327 if (name) {
328 seq_pad(m, ' ');
329 seq_puts(m, name);
330 }
331 seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336 show_map_vma(m, v);
337 return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341 .start = m_start,
342 .next = m_next,
343 .stop = m_stop,
344 .show = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353 .open = pid_maps_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = proc_map_release,
357 };
358
359 /*
360 * Proportional Set Size(PSS): my share of RSS.
361 *
362 * PSS of a process is the count of pages it has in memory, where each
363 * page is divided by the number of processes sharing it. So if a
364 * process has 1000 pages all to itself, and 1000 shared with one other
365 * process, its PSS will be 1500.
366 *
367 * To keep (accumulated) division errors low, we adopt a 64bit
368 * fixed-point pss counter to minimize division errors. So (pss >>
369 * PSS_SHIFT) would be the real byte count.
370 *
371 * A shift of 12 before division means (assuming 4K page size):
372 * - 1M 3-user-pages add up to 8KB errors;
373 * - supports mapcount up to 2^24, or 16M;
374 * - supports PSS up to 2^52 bytes, or 4PB.
375 */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 unsigned long resident;
381 unsigned long shared_clean;
382 unsigned long shared_dirty;
383 unsigned long private_clean;
384 unsigned long private_dirty;
385 unsigned long referenced;
386 unsigned long anonymous;
387 unsigned long lazyfree;
388 unsigned long anonymous_thp;
389 unsigned long shmem_thp;
390 unsigned long file_thp;
391 unsigned long swap;
392 unsigned long shared_hugetlb;
393 unsigned long private_hugetlb;
394 u64 pss;
395 u64 pss_anon;
396 u64 pss_file;
397 u64 pss_shmem;
398 u64 pss_locked;
399 u64 swap_pss;
400 bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 struct page *page, unsigned long size, unsigned long pss,
405 bool dirty, bool locked, bool private)
406 {
407 mss->pss += pss;
408
409 if (PageAnon(page))
410 mss->pss_anon += pss;
411 else if (PageSwapBacked(page))
412 mss->pss_shmem += pss;
413 else
414 mss->pss_file += pss;
415
416 if (locked)
417 mss->pss_locked += pss;
418
419 if (dirty || PageDirty(page)) {
420 if (private)
421 mss->private_dirty += size;
422 else
423 mss->shared_dirty += size;
424 } else {
425 if (private)
426 mss->private_clean += size;
427 else
428 mss->shared_clean += size;
429 }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 bool compound, bool young, bool dirty, bool locked)
434 {
435 int i, nr = compound ? compound_nr(page) : 1;
436 unsigned long size = nr * PAGE_SIZE;
437
438 /*
439 * First accumulate quantities that depend only on |size| and the type
440 * of the compound page.
441 */
442 if (PageAnon(page)) {
443 mss->anonymous += size;
444 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 mss->lazyfree += size;
446 }
447
448 mss->resident += size;
449 /* Accumulate the size in pages that have been accessed. */
450 if (young || page_is_young(page) || PageReferenced(page))
451 mss->referenced += size;
452
453 /*
454 * Then accumulate quantities that may depend on sharing, or that may
455 * differ page-by-page.
456 *
457 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 * If any subpage of the compound page mapped with PTE it would elevate
459 * page_count().
460 */
461 if (page_count(page) == 1) {
462 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 locked, true);
464 return;
465 }
466 for (i = 0; i < nr; i++, page++) {
467 int mapcount = page_mapcount(page);
468 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 if (mapcount >= 2)
470 pss /= mapcount;
471 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 mapcount < 2);
473 }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 __always_unused int depth, struct mm_walk *walk)
479 {
480 struct mem_size_stats *mss = walk->private;
481
482 mss->swap += shmem_partial_swap_usage(
483 walk->vma->vm_file->f_mapping, addr, end);
484
485 return 0;
486 }
487 #else
488 #define smaps_pte_hole NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 struct mm_walk *walk)
493 {
494 struct mem_size_stats *mss = walk->private;
495 struct vm_area_struct *vma = walk->vma;
496 bool locked = !!(vma->vm_flags & VM_LOCKED);
497 struct page *page = NULL;
498
499 if (pte_present(*pte)) {
500 page = vm_normal_page(vma, addr, *pte);
501 } else if (is_swap_pte(*pte)) {
502 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504 if (!non_swap_entry(swpent)) {
505 int mapcount;
506
507 mss->swap += PAGE_SIZE;
508 mapcount = swp_swapcount(swpent);
509 if (mapcount >= 2) {
510 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512 do_div(pss_delta, mapcount);
513 mss->swap_pss += pss_delta;
514 } else {
515 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 }
517 } else if (is_pfn_swap_entry(swpent))
518 page = pfn_swap_entry_to_page(swpent);
519 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520 && pte_none(*pte))) {
521 page = xa_load(&vma->vm_file->f_mapping->i_pages,
522 linear_page_index(vma, addr));
523 if (xa_is_value(page))
524 mss->swap += PAGE_SIZE;
525 return;
526 }
527
528 if (!page)
529 return;
530
531 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532 }
533
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536 struct mm_walk *walk)
537 {
538 struct mem_size_stats *mss = walk->private;
539 struct vm_area_struct *vma = walk->vma;
540 bool locked = !!(vma->vm_flags & VM_LOCKED);
541 struct page *page = NULL;
542
543 if (pmd_present(*pmd)) {
544 /* FOLL_DUMP will return -EFAULT on huge zero page */
545 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547 swp_entry_t entry = pmd_to_swp_entry(*pmd);
548
549 if (is_migration_entry(entry))
550 page = pfn_swap_entry_to_page(entry);
551 }
552 if (IS_ERR_OR_NULL(page))
553 return;
554 if (PageAnon(page))
555 mss->anonymous_thp += HPAGE_PMD_SIZE;
556 else if (PageSwapBacked(page))
557 mss->shmem_thp += HPAGE_PMD_SIZE;
558 else if (is_zone_device_page(page))
559 /* pass */;
560 else
561 mss->file_thp += HPAGE_PMD_SIZE;
562 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563 }
564 #else
565 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 struct mm_walk *walk)
567 {
568 }
569 #endif
570
571 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572 struct mm_walk *walk)
573 {
574 struct vm_area_struct *vma = walk->vma;
575 pte_t *pte;
576 spinlock_t *ptl;
577
578 ptl = pmd_trans_huge_lock(pmd, vma);
579 if (ptl) {
580 smaps_pmd_entry(pmd, addr, walk);
581 spin_unlock(ptl);
582 goto out;
583 }
584
585 if (pmd_trans_unstable(pmd))
586 goto out;
587 /*
588 * The mmap_lock held all the way back in m_start() is what
589 * keeps khugepaged out of here and from collapsing things
590 * in here.
