]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/proc/task_mmu.c
Merge tag 'for-5.2/dm-changes-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 struct mm_struct *mm = priv->mm;
129
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
132 mmput(mm);
133 }
134
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 if (vma == priv->tail_vma)
139 return NULL;
140 return vma->vm_next ?: priv->tail_vma;
141 }
142
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148
149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
156
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
159 return NULL;
160
161 priv->task = get_proc_task(priv->inode);
162 if (!priv->task)
163 return ERR_PTR(-ESRCH);
164
165 mm = priv->mm;
166 if (!mm || !mmget_not_zero(mm))
167 return NULL;
168
169 down_read(&mm->mmap_sem);
170 hold_task_mempolicy(priv);
171 priv->tail_vma = get_gate_vma(mm);
172
173 if (last_addr) {
174 vma = find_vma(mm, last_addr - 1);
175 if (vma && vma->vm_start <= last_addr)
176 vma = m_next_vma(priv, vma);
177 if (vma)
178 return vma;
179 }
180
181 m->version = 0;
182 if (pos < mm->map_count) {
183 for (vma = mm->mmap; pos; pos--) {
184 m->version = vma->vm_start;
185 vma = vma->vm_next;
186 }
187 return vma;
188 }
189
190 /* we do not bother to update m->version in this case */
191 if (pos == mm->map_count && priv->tail_vma)
192 return priv->tail_vma;
193
194 vma_stop(priv);
195 return NULL;
196 }
197
198 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
199 {
200 struct proc_maps_private *priv = m->private;
201 struct vm_area_struct *next;
202
203 (*pos)++;
204 next = m_next_vma(priv, v);
205 if (!next)
206 vma_stop(priv);
207 return next;
208 }
209
210 static void m_stop(struct seq_file *m, void *v)
211 {
212 struct proc_maps_private *priv = m->private;
213
214 if (!IS_ERR_OR_NULL(v))
215 vma_stop(priv);
216 if (priv->task) {
217 put_task_struct(priv->task);
218 priv->task = NULL;
219 }
220 }
221
222 static int proc_maps_open(struct inode *inode, struct file *file,
223 const struct seq_operations *ops, int psize)
224 {
225 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
226
227 if (!priv)
228 return -ENOMEM;
229
230 priv->inode = inode;
231 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
232 if (IS_ERR(priv->mm)) {
233 int err = PTR_ERR(priv->mm);
234
235 seq_release_private(inode, file);
236 return err;
237 }
238
239 return 0;
240 }
241
242 static int proc_map_release(struct inode *inode, struct file *file)
243 {
244 struct seq_file *seq = file->private_data;
245 struct proc_maps_private *priv = seq->private;
246
247 if (priv->mm)
248 mmdrop(priv->mm);
249
250 return seq_release_private(inode, file);
251 }
252
253 static int do_maps_open(struct inode *inode, struct file *file,
254 const struct seq_operations *ops)
255 {
256 return proc_maps_open(inode, file, ops,
257 sizeof(struct proc_maps_private));
258 }
259
260 /*
261 * Indicate if the VMA is a stack for the given task; for
262 * /proc/PID/maps that is the stack of the main task.
263 */
264 static int is_stack(struct vm_area_struct *vma)
265 {
266 /*
267 * We make no effort to guess what a given thread considers to be
268 * its "stack". It's not even well-defined for programs written
269 * languages like Go.
270 */
271 return vma->vm_start <= vma->vm_mm->start_stack &&
272 vma->vm_end >= vma->vm_mm->start_stack;
273 }
274
275 static void show_vma_header_prefix(struct seq_file *m,
276 unsigned long start, unsigned long end,
277 vm_flags_t flags, unsigned long long pgoff,
278 dev_t dev, unsigned long ino)
279 {
280 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
281 seq_put_hex_ll(m, NULL, start, 8);
282 seq_put_hex_ll(m, "-", end, 8);
283 seq_putc(m, ' ');
284 seq_putc(m, flags & VM_READ ? 'r' : '-');
285 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
286 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
287 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
288 seq_put_hex_ll(m, " ", pgoff, 8);
289 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
290 seq_put_hex_ll(m, ":", MINOR(dev), 2);
291 seq_put_decimal_ull(m, " ", ino);
292 seq_putc(m, ' ');
293 }
294
295 static void
296 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
297 {
298 struct mm_struct *mm = vma->vm_mm;
299 struct file *file = vma->vm_file;
300 vm_flags_t flags = vma->vm_flags;
301 unsigned long ino = 0;
302 unsigned long long pgoff = 0;
303 unsigned long start, end;
304 dev_t dev = 0;
305 const char *name = NULL;
306
307 if (file) {
308 struct inode *inode = file_inode(vma->vm_file);
309 dev = inode->i_sb->s_dev;
310 ino = inode->i_ino;
311 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
312 }
313
314 start = vma->vm_start;
315 end = vma->vm_end;
316 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
317
318 /*
319 * Print the dentry name for named mappings, and a
320 * special [heap] marker for the heap:
321 */
322 if (file) {
323 seq_pad(m, ' ');
324 seq_file_path(m, file, "\n");
325 goto done;
326 }
327
328 if (vma->vm_ops && vma->vm_ops->name) {
329 name = vma->vm_ops->name(vma);
330 if (name)
331 goto done;
332 }
333
334 name = arch_vma_name(vma);
335 if (!name) {
336 if (!mm) {
337 name = "[vdso]";
338 goto done;
339 }
340
341 if (vma->vm_start <= mm->brk &&
342 vma->vm_end >= mm->start_brk) {
343 name = "[heap]";
344 goto done;
345 }
346
347 if (is_stack(vma))
348 name = "[stack]";
349 }
350
351 done:
352 if (name) {
353 seq_pad(m, ' ');
354 seq_puts(m, name);
355 }
356 seq_putc(m, '\n');
357 }
358
359 static int show_map(struct seq_file *m, void *v)
360 {
361 show_map_vma(m, v);
362 m_cache_vma(m, v);
363 return 0;
364 }
365
366 static const struct seq_operations proc_pid_maps_op = {
367 .start = m_start,
368 .next = m_next,
369 .stop = m_stop,
370 .show = show_map
371 };
372
373 static int pid_maps_open(struct inode *inode, struct file *file)
374 {
375 return do_maps_open(inode, file, &proc_pid_maps_op);
376 }
377
378 const struct file_operations proc_pid_maps_operations = {
379 .open = pid_maps_open,
380 .read = seq_read,
381 .llseek = seq_lseek,
382 .release = proc_map_release,
383 };
384
385 /*
386 * Proportional Set Size(PSS): my share of RSS.
