]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/proc/task_mmu.c
Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[mirror_ubuntu-artful-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
15
16 #include <asm/elf.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
19 #include "internal.h"
20
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 {
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
25
26 /*
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
32 */
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
39
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
44 seq_printf(m,
45 "VmPeak:\t%8lu kB\n"
46 "VmSize:\t%8lu kB\n"
47 "VmLck:\t%8lu kB\n"
48 "VmPin:\t%8lu kB\n"
49 "VmHWM:\t%8lu kB\n"
50 "VmRSS:\t%8lu kB\n"
51 "VmData:\t%8lu kB\n"
52 "VmStk:\t%8lu kB\n"
53 "VmExe:\t%8lu kB\n"
54 "VmLib:\t%8lu kB\n"
55 "VmPTE:\t%8lu kB\n"
56 "VmSwap:\t%8lu kB\n",
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
66 swap << (PAGE_SHIFT-10));
67 }
68
69 unsigned long task_vsize(struct mm_struct *mm)
70 {
71 return PAGE_SIZE * mm->total_vm;
72 }
73
74 unsigned long task_statm(struct mm_struct *mm,
75 unsigned long *shared, unsigned long *text,
76 unsigned long *data, unsigned long *resident)
77 {
78 *shared = get_mm_counter(mm, MM_FILEPAGES);
79 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
80 >> PAGE_SHIFT;
81 *data = mm->total_vm - mm->shared_vm;
82 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
83 return mm->total_vm;
84 }
85
86 static void pad_len_spaces(struct seq_file *m, int len)
87 {
88 len = 25 + sizeof(void*) * 6 - len;
89 if (len < 1)
90 len = 1;
91 seq_printf(m, "%*c", len, ' ');
92 }
93
94 #ifdef CONFIG_NUMA
95 /*
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
98 *
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
102 *
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
105 *
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
111 *
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
115 */
116 static void hold_task_mempolicy(struct proc_maps_private *priv)
117 {
118 struct task_struct *task = priv->task;
119
120 task_lock(task);
121 priv->task_mempolicy = task->mempolicy;
122 mpol_get(priv->task_mempolicy);
123 task_unlock(task);
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 mpol_put(priv->task_mempolicy);
128 }
129 #else
130 static void hold_task_mempolicy(struct proc_maps_private *priv)
131 {
132 }
133 static void release_task_mempolicy(struct proc_maps_private *priv)
134 {
135 }
136 #endif
137
138 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
139 {
140 if (vma && vma != priv->tail_vma) {
141 struct mm_struct *mm = vma->vm_mm;
142 release_task_mempolicy(priv);
143 up_read(&mm->mmap_sem);
144 mmput(mm);
145 }
146 }
147
148 static void *m_start(struct seq_file *m, loff_t *pos)
149 {
150 struct proc_maps_private *priv = m->private;
151 unsigned long last_addr = m->version;
152 struct mm_struct *mm;
153 struct vm_area_struct *vma, *tail_vma = NULL;
154 loff_t l = *pos;
155
156 /* Clear the per syscall fields in priv */
157 priv->task = NULL;
158 priv->tail_vma = NULL;
159
160 /*
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
165 */
166
167 if (last_addr == -1UL)
168 return NULL;
169
170 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
171 if (!priv->task)
172 return ERR_PTR(-ESRCH);
173
174 mm = mm_access(priv->task, PTRACE_MODE_READ);
175 if (!mm || IS_ERR(mm))
176 return mm;
177 down_read(&mm->mmap_sem);
178
179 tail_vma = get_gate_vma(priv->task->mm);
180 priv->tail_vma = tail_vma;
181 hold_task_mempolicy(priv);
182 /* Start with last addr hint */
183 vma = find_vma(mm, last_addr);
184 if (last_addr && vma) {
185 vma = vma->vm_next;
186 goto out;
187 }
188
189 /*
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
192 */
193 vma = NULL;
194 if ((unsigned long)l < mm->map_count) {
195 vma = mm->mmap;
196 while (l-- && vma)
197 vma = vma->vm_next;
198 goto out;
199 }
200
201 if (l != mm->map_count)