591 */
592 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593 for (; addr != end; pte++, addr += PAGE_SIZE)
594 smaps_pte_entry(pte, addr, walk);
595 pte_unmap_unlock(pte - 1, ptl);
596 out:
597 cond_resched();
598 return 0;
599 }
600
601 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602 {
603 /*
604 * Don't forget to update Documentation/ on changes.
605 */
606 static const char mnemonics[BITS_PER_LONG][2] = {
607 /*
608 * In case if we meet a flag we don't know about.
609 */
610 [0 ... (BITS_PER_LONG-1)] = "??",
611
612 [ilog2(VM_READ)] = "rd",
613 [ilog2(VM_WRITE)] = "wr",
614 [ilog2(VM_EXEC)] = "ex",
615 [ilog2(VM_SHARED)] = "sh",
616 [ilog2(VM_MAYREAD)] = "mr",
617 [ilog2(VM_MAYWRITE)] = "mw",
618 [ilog2(VM_MAYEXEC)] = "me",
619 [ilog2(VM_MAYSHARE)] = "ms",
620 [ilog2(VM_GROWSDOWN)] = "gd",
621 [ilog2(VM_PFNMAP)] = "pf",
622 [ilog2(VM_LOCKED)] = "lo",
623 [ilog2(VM_IO)] = "io",
624 [ilog2(VM_SEQ_READ)] = "sr",
625 [ilog2(VM_RAND_READ)] = "rr",
626 [ilog2(VM_DONTCOPY)] = "dc",
627 [ilog2(VM_DONTEXPAND)] = "de",
628 [ilog2(VM_ACCOUNT)] = "ac",
629 [ilog2(VM_NORESERVE)] = "nr",
630 [ilog2(VM_HUGETLB)] = "ht",
631 [ilog2(VM_SYNC)] = "sf",
632 [ilog2(VM_ARCH_1)] = "ar",
633 [ilog2(VM_WIPEONFORK)] = "wf",
634 [ilog2(VM_DONTDUMP)] = "dd",
635 #ifdef CONFIG_ARM64_BTI
636 [ilog2(VM_ARM64_BTI)] = "bt",
637 #endif
638 #ifdef CONFIG_MEM_SOFT_DIRTY
639 [ilog2(VM_SOFTDIRTY)] = "sd",
640 #endif
641 [ilog2(VM_MIXEDMAP)] = "mm",
642 [ilog2(VM_HUGEPAGE)] = "hg",
643 [ilog2(VM_NOHUGEPAGE)] = "nh",
644 [ilog2(VM_MERGEABLE)] = "mg",
645 [ilog2(VM_UFFD_MISSING)]= "um",
646 [ilog2(VM_UFFD_WP)] = "uw",
647 #ifdef CONFIG_ARM64_MTE
648 [ilog2(VM_MTE)] = "mt",
649 [ilog2(VM_MTE_ALLOWED)] = "",
650 #endif
651 #ifdef CONFIG_ARCH_HAS_PKEYS
652 /* These come out via ProtectionKey: */
653 [ilog2(VM_PKEY_BIT0)] = "",
654 [ilog2(VM_PKEY_BIT1)] = "",
655 [ilog2(VM_PKEY_BIT2)] = "",
656 [ilog2(VM_PKEY_BIT3)] = "",
657 #if VM_PKEY_BIT4
658 [ilog2(VM_PKEY_BIT4)] = "",
659 #endif
660 #endif /* CONFIG_ARCH_HAS_PKEYS */
661 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
662 [ilog2(VM_UFFD_MINOR)] = "ui",
663 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
664 };
665 size_t i;
666
667 seq_puts(m, "VmFlags: ");
668 for (i = 0; i < BITS_PER_LONG; i++) {
669 if (!mnemonics[i][0])
670 continue;
671 if (vma->vm_flags & (1UL << i)) {
672 seq_putc(m, mnemonics[i][0]);
673 seq_putc(m, mnemonics[i][1]);
674 seq_putc(m, ' ');
675 }
676 }
677 seq_putc(m, '\n');
678 }
679
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 unsigned long addr, unsigned long end,
683 struct mm_walk *walk)
684 {
685 struct mem_size_stats *mss = walk->private;
686 struct vm_area_struct *vma = walk->vma;
687 struct page *page = NULL;
688
689 if (pte_present(*pte)) {
690 page = vm_normal_page(vma, addr, *pte);
691 } else if (is_swap_pte(*pte)) {
692 swp_entry_t swpent = pte_to_swp_entry(*pte);
693
694 if (is_pfn_swap_entry(swpent))
695 page = pfn_swap_entry_to_page(swpent);
696 }
697 if (page) {
698 int mapcount = page_mapcount(page);
699
700 if (mapcount >= 2)
701 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
702 else
703 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
704 }
705 return 0;
706 }
707 #else
708 #define smaps_hugetlb_range NULL
709 #endif /* HUGETLB_PAGE */
710
711 static const struct mm_walk_ops smaps_walk_ops = {
712 .pmd_entry = smaps_pte_range,
713 .hugetlb_entry = smaps_hugetlb_range,
714 };
715
716 static const struct mm_walk_ops smaps_shmem_walk_ops = {
717 .pmd_entry = smaps_pte_range,
718 .hugetlb_entry = smaps_hugetlb_range,
719 .pte_hole = smaps_pte_hole,
720 };
721
722 /*
723 * Gather mem stats from @vma with the indicated beginning
724 * address @start, and keep them in @mss.
725 *
726 * Use vm_start of @vma as the beginning address if @start is 0.