387 *
388 * PSS of a process is the count of pages it has in memory, where each
389 * page is divided by the number of processes sharing it. So if a
390 * process has 1000 pages all to itself, and 1000 shared with one other
391 * process, its PSS will be 1500.
392 *
393 * To keep (accumulated) division errors low, we adopt a 64bit
394 * fixed-point pss counter to minimize division errors. So (pss >>
395 * PSS_SHIFT) would be the real byte count.
396 *
397 * A shift of 12 before division means (assuming 4K page size):
398 * - 1M 3-user-pages add up to 8KB errors;
399 * - supports mapcount up to 2^24, or 16M;
400 * - supports PSS up to 2^52 bytes, or 4PB.
401 */
402 #define PSS_SHIFT 12
403
404 #ifdef CONFIG_PROC_PAGE_MONITOR
405 struct mem_size_stats {
406 unsigned long resident;
407 unsigned long shared_clean;
408 unsigned long shared_dirty;
409 unsigned long private_clean;
410 unsigned long private_dirty;
411 unsigned long referenced;
412 unsigned long anonymous;
413 unsigned long lazyfree;
414 unsigned long anonymous_thp;
415 unsigned long shmem_thp;
416 unsigned long swap;
417 unsigned long shared_hugetlb;
418 unsigned long private_hugetlb;
419 u64 pss;
420 u64 pss_locked;
421 u64 swap_pss;
422 bool check_shmem_swap;
423 };
424
425 static void smaps_account(struct mem_size_stats *mss, struct page *page,
426 bool compound, bool young, bool dirty, bool locked)
427 {
428 int i, nr = compound ? 1 << compound_order(page) : 1;
429 unsigned long size = nr * PAGE_SIZE;
430
431 if (PageAnon(page)) {
432 mss->anonymous += size;
433 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
434 mss->lazyfree += size;
435 }
436
437 mss->resident += size;
438 /* Accumulate the size in pages that have been accessed. */
439 if (young || page_is_young(page) || PageReferenced(page))
440 mss->referenced += size;
441
442 /*
443 * page_count(page) == 1 guarantees the page is mapped exactly once.
444 * If any subpage of the compound page mapped with PTE it would elevate
445 * page_count().
446 */
447 if (page_count(page) == 1) {
448 if (dirty || PageDirty(page))
449 mss->private_dirty += size;
450 else
451 mss->private_clean += size;
452 mss->pss += (u64)size << PSS_SHIFT;
453 if (locked)
454 mss->pss_locked += (u64)size << PSS_SHIFT;
455 return;
456 }
457
458 for (i = 0; i < nr; i++, page++) {
459 int mapcount = page_mapcount(page);
460 unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
461
462 if (mapcount >= 2) {
463 if (dirty || PageDirty(page))
464 mss->shared_dirty += PAGE_SIZE;
465 else
466 mss->shared_clean += PAGE_SIZE;
467 mss->pss += pss / mapcount;
468 if (locked)
469 mss->pss_locked += pss / mapcount;
470 } else {
471 if (dirty || PageDirty(page))
472 mss->private_dirty += PAGE_SIZE;
473 else
474 mss->private_clean += PAGE_SIZE;
475 mss->pss += pss;
476 if (locked)
477 mss->pss_locked += pss;
478 }
479 }
480 }
481
482 #ifdef CONFIG_SHMEM
483 static int smaps_pte_hole(unsigned long addr, unsigned long end,
484 struct mm_walk *walk)
485 {
486 struct mem_size_stats *mss = walk->private;
487
488 mss->swap += shmem_partial_swap_usage(
489 walk->vma->vm_file->f_mapping, addr, end);
490
491 return 0;
492 }
493 #endif
494
495 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
496 struct mm_walk *walk)
497 {
498 struct mem_size_stats *mss = walk->private;
499 struct vm_area_struct *vma = walk->vma;
500 bool locked = !!(vma->vm_flags & VM_LOCKED);
501 struct page *page = NULL;
502
503 if (pte_present(*pte)) {
504 page = vm_normal_page(vma, addr, *pte);
505 } else if (is_swap_pte(*pte)) {
506 swp_entry_t swpent = pte_to_swp_entry(*pte);
507
508 if (!non_swap_entry(swpent)) {
509 int mapcount;
510
511 mss->swap += PAGE_SIZE;
512 mapcount = swp_swapcount(swpent);
513 if (mapcount >= 2) {
514 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
515
516 do_div(pss_delta, mapcount);
517 mss->swap_pss += pss_delta;
518 } else {
519 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
520 }
521 } else if (is_migration_entry(swpent))
522 page = migration_entry_to_page(swpent);
523 else if (is_device_private_entry(swpent))
524 page = device_private_entry_to_page(swpent);
525 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
526 && pte_none(*pte))) {
527 page = find_get_entry(vma->vm_file->f_mapping,
528 linear_page_index(vma, addr));
529 if (!page)
530 return;
531
532 if (xa_is_value(page))
533 mss->swap += PAGE_SIZE;
534 else
535 put_page(page);
536
537 return;
538 }
539
540 if (!page)
541 return;
542
543 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
544 }
545
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
548 struct mm_walk *walk)
549 {
550 struct mem_size_stats *mss = walk->private;
551 struct vm_area_struct *vma = walk->vma;
552 bool locked = !!(vma->vm_flags & VM_LOCKED);
553 struct page *page;
554
555 /* FOLL_DUMP will return -EFAULT on huge zero page */
556 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
557 if (IS_ERR_OR_NULL(page))
558 return;
559 if (PageAnon(page))
560 mss->anonymous_thp += HPAGE_PMD_SIZE;
561 else if (PageSwapBacked(page))
562 mss->shmem_thp += HPAGE_PMD_SIZE;
563 else if (is_zone_device_page(page))
564 /* pass */;
565 else
566 VM_BUG_ON_PAGE(1, page);
567 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
568 }
569 #else
570 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
571 struct mm_walk *walk)
572 {
573 }
574 #endif
575
576 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
577 struct mm_walk *walk)
578 {
579 struct vm_area_struct *vma = walk->vma;
580 pte_t *pte;
581 spinlock_t *ptl;
582
583 ptl = pmd_trans_huge_lock(pmd, vma);
584 if (ptl) {
585 if (pmd_present(*pmd))
586 smaps_pmd_entry(pmd, addr, walk);
587 spin_unlock(ptl);
588 goto out;
589 }
590
591 if (pmd_trans_unstable(pmd))
592 goto out;
593 /*
594 * The mmap_sem held all the way back in m_start() is what
595 * keeps khugepaged out of here and from collapsing things
596 * in here.