202 tail_vma = NULL; /* After gate vma */
203
204 out:
205 if (vma)
206 return vma;
207
208 release_task_mempolicy(priv);
209 /* End of vmas has been reached */
210 m->version = (tail_vma != NULL)? 0: -1UL;
211 up_read(&mm->mmap_sem);
212 mmput(mm);
213 return tail_vma;
214 }
215
216 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
217 {
218 struct proc_maps_private *priv = m->private;
219 struct vm_area_struct *vma = v;
220 struct vm_area_struct *tail_vma = priv->tail_vma;
221
222 (*pos)++;
223 if (vma && (vma != tail_vma) && vma->vm_next)
224 return vma->vm_next;
225 vma_stop(priv, vma);
226 return (vma != tail_vma)? tail_vma: NULL;
227 }
228
229 static void m_stop(struct seq_file *m, void *v)
230 {
231 struct proc_maps_private *priv = m->private;
232 struct vm_area_struct *vma = v;
233
234 if (!IS_ERR(vma))
235 vma_stop(priv, vma);
236 if (priv->task)
237 put_task_struct(priv->task);
238 }
239
240 static int do_maps_open(struct inode *inode, struct file *file,
241 const struct seq_operations *ops)
242 {
243 struct proc_maps_private *priv;
244 int ret = -ENOMEM;
245 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
246 if (priv) {
247 priv->pid = proc_pid(inode);
248 ret = seq_open(file, ops);
249 if (!ret) {
250 struct seq_file *m = file->private_data;
251 m->private = priv;
252 } else {
253 kfree(priv);
254 }
255 }
256 return ret;
257 }
258
259 static void
260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
261 {
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 struct proc_maps_private *priv = m->private;
265 struct task_struct *task = priv->task;
266 vm_flags_t flags = vma->vm_flags;
267 unsigned long ino = 0;
268 unsigned long long pgoff = 0;
269 unsigned long start, end;
270 dev_t dev = 0;
271 int len;
272 const char *name = NULL;
273
274 if (file) {
275 struct inode *inode = file_inode(vma->vm_file);
276 dev = inode->i_sb->s_dev;
277 ino = inode->i_ino;
278 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
279 }
280
281 /* We don't show the stack guard page in /proc/maps */
282 start = vma->vm_start;
283 if (stack_guard_page_start(vma, start))
284 start += PAGE_SIZE;
285 end = vma->vm_end;
286 if (stack_guard_page_end(vma, end))
287 end -= PAGE_SIZE;
288
289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
290 start,
291 end,
292 flags & VM_READ ? 'r' : '-',
293 flags & VM_WRITE ? 'w' : '-',
294 flags & VM_EXEC ? 'x' : '-',
295 flags & VM_MAYSHARE ? 's' : 'p',
296 pgoff,
297 MAJOR(dev), MINOR(dev), ino, &len);
298
299 /*
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
302 */
303 if (file) {
304 pad_len_spaces(m, len);
305 seq_path(m, &file->f_path, "\n");
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 pid_t tid;
312
313 if (!mm) {
314 name = "[vdso]";
315 goto done;
316 }
317
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
320 name = "[heap]";
321 goto done;
322 }
323
324 tid = vm_is_stack(task, vma, is_pid);
325
326 if (tid != 0) {
327 /*
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
330 */
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
333 name = "[stack]";
334 } else {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m, len);
337 seq_printf(m, "[stack:%d]", tid);
338 }
339 }
340 }
341
342 done:
343 if (name) {
344 pad_len_spaces(m, len);
345 seq_puts(m, name);
346 }
347 seq_putc(m, '\n');
348 }
349
350 static int show_map(struct seq_file *m, void *v, int is_pid)
351 {
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
355
356 show_map_vma(m, vma, is_pid);
357
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
360 ? vma->vm_start : 0;
361 return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366 return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371 return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390 return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395 return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = seq_release_private,
410 };
411
412 /*
413 * Proportional Set Size(PSS): my share of RSS.