727 */
728 static void smap_gather_stats(struct vm_area_struct *vma,
729 struct mem_size_stats *mss, unsigned long start)
730 {
731 const struct mm_walk_ops *ops = &smaps_walk_ops;
732
733 /* Invalid start */
734 if (start >= vma->vm_end)
735 return;
736
737 #ifdef CONFIG_SHMEM
738 /* In case of smaps_rollup, reset the value from previous vma */
739 mss->check_shmem_swap = false;
740 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741 /*
742 * For shared or readonly shmem mappings we know that all
743 * swapped out pages belong to the shmem object, and we can
744 * obtain the swap value much more efficiently. For private
745 * writable mappings, we might have COW pages that are
746 * not affected by the parent swapped out pages of the shmem
747 * object, so we have to distinguish them during the page walk.
748 * Unless we know that the shmem object (or the part mapped by
749 * our VMA) has no swapped out pages at all.
750 */
751 unsigned long shmem_swapped = shmem_swap_usage(vma);
752
753 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754 !(vma->vm_flags & VM_WRITE))) {
755 mss->swap += shmem_swapped;
756 } else {
757 mss->check_shmem_swap = true;
758 ops = &smaps_shmem_walk_ops;
759 }
760 }
761 #endif
762 /* mmap_lock is held in m_start */
763 if (!start)
764 walk_page_vma(vma, ops, mss);
765 else
766 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
767 }
768
769 #define SEQ_PUT_DEC(str, val) \
770 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
771
772 /* Show the contents common for smaps and smaps_rollup */
773 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
774 bool rollup_mode)
775 {
776 SEQ_PUT_DEC("Rss: ", mss->resident);
777 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
778 if (rollup_mode) {
779 /*
780 * These are meaningful only for smaps_rollup, otherwise two of
781 * them are zero, and the other one is the same as Pss.
782 */
783 SEQ_PUT_DEC(" kB\nPss_Anon: ",
784 mss->pss_anon >> PSS_SHIFT);
785 SEQ_PUT_DEC(" kB\nPss_File: ",
786 mss->pss_file >> PSS_SHIFT);
787 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
788 mss->pss_shmem >> PSS_SHIFT);
789 }
790 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
791 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
792 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
793 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
794 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
795 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
796 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
797 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
798 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
799 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
800 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
801 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
802 mss->private_hugetlb >> 10, 7);
803 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
804 SEQ_PUT_DEC(" kB\nSwapPss: ",
805 mss->swap_pss >> PSS_SHIFT);
806 SEQ_PUT_DEC(" kB\nLocked: ",
807 mss->pss_locked >> PSS_SHIFT);
808 seq_puts(m, " kB\n");
809 }
810
811 static int show_smap(struct seq_file *m, void *v)
812 {
813 struct vm_area_struct *vma = v;
814 struct mem_size_stats mss;
815
816 memset(&mss, 0, sizeof(mss));
817
818 smap_gather_stats(vma, &mss, 0);
819
820 show_map_vma(m, vma);
821
822 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
823 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
824 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
825 seq_puts(m, " kB\n");
826
827 __show_smap(m, &mss, false);
828
829 seq_printf(m, "THPeligible: %d\n",
830 transparent_hugepage_active(vma));
831
832 if (arch_pkeys_enabled())
833 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
834 show_smap_vma_flags(m, vma);
835
836 return 0;
837 }
838
839 static int show_smaps_rollup(struct seq_file *m, void *v)
840 {
841 struct proc_maps_private *priv = m->private;
842 struct mem_size_stats mss;
843 struct mm_struct *mm;
844 struct vm_area_struct *vma;
845 unsigned long last_vma_end = 0;
846 int ret = 0;
847
848 priv->task = get_proc_task(priv->inode);
849 if (!priv->task)
850 return -ESRCH;
851
852 mm = priv->mm;
853 if (!mm || !mmget_not_zero(mm)) {
854 ret = -ESRCH;
855 goto out_put_task;
856 }
857
858 memset(&mss, 0, sizeof(mss));
859
860 ret = mmap_read_lock_killable(mm);
861 if (ret)
862 goto out_put_mm;
863
864 hold_task_mempolicy(priv);
865
866 for (vma = priv->mm->mmap; vma;) {
867 smap_gather_stats(vma, &mss, 0);
868 last_vma_end = vma->vm_end;
869
870 /*
871 * Release mmap_lock temporarily if someone wants to
872 * access it for write request.
873 */
874 if (mmap_lock_is_contended(mm)) {
875 mmap_read_unlock(mm);
876 ret = mmap_read_lock_killable(mm);
877 if (ret) {
878 release_task_mempolicy(priv);
879 goto out_put_mm;
880 }
881
882 /*
883 * After dropping the lock, there are four cases to
884 * consider. See the following example for explanation.
885 *
886 * +------+------+-----------+
887 * | VMA1 | VMA2 | VMA3 |
888 * +------+------+-----------+
889 * | | | |
890 * 4k 8k 16k 400k
891 *
892 * Suppose we drop the lock after reading VMA2 due to
893 * contention, then we get:
894 *
895 * last_vma_end = 16k
896 *
897 * 1) VMA2 is freed, but VMA3 exists:
898 *
899 * find_vma(mm, 16k - 1) will return VMA3.
900 * In this case, just continue from VMA3.
901 *
902 * 2) VMA2 still exists:
903 *
904 * find_vma(mm, 16k - 1) will return VMA2.
905 * Iterate the loop like the original one.
906 *
907 * 3) No more VMAs can be found:
908 *
909 * find_vma(mm, 16k - 1) will return NULL.
910 * No more things to do, just break.
911 *
912 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
913 *
914 * find_vma(mm, 16k - 1) will return VMA' whose range
915 * contains last_vma_end.
916 * Iterate VMA' from last_vma_end.