597 */
598 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
599 for (; addr != end; pte++, addr += PAGE_SIZE)
600 smaps_pte_entry(pte, addr, walk);
601 pte_unmap_unlock(pte - 1, ptl);
602 out:
603 cond_resched();
604 return 0;
605 }
606
607 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
608 {
609 /*
610 * Don't forget to update Documentation/ on changes.
611 */
612 static const char mnemonics[BITS_PER_LONG][2] = {
613 /*
614 * In case if we meet a flag we don't know about.
615 */
616 [0 ... (BITS_PER_LONG-1)] = "??",
617
618 [ilog2(VM_READ)] = "rd",
619 [ilog2(VM_WRITE)] = "wr",
620 [ilog2(VM_EXEC)] = "ex",
621 [ilog2(VM_SHARED)] = "sh",
622 [ilog2(VM_MAYREAD)] = "mr",
623 [ilog2(VM_MAYWRITE)] = "mw",
624 [ilog2(VM_MAYEXEC)] = "me",
625 [ilog2(VM_MAYSHARE)] = "ms",
626 [ilog2(VM_GROWSDOWN)] = "gd",
627 [ilog2(VM_PFNMAP)] = "pf",
628 [ilog2(VM_DENYWRITE)] = "dw",
629 #ifdef CONFIG_X86_INTEL_MPX
630 [ilog2(VM_MPX)] = "mp",
631 #endif
632 [ilog2(VM_LOCKED)] = "lo",
633 [ilog2(VM_IO)] = "io",
634 [ilog2(VM_SEQ_READ)] = "sr",
635 [ilog2(VM_RAND_READ)] = "rr",
636 [ilog2(VM_DONTCOPY)] = "dc",
637 [ilog2(VM_DONTEXPAND)] = "de",
638 [ilog2(VM_ACCOUNT)] = "ac",
639 [ilog2(VM_NORESERVE)] = "nr",
640 [ilog2(VM_HUGETLB)] = "ht",
641 [ilog2(VM_SYNC)] = "sf",
642 [ilog2(VM_ARCH_1)] = "ar",
643 [ilog2(VM_WIPEONFORK)] = "wf",
644 [ilog2(VM_DONTDUMP)] = "dd",
645 #ifdef CONFIG_MEM_SOFT_DIRTY
646 [ilog2(VM_SOFTDIRTY)] = "sd",
647 #endif
648 [ilog2(VM_MIXEDMAP)] = "mm",
649 [ilog2(VM_HUGEPAGE)] = "hg",
650 [ilog2(VM_NOHUGEPAGE)] = "nh",
651 [ilog2(VM_MERGEABLE)] = "mg",
652 [ilog2(VM_UFFD_MISSING)]= "um",
653 [ilog2(VM_UFFD_WP)] = "uw",
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655 /* These come out via ProtectionKey: */
656 [ilog2(VM_PKEY_BIT0)] = "",
657 [ilog2(VM_PKEY_BIT1)] = "",
658 [ilog2(VM_PKEY_BIT2)] = "",
659 [ilog2(VM_PKEY_BIT3)] = "",
660 #if VM_PKEY_BIT4
661 [ilog2(VM_PKEY_BIT4)] = "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 };
665 size_t i;
666
667 seq_puts(m, "VmFlags: ");
668 for (i = 0; i < BITS_PER_LONG; i++) {
669 if (!mnemonics[i][0])
670 continue;
671 if (vma->vm_flags & (1UL << i)) {
672 seq_putc(m, mnemonics[i][0]);
673 seq_putc(m, mnemonics[i][1]);
674 seq_putc(m, ' ');
675 }
676 }
677 seq_putc(m, '\n');
678 }
679
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 unsigned long addr, unsigned long end,
683 struct mm_walk *walk)
684 {
685 struct mem_size_stats *mss = walk->private;
686 struct vm_area_struct *vma = walk->vma;
687 struct page *page = NULL;
688
689 if (pte_present(*pte)) {
690 page = vm_normal_page(vma, addr, *pte);
691 } else if (is_swap_pte(*pte)) {
692 swp_entry_t swpent = pte_to_swp_entry(*pte);
693
694 if (is_migration_entry(swpent))
695 page = migration_entry_to_page(swpent);
696 else if (is_device_private_entry(swpent))
697 page = device_private_entry_to_page(swpent);
698 }
699 if (page) {
700 int mapcount = page_mapcount(page);
701
702 if (mapcount >= 2)
703 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
704 else
705 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
706 }
707 return 0;
708 }
709 #endif /* HUGETLB_PAGE */
710
711 static void smap_gather_stats(struct vm_area_struct *vma,
712 struct mem_size_stats *mss)
713 {
714 struct mm_walk smaps_walk = {
715 .pmd_entry = smaps_pte_range,
716 #ifdef CONFIG_HUGETLB_PAGE
717 .hugetlb_entry = smaps_hugetlb_range,
718 #endif
719 .mm = vma->vm_mm,
720 };
721
722 smaps_walk.private = mss;
723
724 #ifdef CONFIG_SHMEM
725 /* In case of smaps_rollup, reset the value from previous vma */
726 mss->check_shmem_swap = false;
727 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
728 /*
729 * For shared or readonly shmem mappings we know that all
730 * swapped out pages belong to the shmem object, and we can
731 * obtain the swap value much more efficiently. For private
732 * writable mappings, we might have COW pages that are
733 * not affected by the parent swapped out pages of the shmem
734 * object, so we have to distinguish them during the page walk.
735 * Unless we know that the shmem object (or the part mapped by
736 * our VMA) has no swapped out pages at all.