414 *
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
419 *
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
423 *
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
428 */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
442 unsigned long swap;
443 unsigned long nonlinear;
444 u64 pss;
445 };
446
447
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
450 {
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
455 int mapcount;
456
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
461
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
469 }
470
471 if (!page)
472 return;
473
474 if (PageAnon(page))
475 mss->anonymous += ptent_size;
476
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
479
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
485 if (mapcount >= 2) {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
488 else
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
491 } else {
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
494 else
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
497 }
498 }
499
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
502 {
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pte_t *pte;
506 spinlock_t *ptl;
507
508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(&walk->mm->page_table_lock);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
512 return 0;
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 /*
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
520 * in here.
521 */
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
526 cond_resched();
527 return 0;
528 }
529
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
531 {
532 /*
533 * Don't forget to update Documentation/ on changes.
534 */
535 static const char mnemonics[BITS_PER_LONG][2] = {
536 /*
537 * In case if we meet a flag we don't know about.
538 */
539 [0 ... (BITS_PER_LONG-1)] = "??",
540
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 [ilog2(VM_MIXEDMAP)] = "mm",
565 [ilog2(VM_HUGEPAGE)] = "hg",
566 [ilog2(VM_NOHUGEPAGE)] = "nh",
567 [ilog2(VM_MERGEABLE)] = "mg",
568 };
569 size_t i;
570
571 seq_puts(m, "VmFlags: ");
572 for (i = 0; i < BITS_PER_LONG; i++) {
573 if (vma->vm_flags & (1UL << i)) {
574 seq_printf(m, "%c%c ",
575 mnemonics[i][0], mnemonics[i][1]);
576 }
577 }
578 seq_putc(m, '\n');
579 }
580
581 static int show_smap(struct seq_file *m, void *v, int is_pid)
582 {
583 struct proc_maps_private *priv = m->private;
584 struct task_struct *task = priv->task;
585 struct vm_area_struct *vma = v;
586 struct mem_size_stats mss;
587 struct mm_walk smaps_walk = {
588 .pmd_entry = smaps_pte_range,
589 .mm = vma->vm_mm,
590 .private = &mss,
591 };
592
593 memset(&mss, 0, sizeof mss);
594 mss.vma = vma;
595 /* mmap_sem is held in m_start */
596 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
597 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
598
599 show_map_vma(m, vma, is_pid);
600
601 seq_printf(m,
602 "Size: %8lu kB\n"
603 "Rss: %8lu kB\n"
604 "Pss: %8lu kB\n"
605 "Shared_Clean: %8lu kB\n"
606 "Shared_Dirty: %8lu kB\n"
607 "Private_Clean: %8lu kB\n"
608 "Private_Dirty: %8lu kB\n"
609 "Referenced: %8lu kB\n"
610 "Anonymous: %8lu kB\n"
611 "AnonHugePages: %8lu kB\n"
612 "Swap: %8lu kB\n"
613 "KernelPageSize: %8lu kB\n"
614 "MMUPageSize: %8lu kB\n"
615 "Locked: %8lu kB\n",
616 (vma->vm_end - vma->vm_start) >> 10,
617 mss.resident >> 10,
618 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
619 mss.shared_clean >> 10,
620 mss.shared_dirty >> 10,
621 mss.private_clean >> 10,
622 mss.private_dirty >> 10,
623 mss.referenced >> 10,
624 mss.anonymous >> 10,
625 mss.anonymous_thp >> 10,
626 mss.swap >> 10,
627 vma_kernel_pagesize(vma) >> 10,
628 vma_mmu_pagesize(vma) >> 10,
629 (vma->vm_flags & VM_LOCKED) ?