917 */
918 vma = find_vma(mm, last_vma_end - 1);
919 /* Case 3 above */
920 if (!vma)
921 break;
922
923 /* Case 1 above */
924 if (vma->vm_start >= last_vma_end)
925 continue;
926
927 /* Case 4 above */
928 if (vma->vm_end > last_vma_end)
929 smap_gather_stats(vma, &mss, last_vma_end);
930 }
931 /* Case 2 above */
932 vma = vma->vm_next;
933 }
934
935 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
936 last_vma_end, 0, 0, 0, 0);
937 seq_pad(m, ' ');
938 seq_puts(m, "[rollup]\n");
939
940 __show_smap(m, &mss, true);
941
942 release_task_mempolicy(priv);
943 mmap_read_unlock(mm);
944
945 out_put_mm:
946 mmput(mm);
947 out_put_task:
948 put_task_struct(priv->task);
949 priv->task = NULL;
950
951 return ret;
952 }
953 #undef SEQ_PUT_DEC
954
955 static const struct seq_operations proc_pid_smaps_op = {
956 .start = m_start,
957 .next = m_next,
958 .stop = m_stop,
959 .show = show_smap
960 };
961
962 static int pid_smaps_open(struct inode *inode, struct file *file)
963 {
964 return do_maps_open(inode, file, &proc_pid_smaps_op);
965 }
966
967 static int smaps_rollup_open(struct inode *inode, struct file *file)
968 {
969 int ret;
970 struct proc_maps_private *priv;
971
972 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
973 if (!priv)
974 return -ENOMEM;
975
976 ret = single_open(file, show_smaps_rollup, priv);
977 if (ret)
978 goto out_free;
979
980 priv->inode = inode;
981 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
982 if (IS_ERR(priv->mm)) {
983 ret = PTR_ERR(priv->mm);
984
985 single_release(inode, file);
986 goto out_free;
987 }
988
989 return 0;
990
991 out_free:
992 kfree(priv);
993 return ret;
994 }
995
996 static int smaps_rollup_release(struct inode *inode, struct file *file)
997 {
998 struct seq_file *seq = file->private_data;
999 struct proc_maps_private *priv = seq->private;
1000
1001 if (priv->mm)
1002 mmdrop(priv->mm);
1003
1004 kfree(priv);
1005 return single_release(inode, file);
1006 }
1007
1008 const struct file_operations proc_pid_smaps_operations = {
1009 .open = pid_smaps_open,
1010 .read = seq_read,
1011 .llseek = seq_lseek,
1012 .release = proc_map_release,
1013 };
1014
1015 const struct file_operations proc_pid_smaps_rollup_operations = {
1016 .open = smaps_rollup_open,
1017 .read = seq_read,
1018 .llseek = seq_lseek,
1019 .release = smaps_rollup_release,
1020 };
1021
1022 enum clear_refs_types {
1023 CLEAR_REFS_ALL = 1,
1024 CLEAR_REFS_ANON,
1025 CLEAR_REFS_MAPPED,
1026 CLEAR_REFS_SOFT_DIRTY,
1027 CLEAR_REFS_MM_HIWATER_RSS,
1028 CLEAR_REFS_LAST,
1029 };
1030
1031 struct clear_refs_private {
1032 enum clear_refs_types type;
1033 };
1034
1035 #ifdef CONFIG_MEM_SOFT_DIRTY
1036
1037 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1038 {
1039 struct page *page;
1040
1041 if (!pte_write(pte))
1042 return false;
1043 if (!is_cow_mapping(vma->vm_flags))
1044 return false;
1045 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1046 return false;
1047 page = vm_normal_page(vma, addr, pte);
1048 if (!page)
1049 return false;
1050 return page_maybe_dma_pinned(page);
1051 }
1052
1053 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1054 unsigned long addr, pte_t *pte)
1055 {
1056 /*
1057 * The soft-dirty tracker uses #PF-s to catch writes
1058 * to pages, so write-protect the pte as well. See the
1059 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1060 * of how soft-dirty works.
1061 */
1062 pte_t ptent = *pte;
1063
1064 if (pte_present(ptent)) {
1065 pte_t old_pte;
1066
1067 if (pte_is_pinned(vma, addr, ptent))
1068 return;
1069 old_pte = ptep_modify_prot_start(vma, addr, pte);
1070 ptent = pte_wrprotect(old_pte);
1071 ptent = pte_clear_soft_dirty(ptent);
1072 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1073 } else if (is_swap_pte(ptent)) {
1074 ptent = pte_swp_clear_soft_dirty(ptent);
1075 set_pte_at(vma->vm_mm, addr, pte, ptent);
1076 }
1077 }
1078 #else
1079 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1080 unsigned long addr, pte_t *pte)
1081 {
1082 }
1083 #endif
1084
1085 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1086 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1087 unsigned long addr, pmd_t *pmdp)
1088 {
1089 pmd_t old, pmd = *pmdp;
1090
1091 if (pmd_present(pmd)) {
1092 /* See comment in change_huge_pmd() */
1093 old = pmdp_invalidate(vma, addr, pmdp);
1094 if (pmd_dirty(old))
1095 pmd = pmd_mkdirty(pmd);
1096 if (pmd_young(old))
1097 pmd = pmd_mkyoung(pmd);
1098
1099 pmd = pmd_wrprotect(pmd);
1100 pmd = pmd_clear_soft_dirty(pmd);
1101
1102 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1103 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1104 pmd = pmd_swp_clear_soft_dirty(pmd);
1105 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1106 }
1107 }
1108 #else
1109 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1110 unsigned long addr, pmd_t *pmdp)
1111 {
1112 }
1113 #endif
1114
1115 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1116 unsigned long end, struct mm_walk *walk)
1117 {
1118 struct clear_refs_private *cp = walk->private;
1119 struct vm_area_struct *vma = walk->vma;
1120 pte_t *pte, ptent;
1121 spinlock_t *ptl;
1122 struct page *page;
1123
1124 ptl = pmd_trans_huge_lock(pmd, vma);
1125 if (ptl) {
1126 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1127 clear_soft_dirty_pmd(vma, addr, pmd);
1128 goto out;
1129 }
1130
1131 if (!pmd_present(*pmd))
1132 goto out;
1133
1134 page = pmd_page(*pmd);
1135
1136 /* Clear accessed and referenced bits. */
1137 pmdp_test_and_clear_young(vma, addr, pmd);
1138 test_and_clear_page_young(page);
1139 ClearPageReferenced(page);
1140 out:
1141 spin_unlock(ptl);
1142 return 0;
1143 }
1144
1145 if (pmd_trans_unstable(pmd))
1146 return 0;
1147
1148 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149 for (; addr != end; pte++, addr += PAGE_SIZE) {
1150 ptent = *pte;
1151
1152 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1153 clear_soft_dirty(vma, addr, pte);
1154 continue;
1155 }
1156
1157 if (!pte_present(ptent))
1158 continue;
1159
1160 page = vm_normal_page(vma, addr, ptent);
1161 if (!page)
1162 continue;
1163
1164 /* Clear accessed and referenced bits. */
1165 ptep_test_and_clear_young(vma, addr, pte);
1166 test_and_clear_page_young(page);
1167 ClearPageReferenced(page);
1168 }
1169 pte_unmap_unlock(pte - 1, ptl);
1170 cond_resched();
1171 return 0;
1172 }
1173
1174 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1175 struct mm_walk *walk)
1176 {
1177 struct clear_refs_private *cp = walk->private;
1178 struct vm_area_struct *vma = walk->vma;
1179
1180 if (vma->vm_flags & VM_PFNMAP)
1181 return 1;
1182
1183 /*
1184 * Writing 1 to /proc/pid/clear_refs affects all pages.