737 */
738 unsigned long shmem_swapped = shmem_swap_usage(vma);
739
740 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
741 !(vma->vm_flags & VM_WRITE)) {
742 mss->swap += shmem_swapped;
743 } else {
744 mss->check_shmem_swap = true;
745 smaps_walk.pte_hole = smaps_pte_hole;
746 }
747 }
748 #endif
749 /* mmap_sem is held in m_start */
750 walk_page_vma(vma, &smaps_walk);
751 }
752
753 #define SEQ_PUT_DEC(str, val) \
754 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
755
756 /* Show the contents common for smaps and smaps_rollup */
757 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
758 {
759 SEQ_PUT_DEC("Rss: ", mss->resident);
760 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
761 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
762 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
763 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
764 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
765 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
766 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
767 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
768 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
769 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
770 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
771 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
772 mss->private_hugetlb >> 10, 7);
773 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
774 SEQ_PUT_DEC(" kB\nSwapPss: ",
775 mss->swap_pss >> PSS_SHIFT);
776 SEQ_PUT_DEC(" kB\nLocked: ",
777 mss->pss_locked >> PSS_SHIFT);
778 seq_puts(m, " kB\n");
779 }
780
781 static int show_smap(struct seq_file *m, void *v)
782 {
783 struct vm_area_struct *vma = v;
784 struct mem_size_stats mss;
785
786 memset(&mss, 0, sizeof(mss));
787
788 smap_gather_stats(vma, &mss);
789
790 show_map_vma(m, vma);
791
792 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
793 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
794 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
795 seq_puts(m, " kB\n");
796
797 __show_smap(m, &mss);
798
799 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
800
801 if (arch_pkeys_enabled())
802 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
803 show_smap_vma_flags(m, vma);
804
805 m_cache_vma(m, vma);
806
807 return 0;
808 }
809
810 static int show_smaps_rollup(struct seq_file *m, void *v)
811 {
812 struct proc_maps_private *priv = m->private;
813 struct mem_size_stats mss;
814 struct mm_struct *mm;
815 struct vm_area_struct *vma;
816 unsigned long last_vma_end = 0;
817 int ret = 0;
818
819 priv->task = get_proc_task(priv->inode);
820 if (!priv->task)
821 return -ESRCH;
822
823 mm = priv->mm;
824 if (!mm || !mmget_not_zero(mm)) {
825 ret = -ESRCH;
826 goto out_put_task;
827 }
828
829 memset(&mss, 0, sizeof(mss));
830
831 down_read(&mm->mmap_sem);
832 hold_task_mempolicy(priv);
833
834 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
835 smap_gather_stats(vma, &mss);
836 last_vma_end = vma->vm_end;
837 }
838
839 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
840 last_vma_end, 0, 0, 0, 0);
841 seq_pad(m, ' ');
842 seq_puts(m, "[rollup]\n");
843
844 __show_smap(m, &mss);
845
846 release_task_mempolicy(priv);
847 up_read(&mm->mmap_sem);
848 mmput(mm);
849
850 out_put_task:
851 put_task_struct(priv->task);
852 priv->task = NULL;
853
854 return ret;
855 }
856 #undef SEQ_PUT_DEC
857
858 static const struct seq_operations proc_pid_smaps_op = {
859 .start = m_start,
860 .next = m_next,
861 .stop = m_stop,
862 .show = show_smap
863 };
864
865 static int pid_smaps_open(struct inode *inode, struct file *file)
866 {
867 return do_maps_open(inode, file, &proc_pid_smaps_op);
868 }
869
870 static int smaps_rollup_open(struct inode *inode, struct file *file)
871 {
872 int ret;
873 struct proc_maps_private *priv;
874
875 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
876 if (!priv)
877 return -ENOMEM;
878
879 ret = single_open(file, show_smaps_rollup, priv);
880 if (ret)
881 goto out_free;
882
883 priv->inode = inode;
884 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
885 if (IS_ERR(priv->mm)) {
886 ret = PTR_ERR(priv->mm);
887
888 single_release(inode, file);
889 goto out_free;
890 }
891
892 return 0;
893
894 out_free:
895 kfree(priv);
896 return ret;
897 }
898
899 static int smaps_rollup_release(struct inode *inode, struct file *file)
900 {
901 struct seq_file *seq = file->private_data;
902 struct proc_maps_private *priv = seq->private;
903
904 if (priv->mm)
905 mmdrop(priv->mm);
906
907 kfree(priv);
908 return single_release(inode, file);
909 }
910
911 const struct file_operations proc_pid_smaps_operations = {
912 .open = pid_smaps_open,
913 .read = seq_read,
914 .llseek = seq_lseek,
915 .release = proc_map_release,
916 };
917
918 const struct file_operations proc_pid_smaps_rollup_operations = {
919 .open = smaps_rollup_open,
920 .read = seq_read,
921 .llseek = seq_lseek,
922 .release = smaps_rollup_release,
923 };
924
925 enum clear_refs_types {
926 CLEAR_REFS_ALL = 1,
927 CLEAR_REFS_ANON,
928 CLEAR_REFS_MAPPED,
929 CLEAR_REFS_SOFT_DIRTY,
930 CLEAR_REFS_MM_HIWATER_RSS,
931 CLEAR_REFS_LAST,
932 };
933
934 struct clear_refs_private {
935 enum clear_refs_types type;
936 };
937
938 #ifdef CONFIG_MEM_SOFT_DIRTY
939 static inline void clear_soft_dirty(struct vm_area_struct *vma,
940 unsigned long addr, pte_t *pte)
941 {
942 /*
943 * The soft-dirty tracker uses #PF-s to catch writes
944 * to pages, so write-protect the pte as well. See the
945 * Documentation/admin-guide/mm/soft-dirty.rst for full description
946 * of how soft-dirty works.