630 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
631
632 if (vma->vm_flags & VM_NONLINEAR)
633 seq_printf(m, "Nonlinear: %8lu kB\n",
634 mss.nonlinear >> 10);
635
636 show_smap_vma_flags(m, vma);
637
638 if (m->count < m->size) /* vma is copied successfully */
639 m->version = (vma != get_gate_vma(task->mm))
640 ? vma->vm_start : 0;
641 return 0;
642 }
643
644 static int show_pid_smap(struct seq_file *m, void *v)
645 {
646 return show_smap(m, v, 1);
647 }
648
649 static int show_tid_smap(struct seq_file *m, void *v)
650 {
651 return show_smap(m, v, 0);
652 }
653
654 static const struct seq_operations proc_pid_smaps_op = {
655 .start = m_start,
656 .next = m_next,
657 .stop = m_stop,
658 .show = show_pid_smap
659 };
660
661 static const struct seq_operations proc_tid_smaps_op = {
662 .start = m_start,
663 .next = m_next,
664 .stop = m_stop,
665 .show = show_tid_smap
666 };
667
668 static int pid_smaps_open(struct inode *inode, struct file *file)
669 {
670 return do_maps_open(inode, file, &proc_pid_smaps_op);
671 }
672
673 static int tid_smaps_open(struct inode *inode, struct file *file)
674 {
675 return do_maps_open(inode, file, &proc_tid_smaps_op);
676 }
677
678 const struct file_operations proc_pid_smaps_operations = {
679 .open = pid_smaps_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = seq_release_private,
683 };
684
685 const struct file_operations proc_tid_smaps_operations = {
686 .open = tid_smaps_open,
687 .read = seq_read,
688 .llseek = seq_lseek,
689 .release = seq_release_private,
690 };
691
692 /*
693 * We do not want to have constant page-shift bits sitting in
694 * pagemap entries and are about to reuse them some time soon.
695 *
696 * Here's the "migration strategy":
697 * 1. when the system boots these bits remain what they are,
698 * but a warning about future change is printed in log;
699 * 2. once anyone clears soft-dirty bits via clear_refs file,
700 * these flag is set to denote, that user is aware of the
701 * new API and those page-shift bits change their meaning.
702 * The respective warning is printed in dmesg;
703 * 3. In a couple of releases we will remove all the mentions
704 * of page-shift in pagemap entries.
705 */
706
707 static bool soft_dirty_cleared __read_mostly;
708
709 enum clear_refs_types {
710 CLEAR_REFS_ALL = 1,
711 CLEAR_REFS_ANON,
712 CLEAR_REFS_MAPPED,
713 CLEAR_REFS_SOFT_DIRTY,
714 CLEAR_REFS_LAST,
715 };
716
717 struct clear_refs_private {
718 struct vm_area_struct *vma;
719 enum clear_refs_types type;
720 };
721
722 static inline void clear_soft_dirty(struct vm_area_struct *vma,
723 unsigned long addr, pte_t *pte)
724 {
725 #ifdef CONFIG_MEM_SOFT_DIRTY
726 /*
727 * The soft-dirty tracker uses #PF-s to catch writes
728 * to pages, so write-protect the pte as well. See the
729 * Documentation/vm/soft-dirty.txt for full description
730 * of how soft-dirty works.