1185 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1186 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1187 * Writing 4 to /proc/pid/clear_refs affects all pages.
1188 */
1189 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1190 return 1;
1191 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1192 return 1;
1193 return 0;
1194 }
1195
1196 static const struct mm_walk_ops clear_refs_walk_ops = {
1197 .pmd_entry = clear_refs_pte_range,
1198 .test_walk = clear_refs_test_walk,
1199 };
1200
1201 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1202 size_t count, loff_t *ppos)
1203 {
1204 struct task_struct *task;
1205 char buffer[PROC_NUMBUF];
1206 struct mm_struct *mm;
1207 struct vm_area_struct *vma;
1208 enum clear_refs_types type;
1209 int itype;
1210 int rv;
1211
1212 memset(buffer, 0, sizeof(buffer));
1213 if (count > sizeof(buffer) - 1)
1214 count = sizeof(buffer) - 1;
1215 if (copy_from_user(buffer, buf, count))
1216 return -EFAULT;
1217 rv = kstrtoint(strstrip(buffer), 10, &itype);
1218 if (rv < 0)
1219 return rv;
1220 type = (enum clear_refs_types)itype;
1221 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1222 return -EINVAL;
1223
1224 task = get_proc_task(file_inode(file));
1225 if (!task)
1226 return -ESRCH;
1227 mm = get_task_mm(task);
1228 if (mm) {
1229 struct mmu_notifier_range range;
1230 struct clear_refs_private cp = {
1231 .type = type,
1232 };
1233
1234 if (mmap_write_lock_killable(mm)) {
1235 count = -EINTR;
1236 goto out_mm;
1237 }
1238 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1239 /*
1240 * Writing 5 to /proc/pid/clear_refs resets the peak
1241 * resident set size to this mm's current rss value.
1242 */
1243 reset_mm_hiwater_rss(mm);
1244 goto out_unlock;
1245 }
1246
1247 if (type == CLEAR_REFS_SOFT_DIRTY) {
1248 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1249 if (!(vma->vm_flags & VM_SOFTDIRTY))
1250 continue;
1251 vma->vm_flags &= ~VM_SOFTDIRTY;
1252 vma_set_page_prot(vma);
1253 }
1254
1255 inc_tlb_flush_pending(mm);
1256 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1257 0, NULL, mm, 0, -1UL);
1258 mmu_notifier_invalidate_range_start(&range);
1259 }
1260 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1261 &cp);
1262 if (type == CLEAR_REFS_SOFT_DIRTY) {
1263 mmu_notifier_invalidate_range_end(&range);
1264 flush_tlb_mm(mm);
1265 dec_tlb_flush_pending(mm);
1266 }
1267 out_unlock:
1268 mmap_write_unlock(mm);
1269 out_mm:
1270 mmput(mm);
1271 }
1272 put_task_struct(task);
1273
1274 return count;
1275 }
1276
1277 const struct file_operations proc_clear_refs_operations = {
1278 .write = clear_refs_write,
1279 .llseek = noop_llseek,
1280 };
1281
1282 typedef struct {
1283 u64 pme;
1284 } pagemap_entry_t;
1285
1286 struct pagemapread {
1287 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1288 pagemap_entry_t *buffer;
1289 bool show_pfn;
1290 };
1291
1292 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1293 #define PAGEMAP_WALK_MASK (PMD_MASK)
1294
1295 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1296 #define PM_PFRAME_BITS 55
1297 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1298 #define PM_SOFT_DIRTY BIT_ULL(55)
1299 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1300 #define PM_UFFD_WP BIT_ULL(57)
1301 #define PM_FILE BIT_ULL(61)
1302 #define PM_SWAP BIT_ULL(62)
1303 #define PM_PRESENT BIT_ULL(63)
1304
1305 #define PM_END_OF_BUFFER 1
1306
1307 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1308 {
1309 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1310 }
1311
1312 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1313 struct pagemapread *pm)
1314 {
1315 pm->buffer[pm->pos++] = *pme;
1316 if (pm->pos >= pm->len)
1317 return PM_END_OF_BUFFER;
1318 return 0;
1319 }
1320
1321 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1322 __always_unused int depth, struct mm_walk *walk)
1323 {
1324 struct pagemapread *pm = walk->private;
1325 unsigned long addr = start;
1326 int err = 0;
1327
1328 while (addr < end) {
1329 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1330 pagemap_entry_t pme = make_pme(0, 0);
1331 /* End of address space hole, which we mark as non-present. */
1332 unsigned long hole_end;
1333
1334 if (vma)
1335 hole_end = min(end, vma->vm_start);
1336 else
1337 hole_end = end;
1338
1339 for (; addr < hole_end; addr += PAGE_SIZE) {
1340 err = add_to_pagemap(addr, &pme, pm);
1341 if (err)
1342 goto out;
1343 }
1344
1345 if (!vma)
1346 break;
1347
1348 /* Addresses in the VMA. */
1349 if (vma->vm_flags & VM_SOFTDIRTY)
1350 pme = make_pme(0, PM_SOFT_DIRTY);
1351 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1352 err = add_to_pagemap(addr, &pme, pm);
1353 if (err)
1354 goto out;
1355 }
1356 }
1357 out:
1358 return err;
1359 }
1360
1361 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1362 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1363 {
1364 u64 frame = 0, flags = 0;
1365 struct page *page = NULL;
1366
1367 if (pte_present(pte)) {
1368 if (pm->show_pfn)
1369 frame = pte_pfn(pte);
1370 flags |= PM_PRESENT;
1371 page = vm_normal_page(vma, addr, pte);
1372 if (pte_soft_dirty(pte))
1373 flags |= PM_SOFT_DIRTY;
1374 if (pte_uffd_wp(pte))
1375 flags |= PM_UFFD_WP;
1376 } else if (is_swap_pte(pte)) {
1377 swp_entry_t entry;
1378 if (pte_swp_soft_dirty(pte))
1379 flags |= PM_SOFT_DIRTY;
1380 if (pte_swp_uffd_wp(pte))