947 */
948 pte_t ptent = *pte;
949
950 if (pte_present(ptent)) {
951 pte_t old_pte;
952
953 old_pte = ptep_modify_prot_start(vma, addr, pte);
954 ptent = pte_wrprotect(old_pte);
955 ptent = pte_clear_soft_dirty(ptent);
956 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
957 } else if (is_swap_pte(ptent)) {
958 ptent = pte_swp_clear_soft_dirty(ptent);
959 set_pte_at(vma->vm_mm, addr, pte, ptent);
960 }
961 }
962 #else
963 static inline void clear_soft_dirty(struct vm_area_struct *vma,
964 unsigned long addr, pte_t *pte)
965 {
966 }
967 #endif
968
969 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
970 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
971 unsigned long addr, pmd_t *pmdp)
972 {
973 pmd_t old, pmd = *pmdp;
974
975 if (pmd_present(pmd)) {
976 /* See comment in change_huge_pmd() */
977 old = pmdp_invalidate(vma, addr, pmdp);
978 if (pmd_dirty(old))
979 pmd = pmd_mkdirty(pmd);
980 if (pmd_young(old))
981 pmd = pmd_mkyoung(pmd);
982
983 pmd = pmd_wrprotect(pmd);
984 pmd = pmd_clear_soft_dirty(pmd);
985
986 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
987 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
988 pmd = pmd_swp_clear_soft_dirty(pmd);
989 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
990 }
991 }
992 #else
993 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
994 unsigned long addr, pmd_t *pmdp)
995 {
996 }
997 #endif
998
999 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1000 unsigned long end, struct mm_walk *walk)
1001 {
1002 struct clear_refs_private *cp = walk->private;
1003 struct vm_area_struct *vma = walk->vma;
1004 pte_t *pte, ptent;
1005 spinlock_t *ptl;
1006 struct page *page;
1007
1008 ptl = pmd_trans_huge_lock(pmd, vma);
1009 if (ptl) {
1010 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1011 clear_soft_dirty_pmd(vma, addr, pmd);
1012 goto out;
1013 }
1014
1015 if (!pmd_present(*pmd))
1016 goto out;
1017
1018 page = pmd_page(*pmd);
1019
1020 /* Clear accessed and referenced bits. */
1021 pmdp_test_and_clear_young(vma, addr, pmd);
1022 test_and_clear_page_young(page);
1023 ClearPageReferenced(page);
1024 out:
1025 spin_unlock(ptl);
1026 return 0;
1027 }
1028
1029 if (pmd_trans_unstable(pmd))
1030 return 0;
1031
1032 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1033 for (; addr != end; pte++, addr += PAGE_SIZE) {
1034 ptent = *pte;
1035
1036 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1037 clear_soft_dirty(vma, addr, pte);
1038 continue;
1039 }
1040
1041 if (!pte_present(ptent))
1042 continue;
1043
1044 page = vm_normal_page(vma, addr, ptent);
1045 if (!page)
1046 continue;
1047
1048 /* Clear accessed and referenced bits. */
1049 ptep_test_and_clear_young(vma, addr, pte);
1050 test_and_clear_page_young(page);
1051 ClearPageReferenced(page);
1052 }
1053 pte_unmap_unlock(pte - 1, ptl);
1054 cond_resched();
1055 return 0;
1056 }
1057
1058 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1059 struct mm_walk *walk)
1060 {
1061 struct clear_refs_private *cp = walk->private;
1062 struct vm_area_struct *vma = walk->vma;
1063
1064 if (vma->vm_flags & VM_PFNMAP)
1065 return 1;
1066
1067 /*
1068 * Writing 1 to /proc/pid/clear_refs affects all pages.
1069 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1070 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1071 * Writing 4 to /proc/pid/clear_refs affects all pages.
1072 */
1073 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1074 return 1;
1075 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1076 return 1;
1077 return 0;
1078 }
1079
1080 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1081 size_t count, loff_t *ppos)
1082 {
1083 struct task_struct *task;
1084 char buffer[PROC_NUMBUF];
1085 struct mm_struct *mm;
1086 struct vm_area_struct *vma;
1087 enum clear_refs_types type;
1088 struct mmu_gather tlb;
1089 int itype;
1090 int rv;
1091
1092 memset(buffer, 0, sizeof(buffer));
1093 if (count > sizeof(buffer) - 1)
1094 count = sizeof(buffer) - 1;
1095 if (copy_from_user(buffer, buf, count))
1096 return -EFAULT;
1097 rv = kstrtoint(strstrip(buffer), 10, &itype);
1098 if (rv < 0)
1099 return rv;
1100 type = (enum clear_refs_types)itype;
1101 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1102 return -EINVAL;
1103
1104 task = get_proc_task(file_inode(file));
1105 if (!task)
1106 return -ESRCH;
1107 mm = get_task_mm(task);
1108 if (mm) {
1109 struct mmu_notifier_range range;
1110 struct clear_refs_private cp = {
1111 .type = type,
1112 };
1113 struct mm_walk clear_refs_walk = {
1114 .pmd_entry = clear_refs_pte_range,
1115 .test_walk = clear_refs_test_walk,
1116 .mm = mm,
1117 .private = &cp,
1118 };
1119
1120 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1121 if (down_write_killable(&mm->mmap_sem)) {
1122 count = -EINTR;
1123 goto out_mm;
1124 }
1125
1126 /*
1127 * Writing 5 to /proc/pid/clear_refs resets the peak
1128 * resident set size to this mm's current rss value.
1129 */
1130 reset_mm_hiwater_rss(mm);
1131 up_write(&mm->mmap_sem);
1132 goto out_mm;
1133 }
1134
1135 down_read(&mm->mmap_sem);
1136 tlb_gather_mmu(&tlb, mm, 0, -1);
1137 if (type == CLEAR_REFS_SOFT_DIRTY) {
1138 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1139 if (!(vma->vm_flags & VM_SOFTDIRTY))
1140 continue;
1141 up_read(&mm->mmap_sem);
1142 if (down_write_killable(&mm->mmap_sem)) {
1143 count = -EINTR;
1144 goto out_mm;
1145 }
1146 /*
1147 * Avoid to modify vma->vm_flags
1148 * without locked ops while the
1149 * coredump reads the vm_flags.
1150 */
1151 if (!mmget_still_valid(mm)) {
1152 /*
1153 * Silently return "count"
1154 * like if get_task_mm()
1155 * failed. FIXME: should this
1156 * function have returned
1157 * -ESRCH if get_task_mm()
1158 * failed like if
1159 * get_proc_task() fails?