731 */
732 pte_t ptent = *pte;
733
734 if (pte_present(ptent)) {
735 ptent = pte_wrprotect(ptent);
736 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
737 } else if (is_swap_pte(ptent)) {
738 ptent = pte_swp_clear_soft_dirty(ptent);
739 } else if (pte_file(ptent)) {
740 ptent = pte_file_clear_soft_dirty(ptent);
741 }
742
743 if (vma->vm_flags & VM_SOFTDIRTY)
744 vma->vm_flags &= ~VM_SOFTDIRTY;
745
746 set_pte_at(vma->vm_mm, addr, pte, ptent);
747 #endif
748 }
749
750 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
751 unsigned long end, struct mm_walk *walk)
752 {
753 struct clear_refs_private *cp = walk->private;
754 struct vm_area_struct *vma = cp->vma;
755 pte_t *pte, ptent;
756 spinlock_t *ptl;
757 struct page *page;
758
759 split_huge_page_pmd(vma, addr, pmd);
760 if (pmd_trans_unstable(pmd))
761 return 0;
762
763 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
764 for (; addr != end; pte++, addr += PAGE_SIZE) {
765 ptent = *pte;
766
767 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
768 clear_soft_dirty(vma, addr, pte);
769 continue;
770 }
771
772 if (!pte_present(ptent))
773 continue;
774
775 page = vm_normal_page(vma, addr, ptent);
776 if (!page)
777 continue;
778
779 /* Clear accessed and referenced bits. */
780 ptep_test_and_clear_young(vma, addr, pte);
781 ClearPageReferenced(page);
782 }
783 pte_unmap_unlock(pte - 1, ptl);
784 cond_resched();
785 return 0;
786 }
787
788 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
789 size_t count, loff_t *ppos)
790 {
791 struct task_struct *task;
792 char buffer[PROC_NUMBUF];
793 struct mm_struct *mm;
794 struct vm_area_struct *vma;
795 enum clear_refs_types type;
796 int itype;
797 int rv;
798
799 memset(buffer, 0, sizeof(buffer));
800 if (count > sizeof(buffer) - 1)
801 count = sizeof(buffer) - 1;
802 if (copy_from_user(buffer, buf, count))
803 return -EFAULT;
804 rv = kstrtoint(strstrip(buffer), 10, &itype);
805 if (rv < 0)
806 return rv;
807 type = (enum clear_refs_types)itype;
808 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
809 return -EINVAL;
810
811 if (type == CLEAR_REFS_SOFT_DIRTY) {
812 soft_dirty_cleared = true;
813 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
814 "See the linux/Documentation/vm/pagemap.txt for details.\n");
815 }
816
817 task = get_proc_task(file_inode(file));
818 if (!task)
819 return -ESRCH;
820 mm = get_task_mm(task);
821 if (mm) {
822 struct clear_refs_private cp = {
823 .type = type,
824 };
825 struct mm_walk clear_refs_walk = {
826 .pmd_entry = clear_refs_pte_range,
827 .mm = mm,
828 .private = &cp,
829 };
830 down_read(&mm->mmap_sem);
831 if (type == CLEAR_REFS_SOFT_DIRTY)
832 mmu_notifier_invalidate_range_start(mm, 0, -1);
833 for (vma = mm->mmap; vma; vma = vma->vm_next) {
834 cp.vma = vma;
835 if (is_vm_hugetlb_page(vma))
836 continue;
837 /*
838 * Writing 1 to /proc/pid/clear_refs affects all pages.
839 *
840 * Writing 2 to /proc/pid/clear_refs only affects
841 * Anonymous pages.
842 *
843 * Writing 3 to /proc/pid/clear_refs only affects file
844 * mapped pages.
845 */
846 if (type == CLEAR_REFS_ANON && vma->vm_file)
847 continue;
848 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
849 continue;
850 walk_page_range(vma->vm_start, vma->vm_end,
851 &clear_refs_walk);
852 }
853 if (type == CLEAR_REFS_SOFT_DIRTY)
854 mmu_notifier_invalidate_range_end(mm, 0, -1);
855 flush_tlb_mm(mm);
856 up_read(&mm->mmap_sem);
857 mmput(mm);
858 }
859 put_task_struct(task);
860
861 return count;
862 }
863
864 const struct file_operations proc_clear_refs_operations = {
865 .write = clear_refs_write,
866 .llseek = noop_llseek,
867 };
868
869 typedef struct {
870 u64 pme;
871 } pagemap_entry_t;
872
873 struct pagemapread {
874 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
875 pagemap_entry_t *buffer;
876 bool v2;
877 };
878
879 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
880 #define PAGEMAP_WALK_MASK (PMD_MASK)
881
882 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
883 #define PM_STATUS_BITS 3
884 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
885 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
886 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
887 #define PM_PSHIFT_BITS 6
888 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
889 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
890 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