1381 flags |= PM_UFFD_WP;
1382 entry = pte_to_swp_entry(pte);
1383 if (pm->show_pfn)
1384 frame = swp_type(entry) |
1385 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386 flags |= PM_SWAP;
1387 if (is_pfn_swap_entry(entry))
1388 page = pfn_swap_entry_to_page(entry);
1389 }
1390
1391 if (page && !PageAnon(page))
1392 flags |= PM_FILE;
1393 if (page && page_mapcount(page) == 1)
1394 flags |= PM_MMAP_EXCLUSIVE;
1395 if (vma->vm_flags & VM_SOFTDIRTY)
1396 flags |= PM_SOFT_DIRTY;
1397
1398 return make_pme(frame, flags);
1399 }
1400
1401 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1402 struct mm_walk *walk)
1403 {
1404 struct vm_area_struct *vma = walk->vma;
1405 struct pagemapread *pm = walk->private;
1406 spinlock_t *ptl;
1407 pte_t *pte, *orig_pte;
1408 int err = 0;
1409
1410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1411 ptl = pmd_trans_huge_lock(pmdp, vma);
1412 if (ptl) {
1413 u64 flags = 0, frame = 0;
1414 pmd_t pmd = *pmdp;
1415 struct page *page = NULL;
1416
1417 if (vma->vm_flags & VM_SOFTDIRTY)
1418 flags |= PM_SOFT_DIRTY;
1419
1420 if (pmd_present(pmd)) {
1421 page = pmd_page(pmd);
1422
1423 flags |= PM_PRESENT;
1424 if (pmd_soft_dirty(pmd))
1425 flags |= PM_SOFT_DIRTY;
1426 if (pmd_uffd_wp(pmd))
1427 flags |= PM_UFFD_WP;
1428 if (pm->show_pfn)
1429 frame = pmd_pfn(pmd) +
1430 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1431 }
1432 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1433 else if (is_swap_pmd(pmd)) {
1434 swp_entry_t entry = pmd_to_swp_entry(pmd);
1435 unsigned long offset;
1436
1437 if (pm->show_pfn) {
1438 offset = swp_offset(entry) +
1439 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1440 frame = swp_type(entry) |
1441 (offset << MAX_SWAPFILES_SHIFT);
1442 }
1443 flags |= PM_SWAP;
1444 if (pmd_swp_soft_dirty(pmd))
1445 flags |= PM_SOFT_DIRTY;
1446 if (pmd_swp_uffd_wp(pmd))
1447 flags |= PM_UFFD_WP;
1448 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1449 page = pfn_swap_entry_to_page(entry);
1450 }
1451 #endif
1452
1453 if (page && page_mapcount(page) == 1)
1454 flags |= PM_MMAP_EXCLUSIVE;
1455
1456 for (; addr != end; addr += PAGE_SIZE) {
1457 pagemap_entry_t pme = make_pme(frame, flags);
1458
1459 err = add_to_pagemap(addr, &pme, pm);
1460 if (err)
1461 break;
1462 if (pm->show_pfn) {
1463 if (flags & PM_PRESENT)
1464 frame++;
1465 else if (flags & PM_SWAP)
1466 frame += (1 << MAX_SWAPFILES_SHIFT);
1467 }
1468 }
1469 spin_unlock(ptl);
1470 return err;
1471 }
1472
1473 if (pmd_trans_unstable(pmdp))
1474 return 0;
1475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1476
1477 /*
1478 * We can assume that @vma always points to a valid one and @end never
1479 * goes beyond vma->vm_end.
1480 */
1481 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1482 for (; addr < end; pte++, addr += PAGE_SIZE) {
1483 pagemap_entry_t pme;
1484
1485 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1486 err = add_to_pagemap(addr, &pme, pm);
1487 if (err)
1488 break;
1489 }
1490 pte_unmap_unlock(orig_pte, ptl);
1491
1492 cond_resched();
1493
1494 return err;
1495 }
1496
1497 #ifdef CONFIG_HUGETLB_PAGE
1498 /* This function walks within one hugetlb entry in the single call */
1499 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1500 unsigned long addr, unsigned long end,
1501 struct mm_walk *walk)
1502 {
1503 struct pagemapread *pm = walk->private;
1504 struct vm_area_struct *vma = walk->vma;
1505 u64 flags = 0, frame = 0;
1506 int err = 0;
1507 pte_t pte;
1508
1509 if (vma->vm_flags & VM_SOFTDIRTY)
1510 flags |= PM_SOFT_DIRTY;
1511
1512 pte = huge_ptep_get(ptep);
1513 if (pte_present(pte)) {
1514 struct page *page = pte_page(pte);
1515
1516 if (!PageAnon(page))
1517 flags |= PM_FILE;
1518
1519 if (page_mapcount(page) == 1)
1520 flags |= PM_MMAP_EXCLUSIVE;
1521
1522 flags |= PM_PRESENT;
1523 if (pm->show_pfn)
1524 frame = pte_pfn(pte) +
1525 ((addr & ~hmask) >> PAGE_SHIFT);
1526 }
1527
1528 for (; addr != end; addr += PAGE_SIZE) {
1529 pagemap_entry_t pme = make_pme(frame, flags);
1530
1531 err = add_to_pagemap(addr, &pme, pm);
1532 if (err)
1533 return err;
1534 if (pm->show_pfn && (flags & PM_PRESENT))
1535 frame++;
1536 }
1537
1538 cond_resched();
1539
1540 return err;
1541 }
1542 #else
1543 #define pagemap_hugetlb_range NULL
1544 #endif /* HUGETLB_PAGE */
1545
1546 static const struct mm_walk_ops pagemap_ops = {
1547 .pmd_entry = pagemap_pmd_range,
1548 .pte_hole = pagemap_pte_hole,
1549 .hugetlb_entry = pagemap_hugetlb_range,
1550 };
1551
1552 /*
1553 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1554 *
1555 * For each page in the address space, this file contains one 64-bit entry
1556 * consisting of the following:
1557 *
1558 * Bits 0-54 page frame number (PFN) if present
1559 * Bits 0-4 swap type if swapped
1560 * Bits 5-54 swap offset if swapped
1561 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1562 * Bit 56 page exclusively mapped
1563 * Bits 57-60 zero
1564 * Bit 61 page is file-page or shared-anon
1565 * Bit 62 page swapped
1566 * Bit 63 page present
1567 *
1568 * If the page is not present but in swap, then the PFN contains an
1569 * encoding of the swap file number and the page's offset into the
1570 * swap. Unmapped pages return a null PFN. This allows determining
1571 * precisely which pages are mapped (or in swap) and comparing mapped
1572 * pages between processes.