1160 */
1161 up_write(&mm->mmap_sem);
1162 goto out_mm;
1163 }
1164 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1165 vma->vm_flags &= ~VM_SOFTDIRTY;
1166 vma_set_page_prot(vma);
1167 }
1168 downgrade_write(&mm->mmap_sem);
1169 break;
1170 }
1171
1172 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1173 0, NULL, mm, 0, -1UL);
1174 mmu_notifier_invalidate_range_start(&range);
1175 }
1176 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1177 if (type == CLEAR_REFS_SOFT_DIRTY)
1178 mmu_notifier_invalidate_range_end(&range);
1179 tlb_finish_mmu(&tlb, 0, -1);
1180 up_read(&mm->mmap_sem);
1181 out_mm:
1182 mmput(mm);
1183 }
1184 put_task_struct(task);
1185
1186 return count;
1187 }
1188
1189 const struct file_operations proc_clear_refs_operations = {
1190 .write = clear_refs_write,
1191 .llseek = noop_llseek,
1192 };
1193
1194 typedef struct {
1195 u64 pme;
1196 } pagemap_entry_t;
1197
1198 struct pagemapread {
1199 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1200 pagemap_entry_t *buffer;
1201 bool show_pfn;
1202 };
1203
1204 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1205 #define PAGEMAP_WALK_MASK (PMD_MASK)
1206
1207 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1208 #define PM_PFRAME_BITS 55
1209 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1210 #define PM_SOFT_DIRTY BIT_ULL(55)
1211 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1212 #define PM_FILE BIT_ULL(61)
1213 #define PM_SWAP BIT_ULL(62)
1214 #define PM_PRESENT BIT_ULL(63)
1215
1216 #define PM_END_OF_BUFFER 1
1217
1218 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1219 {
1220 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1221 }
1222
1223 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1224 struct pagemapread *pm)
1225 {
1226 pm->buffer[pm->pos++] = *pme;
1227 if (pm->pos >= pm->len)
1228 return PM_END_OF_BUFFER;
1229 return 0;
1230 }
1231
1232 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1233 struct mm_walk *walk)
1234 {
1235 struct pagemapread *pm = walk->private;
1236 unsigned long addr = start;
1237 int err = 0;
1238
1239 while (addr < end) {
1240 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1241 pagemap_entry_t pme = make_pme(0, 0);
1242 /* End of address space hole, which we mark as non-present. */
1243 unsigned long hole_end;
1244
1245 if (vma)
1246 hole_end = min(end, vma->vm_start);
1247 else
1248 hole_end = end;
1249
1250 for (; addr < hole_end; addr += PAGE_SIZE) {
1251 err = add_to_pagemap(addr, &pme, pm);
1252 if (err)
1253 goto out;
1254 }
1255
1256 if (!vma)
1257 break;
1258
1259 /* Addresses in the VMA. */
1260 if (vma->vm_flags & VM_SOFTDIRTY)
1261 pme = make_pme(0, PM_SOFT_DIRTY);
1262 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1263 err = add_to_pagemap(addr, &pme, pm);
1264 if (err)
1265 goto out;
1266 }
1267 }
1268 out:
1269 return err;
1270 }
1271
1272 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1273 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1274 {
1275 u64 frame = 0, flags = 0;
1276 struct page *page = NULL;
1277
1278 if (pte_present(pte)) {
1279 if (pm->show_pfn)
1280 frame = pte_pfn(pte);
1281 flags |= PM_PRESENT;
1282 page = _vm_normal_page(vma, addr, pte, true);
1283 if (pte_soft_dirty(pte))
1284 flags |= PM_SOFT_DIRTY;
1285 } else if (is_swap_pte(pte)) {
1286 swp_entry_t entry;
1287 if (pte_swp_soft_dirty(pte))
1288 flags |= PM_SOFT_DIRTY;
1289 entry = pte_to_swp_entry(pte);
1290 if (pm->show_pfn)
1291 frame = swp_type(entry) |
1292 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1293 flags |= PM_SWAP;
1294 if (is_migration_entry(entry))
1295 page = migration_entry_to_page(entry);
1296
1297 if (is_device_private_entry(entry))
1298 page = device_private_entry_to_page(entry);
1299 }
1300
1301 if (page && !PageAnon(page))
1302 flags |= PM_FILE;
1303 if (page && page_mapcount(page) == 1)
1304 flags |= PM_MMAP_EXCLUSIVE;
1305 if (vma->vm_flags & VM_SOFTDIRTY)
1306 flags |= PM_SOFT_DIRTY;
1307
1308 return make_pme(frame, flags);
1309 }
1310
1311 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1312 struct mm_walk *walk)
1313 {
1314 struct vm_area_struct *vma = walk->vma;
1315 struct pagemapread *pm = walk->private;
1316 spinlock_t *ptl;
1317 pte_t *pte, *orig_pte;
1318 int err = 0;
1319
1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321 ptl = pmd_trans_huge_lock(pmdp, vma);
1322 if (ptl) {
1323 u64 flags = 0, frame = 0;
1324 pmd_t pmd = *pmdp;
1325 struct page *page = NULL;
1326
1327 if (vma->vm_flags & VM_SOFTDIRTY)
1328 flags |= PM_SOFT_DIRTY;
1329
1330 if (pmd_present(pmd)) {
1331 page = pmd_page(pmd);
1332
1333 flags |= PM_PRESENT;
1334 if (pmd_soft_dirty(pmd))
1335 flags |= PM_SOFT_DIRTY;
1336 if (pm->show_pfn)
1337 frame = pmd_pfn(pmd) +
1338 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1339 }
1340 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1341 else if (is_swap_pmd(pmd)) {
1342 swp_entry_t entry = pmd_to_swp_entry(pmd);
1343 unsigned long offset;
1344
1345 if (pm->show_pfn) {
1346 offset = swp_offset(entry) +
1347 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1348 frame = swp_type(entry) |
1349 (offset << MAX_SWAPFILES_SHIFT);
1350 }
1351 flags |= PM_SWAP;
1352 if (pmd_swp_soft_dirty(pmd))
1353 flags |= PM_SOFT_DIRTY;
1354 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1355 page = migration_entry_to_page(entry);
1356 }
1357 #endif
1358
1359 if (page && page_mapcount(page) == 1)
1360 flags |= PM_MMAP_EXCLUSIVE;
1361
1362 for (; addr != end; addr += PAGE_SIZE) {
1363 pagemap_entry_t pme = make_pme(frame, flags);
1364
1365 err = add_to_pagemap(addr, &pme, pm);
1366 if (err)
1367 break;
1368 if (pm->show_pfn) {
1369 if (flags & PM_PRESENT)
1370 frame++;
1371 else if (flags & PM_SWAP)
1372 frame += (1 << MAX_SWAPFILES_SHIFT);
1373 }
1374 }
1375 spin_unlock(ptl);
1376 return err;
1377 }
1378
1379 if (pmd_trans_unstable(pmdp))
1380 return 0;
1381 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1382
1383 /*
1384 * We can assume that @vma always points to a valid one and @end never
1385 * goes beyond vma->vm_end.