1573 *
1574 * Efficient users of this interface will use /proc/pid/maps to
1575 * determine which areas of memory are actually mapped and llseek to
1576 * skip over unmapped regions.
1577 */
1578 static ssize_t pagemap_read(struct file *file, char __user *buf,
1579 size_t count, loff_t *ppos)
1580 {
1581 struct mm_struct *mm = file->private_data;
1582 struct pagemapread pm;
1583 unsigned long src;
1584 unsigned long svpfn;
1585 unsigned long start_vaddr;
1586 unsigned long end_vaddr;
1587 int ret = 0, copied = 0;
1588
1589 if (!mm || !mmget_not_zero(mm))
1590 goto out;
1591
1592 ret = -EINVAL;
1593 /* file position must be aligned */
1594 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1595 goto out_mm;
1596
1597 ret = 0;
1598 if (!count)
1599 goto out_mm;
1600
1601 /* do not disclose physical addresses: attack vector */
1602 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1603
1604 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1605 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1606 ret = -ENOMEM;
1607 if (!pm.buffer)
1608 goto out_mm;
1609
1610 src = *ppos;
1611 svpfn = src / PM_ENTRY_BYTES;
1612 end_vaddr = mm->task_size;
1613
1614 /* watch out for wraparound */
1615 start_vaddr = end_vaddr;
1616 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1617 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1618
1619 /* Ensure the address is inside the task */
1620 if (start_vaddr > mm->task_size)
1621 start_vaddr = end_vaddr;
1622
1623 /*
1624 * The odds are that this will stop walking way
1625 * before end_vaddr, because the length of the
1626 * user buffer is tracked in "pm", and the walk
1627 * will stop when we hit the end of the buffer.
1628 */
1629 ret = 0;
1630 while (count && (start_vaddr < end_vaddr)) {
1631 int len;
1632 unsigned long end;
1633
1634 pm.pos = 0;
1635 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1636 /* overflow ? */
1637 if (end < start_vaddr || end > end_vaddr)
1638 end = end_vaddr;
1639 ret = mmap_read_lock_killable(mm);
1640 if (ret)
1641 goto out_free;
1642 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1643 mmap_read_unlock(mm);
1644 start_vaddr = end;
1645
1646 len = min(count, PM_ENTRY_BYTES * pm.pos);
1647 if (copy_to_user(buf, pm.buffer, len)) {
1648 ret = -EFAULT;
1649 goto out_free;
1650 }
1651 copied += len;
1652 buf += len;
1653 count -= len;
1654 }
1655 *ppos += copied;
1656 if (!ret || ret == PM_END_OF_BUFFER)
1657 ret = copied;
1658
1659 out_free:
1660 kfree(pm.buffer);
1661 out_mm:
1662 mmput(mm);
1663 out:
1664 return ret;
1665 }
1666
1667 static int pagemap_open(struct inode *inode, struct file *file)
1668 {
1669 struct mm_struct *mm;
1670
1671 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1672 if (IS_ERR(mm))
1673 return PTR_ERR(mm);
1674 file->private_data = mm;
1675 return 0;
1676 }
1677
1678 static int pagemap_release(struct inode *inode, struct file *file)
1679 {
1680 struct mm_struct *mm = file->private_data;
1681
1682 if (mm)
1683 mmdrop(mm);
1684 return 0;
1685 }
1686
1687 const struct file_operations proc_pagemap_operations = {
1688 .llseek = mem_lseek, /* borrow this */
1689 .read = pagemap_read,
1690 .open = pagemap_open,
1691 .release = pagemap_release,
1692 };
1693 #endif /* CONFIG_PROC_PAGE_MONITOR */
1694
1695 #ifdef CONFIG_NUMA
1696
1697 struct numa_maps {
1698 unsigned long pages;
1699 unsigned long anon;
1700 unsigned long active;
1701 unsigned long writeback;
1702 unsigned long mapcount_max;
1703 unsigned long dirty;
1704 unsigned long swapcache;
1705 unsigned long node[MAX_NUMNODES];
1706 };
1707
1708 struct numa_maps_private {
1709 struct proc_maps_private proc_maps;
1710 struct numa_maps md;
1711 };
1712
1713 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1714 unsigned long nr_pages)
1715 {
1716 int count = page_mapcount(page);
1717
1718 md->pages += nr_pages;
1719 if (pte_dirty || PageDirty(page))
1720 md->dirty += nr_pages;
1721
1722 if (PageSwapCache(page))
1723 md->swapcache += nr_pages;
1724
1725 if (PageActive(page) || PageUnevictable(page))
1726 md->active += nr_pages;
1727
1728 if (PageWriteback(page))
1729 md->writeback += nr_pages;
1730
1731 if (PageAnon(page))
1732 md->anon += nr_pages;
1733
1734 if (count > md->mapcount_max)
1735 md->mapcount_max = count;
1736
1737 md->node[page_to_nid(page)] += nr_pages;
1738 }
1739
1740 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1741 unsigned long addr)
1742 {
1743 struct page *page;
1744 int nid;
1745
1746 if (!pte_present(pte))
1747 return NULL;
1748
1749 page = vm_normal_page(vma, addr, pte);
1750 if (!page)
1751 return NULL;
1752
1753 if (PageReserved(page))
1754 return NULL;
1755
1756 nid = page_to_nid(page);
1757 if (!node_isset(nid, node_states[N_MEMORY]))
1758 return NULL;
1759
1760 return page;
1761 }
1762
1763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1764 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1765 struct vm_area_struct *vma,
1766 unsigned long addr)
1767 {
1768 struct page *page;