1386 */
1387 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1388 for (; addr < end; pte++, addr += PAGE_SIZE) {
1389 pagemap_entry_t pme;
1390
1391 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1392 err = add_to_pagemap(addr, &pme, pm);
1393 if (err)
1394 break;
1395 }
1396 pte_unmap_unlock(orig_pte, ptl);
1397
1398 cond_resched();
1399
1400 return err;
1401 }
1402
1403 #ifdef CONFIG_HUGETLB_PAGE
1404 /* This function walks within one hugetlb entry in the single call */
1405 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1406 unsigned long addr, unsigned long end,
1407 struct mm_walk *walk)
1408 {
1409 struct pagemapread *pm = walk->private;
1410 struct vm_area_struct *vma = walk->vma;
1411 u64 flags = 0, frame = 0;
1412 int err = 0;
1413 pte_t pte;
1414
1415 if (vma->vm_flags & VM_SOFTDIRTY)
1416 flags |= PM_SOFT_DIRTY;
1417
1418 pte = huge_ptep_get(ptep);
1419 if (pte_present(pte)) {
1420 struct page *page = pte_page(pte);
1421
1422 if (!PageAnon(page))
1423 flags |= PM_FILE;
1424
1425 if (page_mapcount(page) == 1)
1426 flags |= PM_MMAP_EXCLUSIVE;
1427
1428 flags |= PM_PRESENT;
1429 if (pm->show_pfn)
1430 frame = pte_pfn(pte) +
1431 ((addr & ~hmask) >> PAGE_SHIFT);
1432 }
1433
1434 for (; addr != end; addr += PAGE_SIZE) {
1435 pagemap_entry_t pme = make_pme(frame, flags);
1436
1437 err = add_to_pagemap(addr, &pme, pm);
1438 if (err)
1439 return err;
1440 if (pm->show_pfn && (flags & PM_PRESENT))
1441 frame++;
1442 }
1443
1444 cond_resched();
1445
1446 return err;
1447 }
1448 #endif /* HUGETLB_PAGE */
1449
1450 /*
1451 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1452 *
1453 * For each page in the address space, this file contains one 64-bit entry
1454 * consisting of the following:
1455 *
1456 * Bits 0-54 page frame number (PFN) if present
1457 * Bits 0-4 swap type if swapped
1458 * Bits 5-54 swap offset if swapped
1459 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1460 * Bit 56 page exclusively mapped
1461 * Bits 57-60 zero
1462 * Bit 61 page is file-page or shared-anon
1463 * Bit 62 page swapped
1464 * Bit 63 page present
1465 *
1466 * If the page is not present but in swap, then the PFN contains an
1467 * encoding of the swap file number and the page's offset into the
1468 * swap. Unmapped pages return a null PFN. This allows determining
1469 * precisely which pages are mapped (or in swap) and comparing mapped
1470 * pages between processes.
1471 *
1472 * Efficient users of this interface will use /proc/pid/maps to
1473 * determine which areas of memory are actually mapped and llseek to
1474 * skip over unmapped regions.
1475 */
1476 static ssize_t pagemap_read(struct file *file, char __user *buf,
1477 size_t count, loff_t *ppos)
1478 {
1479 struct mm_struct *mm = file->private_data;
1480 struct pagemapread pm;
1481 struct mm_walk pagemap_walk = {};
1482 unsigned long src;
1483 unsigned long svpfn;
1484 unsigned long start_vaddr;
1485 unsigned long end_vaddr;
1486 int ret = 0, copied = 0;
1487
1488 if (!mm || !mmget_not_zero(mm))
1489 goto out;
1490
1491 ret = -EINVAL;
1492 /* file position must be aligned */
1493 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1494 goto out_mm;
1495
1496 ret = 0;
1497 if (!count)
1498 goto out_mm;
1499
1500 /* do not disclose physical addresses: attack vector */
1501 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1502
1503 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1504 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1505 ret = -ENOMEM;
1506 if (!pm.buffer)
1507 goto out_mm;
1508
1509 pagemap_walk.pmd_entry = pagemap_pmd_range;
1510 pagemap_walk.pte_hole = pagemap_pte_hole;
1511 #ifdef CONFIG_HUGETLB_PAGE
1512 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1513 #endif
1514 pagemap_walk.mm = mm;
1515 pagemap_walk.private = &pm;
1516
1517 src = *ppos;
1518 svpfn = src / PM_ENTRY_BYTES;
1519 start_vaddr = svpfn << PAGE_SHIFT;
1520 end_vaddr = mm->task_size;
1521
1522 /* watch out for wraparound */
1523 if (svpfn > mm->task_size >> PAGE_SHIFT)
1524 start_vaddr = end_vaddr;
1525
1526 /*
1527 * The odds are that this will stop walking way
1528 * before end_vaddr, because the length of the
1529 * user buffer is tracked in "pm", and the walk
1530 * will stop when we hit the end of the buffer.
1531 */
1532 ret = 0;
1533 while (count && (start_vaddr < end_vaddr)) {
1534 int len;
1535 unsigned long end;
1536
1537 pm.pos = 0;
1538 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1539 /* overflow ? */
1540 if (end < start_vaddr || end > end_vaddr)
1541 end = end_vaddr;
1542 down_read(&mm->mmap_sem);
1543 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1544 up_read(&mm->mmap_sem);
1545 start_vaddr = end;
1546
1547 len = min(count, PM_ENTRY_BYTES * pm.pos);
1548 if (copy_to_user(buf, pm.buffer, len)) {
1549 ret = -EFAULT;
1550 goto out_free;
1551 }
1552 copied += len;
1553 buf += len;
1554 count -= len;
1555 }
1556 *ppos += copied;
1557 if (!ret || ret == PM_END_OF_BUFFER)
1558 ret = copied;
1559
1560 out_free:
1561 kfree(pm.buffer);
1562 out_mm:
1563 mmput(mm);
1564 out:
1565 return ret;
1566 }
1567
1568 static int pagemap_open(struct inode *inode, struct file *file)
1569 {
1570 struct mm_struct *mm;
1571
1572 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1573 if (IS_ERR(mm))
1574 return PTR_ERR(mm);
1575 file->private_data = mm;
1576 return 0;
1577 }
1578
1579 static int pagemap_release(struct inode *inode, struct file *file)
1580 {
1581 struct mm_struct *mm = file->private_data;
1582
1583 if (mm)
1584 mmdrop(mm);
1585 return 0;
1586 }
1587
1588 const struct file_operations proc_pagemap_operations = {
1589 .llseek = mem_lseek, /* borrow this */
1590 .read = pagemap_read,
1591 .open = pagemap_open,
1592 .release = pagemap_release,
1593 };
1594 #endif /* CONFIG_PROC_PAGE_MONITOR */
1595
1596 #ifdef CONFIG_NUMA
1597
1598 struct numa_maps {
1599 unsigned long pages;
1600 unsigned long anon;
1601 unsigned long active;
1602 unsigned long writeback;
1603 unsigned long mapcount_max;
1604 unsigned long dirty;
1605 unsigned long swapcache;
1606 unsigned long node[MAX_NUMNODES];
1607 };
1608
1609 struct numa_maps_private {
1610 struct proc_maps_private proc_maps;
1611 struct numa_maps md;
1612 };
1613