1769 int nid;
1770
1771 if (!pmd_present(pmd))
1772 return NULL;
1773
1774 page = vm_normal_page_pmd(vma, addr, pmd);
1775 if (!page)
1776 return NULL;
1777
1778 if (PageReserved(page))
1779 return NULL;
1780
1781 nid = page_to_nid(page);
1782 if (!node_isset(nid, node_states[N_MEMORY]))
1783 return NULL;
1784
1785 return page;
1786 }
1787 #endif
1788
1789 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1790 unsigned long end, struct mm_walk *walk)
1791 {
1792 struct numa_maps *md = walk->private;
1793 struct vm_area_struct *vma = walk->vma;
1794 spinlock_t *ptl;
1795 pte_t *orig_pte;
1796 pte_t *pte;
1797
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799 ptl = pmd_trans_huge_lock(pmd, vma);
1800 if (ptl) {
1801 struct page *page;
1802
1803 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1804 if (page)
1805 gather_stats(page, md, pmd_dirty(*pmd),
1806 HPAGE_PMD_SIZE/PAGE_SIZE);
1807 spin_unlock(ptl);
1808 return 0;
1809 }
1810
1811 if (pmd_trans_unstable(pmd))
1812 return 0;
1813 #endif
1814 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1815 do {
1816 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1817 if (!page)
1818 continue;
1819 gather_stats(page, md, pte_dirty(*pte), 1);
1820
1821 } while (pte++, addr += PAGE_SIZE, addr != end);
1822 pte_unmap_unlock(orig_pte, ptl);
1823 cond_resched();
1824 return 0;
1825 }
1826 #ifdef CONFIG_HUGETLB_PAGE
1827 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1828 unsigned long addr, unsigned long end, struct mm_walk *walk)
1829 {
1830 pte_t huge_pte = huge_ptep_get(pte);
1831 struct numa_maps *md;
1832 struct page *page;
1833
1834 if (!pte_present(huge_pte))
1835 return 0;
1836
1837 page = pte_page(huge_pte);
1838 if (!page)
1839 return 0;
1840
1841 md = walk->private;
1842 gather_stats(page, md, pte_dirty(huge_pte), 1);
1843 return 0;
1844 }
1845
1846 #else
1847 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1848 unsigned long addr, unsigned long end, struct mm_walk *walk)
1849 {
1850 return 0;
1851 }
1852 #endif
1853
1854 static const struct mm_walk_ops show_numa_ops = {
1855 .hugetlb_entry = gather_hugetlb_stats,
1856 .pmd_entry = gather_pte_stats,
1857 };
1858
1859 /*
1860 * Display pages allocated per node and memory policy via /proc.
1861 */
1862 static int show_numa_map(struct seq_file *m, void *v)
1863 {
1864 struct numa_maps_private *numa_priv = m->private;
1865 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1866 struct vm_area_struct *vma = v;
1867 struct numa_maps *md = &numa_priv->md;
1868 struct file *file = vma->vm_file;
1869 struct mm_struct *mm = vma->vm_mm;
1870 struct mempolicy *pol;
1871 char buffer[64];
1872 int nid;
1873
1874 if (!mm)
1875 return 0;
1876
1877 /* Ensure we start with an empty set of numa_maps statistics. */
1878 memset(md, 0, sizeof(*md));
1879
1880 pol = __get_vma_policy(vma, vma->vm_start);
1881 if (pol) {
1882 mpol_to_str(buffer, sizeof(buffer), pol);
1883 mpol_cond_put(pol);
1884 } else {
1885 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1886 }
1887
1888 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1889
1890 if (file) {
1891 seq_puts(m, " file=");
1892 seq_file_path(m, file, "\n\t= ");
1893 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1894 seq_puts(m, " heap");
1895 } else if (is_stack(vma)) {
1896 seq_puts(m, " stack");
1897 }
1898
1899 if (is_vm_hugetlb_page(vma))
1900 seq_puts(m, " huge");
1901
1902 /* mmap_lock is held by m_start */
1903 walk_page_vma(vma, &show_numa_ops, md);
1904
1905 if (!md->pages)
1906 goto out;
1907
1908 if (md->anon)
1909 seq_printf(m, " anon=%lu", md->anon);
1910
1911 if (md->dirty)
1912 seq_printf(m, " dirty=%lu", md->dirty);
1913
1914 if (md->pages != md->anon && md->pages != md->dirty)
1915 seq_printf(m, " mapped=%lu", md->pages);
1916
1917 if (md->mapcount_max > 1)
1918 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1919
1920 if (md->swapcache)
1921 seq_printf(m, " swapcache=%lu", md->swapcache);
1922
1923 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1924 seq_printf(m, " active=%lu", md->active);
1925
1926 if (md->writeback)
1927 seq_printf(m, " writeback=%lu", md->writeback);
1928
1929 for_each_node_state(nid, N_MEMORY)
1930 if (md->node[nid])
1931 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1932
1933 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1934 out:
1935 seq_putc(m, '\n');
1936 return 0;
1937 }
1938
1939 static const struct seq_operations proc_pid_numa_maps_op = {
1940 .start = m_start,
1941 .next = m_next,
1942 .stop = m_stop,
1943 .show = show_numa_map,
1944 };
1945
1946 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1947 {
1948 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1949 sizeof(struct numa_maps_private));
1950 }
1951
1952 const struct file_operations proc_pid_numa_maps_operations = {
1953 .open = pid_numa_maps_open,
1954 .read = seq_read,
1955 .llseek = seq_lseek,
1956 .release = proc_map_release,
1957 };
1958
1959 #endif /* CONFIG_NUMA */