1614 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1615 unsigned long nr_pages)
1616 {
1617 int count = page_mapcount(page);
1618
1619 md->pages += nr_pages;
1620 if (pte_dirty || PageDirty(page))
1621 md->dirty += nr_pages;
1622
1623 if (PageSwapCache(page))
1624 md->swapcache += nr_pages;
1625
1626 if (PageActive(page) || PageUnevictable(page))
1627 md->active += nr_pages;
1628
1629 if (PageWriteback(page))
1630 md->writeback += nr_pages;
1631
1632 if (PageAnon(page))
1633 md->anon += nr_pages;
1634
1635 if (count > md->mapcount_max)
1636 md->mapcount_max = count;
1637
1638 md->node[page_to_nid(page)] += nr_pages;
1639 }
1640
1641 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1642 unsigned long addr)
1643 {
1644 struct page *page;
1645 int nid;
1646
1647 if (!pte_present(pte))
1648 return NULL;
1649
1650 page = vm_normal_page(vma, addr, pte);
1651 if (!page)
1652 return NULL;
1653
1654 if (PageReserved(page))
1655 return NULL;
1656
1657 nid = page_to_nid(page);
1658 if (!node_isset(nid, node_states[N_MEMORY]))
1659 return NULL;
1660
1661 return page;
1662 }
1663
1664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1665 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1666 struct vm_area_struct *vma,
1667 unsigned long addr)
1668 {
1669 struct page *page;
1670 int nid;
1671
1672 if (!pmd_present(pmd))
1673 return NULL;
1674
1675 page = vm_normal_page_pmd(vma, addr, pmd);
1676 if (!page)
1677 return NULL;
1678
1679 if (PageReserved(page))
1680 return NULL;
1681
1682 nid = page_to_nid(page);
1683 if (!node_isset(nid, node_states[N_MEMORY]))
1684 return NULL;
1685
1686 return page;
1687 }
1688 #endif
1689
1690 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1691 unsigned long end, struct mm_walk *walk)
1692 {
1693 struct numa_maps *md = walk->private;
1694 struct vm_area_struct *vma = walk->vma;
1695 spinlock_t *ptl;
1696 pte_t *orig_pte;
1697 pte_t *pte;
1698
1699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1700 ptl = pmd_trans_huge_lock(pmd, vma);
1701 if (ptl) {
1702 struct page *page;
1703
1704 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1705 if (page)
1706 gather_stats(page, md, pmd_dirty(*pmd),
1707 HPAGE_PMD_SIZE/PAGE_SIZE);
1708 spin_unlock(ptl);
1709 return 0;
1710 }
1711
1712 if (pmd_trans_unstable(pmd))
1713 return 0;
1714 #endif
1715 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1716 do {
1717 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1718 if (!page)
1719 continue;
1720 gather_stats(page, md, pte_dirty(*pte), 1);
1721
1722 } while (pte++, addr += PAGE_SIZE, addr != end);
1723 pte_unmap_unlock(orig_pte, ptl);
1724 cond_resched();
1725 return 0;
1726 }
1727 #ifdef CONFIG_HUGETLB_PAGE
1728 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1729 unsigned long addr, unsigned long end, struct mm_walk *walk)
1730 {
1731 pte_t huge_pte = huge_ptep_get(pte);
1732 struct numa_maps *md;
1733 struct page *page;
1734
1735 if (!pte_present(huge_pte))
1736 return 0;
1737
1738 page = pte_page(huge_pte);
1739 if (!page)
1740 return 0;
1741
1742 md = walk->private;
1743 gather_stats(page, md, pte_dirty(huge_pte), 1);
1744 return 0;
1745 }
1746
1747 #else
1748 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1749 unsigned long addr, unsigned long end, struct mm_walk *walk)
1750 {
1751 return 0;
1752 }
1753 #endif
1754
1755 /*
1756 * Display pages allocated per node and memory policy via /proc.
1757 */
1758 static int show_numa_map(struct seq_file *m, void *v)
1759 {
1760 struct numa_maps_private *numa_priv = m->private;
1761 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1762 struct vm_area_struct *vma = v;
1763 struct numa_maps *md = &numa_priv->md;
1764 struct file *file = vma->vm_file;
1765 struct mm_struct *mm = vma->vm_mm;
1766 struct mm_walk walk = {
1767 .hugetlb_entry = gather_hugetlb_stats,
1768 .pmd_entry = gather_pte_stats,
1769 .private = md,
1770 .mm = mm,
1771 };
1772 struct mempolicy *pol;
1773 char buffer[64];
1774 int nid;
1775
1776 if (!mm)
1777 return 0;
1778
1779 /* Ensure we start with an empty set of numa_maps statistics. */
1780 memset(md, 0, sizeof(*md));
1781
1782 pol = __get_vma_policy(vma, vma->vm_start);
1783 if (pol) {
1784 mpol_to_str(buffer, sizeof(buffer), pol);
1785 mpol_cond_put(pol);
1786 } else {
1787 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1788 }
1789
1790 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1791
1792 if (file) {
1793 seq_puts(m, " file=");
1794 seq_file_path(m, file, "\n\t= ");
1795 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1796 seq_puts(m, " heap");
1797 } else if (is_stack(vma)) {
1798 seq_puts(m, " stack");
1799 }
1800
1801 if (is_vm_hugetlb_page(vma))
1802 seq_puts(m, " huge");
1803
1804 /* mmap_sem is held by m_start */
1805 walk_page_vma(vma, &walk);
1806
1807 if (!md->pages)
1808 goto out;
1809
1810 if (md->anon)
1811 seq_printf(m, " anon=%lu", md->anon);
1812
1813 if (md->dirty)
1814 seq_printf(m, " dirty=%lu", md->dirty);
1815
1816 if (md->pages != md->anon && md->pages != md->dirty)
1817 seq_printf(m, " mapped=%lu", md->pages);
1818
1819 if (md->mapcount_max > 1)
1820 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1821
1822 if (md->swapcache)
1823 seq_printf(m, " swapcache=%lu", md->swapcache);
1824
1825 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1826 seq_printf(m, " active=%lu", md->active);
1827
1828 if (md->writeback)
1829 seq_printf(m, " writeback=%lu", md->writeback);
1830
1831 for_each_node_state(nid, N_MEMORY)
1832 if (md->node[nid])
1833 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1834
1835 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1836 out:
1837 seq_putc(m, '\n');
1838 m_cache_vma(m, vma);
1839 return 0;
1840 }
1841
1842 static const struct seq_operations proc_pid_numa_maps_op = {
1843 .start = m_start,
1844 .next = m_next,
1845 .stop = m_stop,
1846 .show = show_numa_map,
1847 };
1848
1849 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1850 {
1851 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1852 sizeof(struct numa_maps_private));
1853 }
1854
1855 const struct file_operations proc_pid_numa_maps_operations = {
1856 .open = pid_numa_maps_open,
1857 .read = seq_read,
1858 .llseek = seq_lseek,
1859 .release = proc_map_release,
1860 };
1861
1862 #endif /* CONFIG_NUMA */