891 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
892 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
893 /* in "new" pagemap pshift bits are occupied with more status bits */
894 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
895
896 #define __PM_SOFT_DIRTY (1LL)
897 #define PM_PRESENT PM_STATUS(4LL)
898 #define PM_SWAP PM_STATUS(2LL)
899 #define PM_FILE PM_STATUS(1LL)
900 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
901 #define PM_END_OF_BUFFER 1
902
903 static inline pagemap_entry_t make_pme(u64 val)
904 {
905 return (pagemap_entry_t) { .pme = val };
906 }
907
908 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
909 struct pagemapread *pm)
910 {
911 pm->buffer[pm->pos++] = *pme;
912 if (pm->pos >= pm->len)
913 return PM_END_OF_BUFFER;
914 return 0;
915 }
916
917 static int pagemap_pte_hole(unsigned long start, unsigned long end,
918 struct mm_walk *walk)
919 {
920 struct pagemapread *pm = walk->private;
921 unsigned long addr;
922 int err = 0;
923 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
924
925 for (addr = start; addr < end; addr += PAGE_SIZE) {
926 err = add_to_pagemap(addr, &pme, pm);
927 if (err)
928 break;
929 }
930 return err;
931 }
932
933 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
934 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
935 {
936 u64 frame, flags;
937 struct page *page = NULL;
938 int flags2 = 0;
939
940 if (pte_present(pte)) {
941 frame = pte_pfn(pte);
942 flags = PM_PRESENT;
943 page = vm_normal_page(vma, addr, pte);
944 if (pte_soft_dirty(pte))
945 flags2 |= __PM_SOFT_DIRTY;
946 } else if (is_swap_pte(pte)) {
947 swp_entry_t entry;
948 if (pte_swp_soft_dirty(pte))
949 flags2 |= __PM_SOFT_DIRTY;
950 entry = pte_to_swp_entry(pte);
951 frame = swp_type(entry) |
952 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
953 flags = PM_SWAP;
954 if (is_migration_entry(entry))
955 page = migration_entry_to_page(entry);
956 } else {
957 if (vma->vm_flags & VM_SOFTDIRTY)
958 flags2 |= __PM_SOFT_DIRTY;
959 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
960 return;
961 }
962
963 if (page && !PageAnon(page))
964 flags |= PM_FILE;
965 if ((vma->vm_flags & VM_SOFTDIRTY))
966 flags2 |= __PM_SOFT_DIRTY;
967
968 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
969 }
970
971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
972 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
973 pmd_t pmd, int offset, int pmd_flags2)
974 {
975 /*
976 * Currently pmd for thp is always present because thp can not be
977 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
978 * This if-check is just to prepare for future implementation.
979 */
980 if (pmd_present(pmd))
981 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
982 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
983 else
984 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
985 }
986 #else
987 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
988 pmd_t pmd, int offset, int pmd_flags2)
989 {
990 }
991 #endif
992
993 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
994 struct mm_walk *walk)
995 {
996 struct vm_area_struct *vma;
997 struct pagemapread *pm = walk->private;
998 pte_t *pte;
999 int err = 0;
1000 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1001
1002 /* find the first VMA at or above 'addr' */
1003 vma = find_vma(walk->mm, addr);
1004 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1005 int pmd_flags2;
1006
1007 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1008 pmd_flags2 = __PM_SOFT_DIRTY;
1009 else
1010 pmd_flags2 = 0;
1011
1012 for (; addr != end; addr += PAGE_SIZE) {
1013 unsigned long offset;
1014
1015 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1016 PAGE_SHIFT;
1017 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1018 err = add_to_pagemap(addr, &pme, pm);
1019 if (err)
1020 break;
1021 }
1022 spin_unlock(&walk->mm->page_table_lock);
1023 return err;
1024 }
1025
1026 if (pmd_trans_unstable(pmd))
1027 return 0;
1028 for (; addr != end; addr += PAGE_SIZE) {
1029 int flags2;
1030
1031 /* check to see if we've left 'vma' behind
1032 * and need a new, higher one */
1033 if (vma && (addr >= vma->vm_end)) {
1034 vma = find_vma(walk->mm, addr);
1035 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1036 flags2 = __PM_SOFT_DIRTY;
1037 else
1038 flags2 = 0;
1039 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1040 }
1041
1042 /* check that 'vma' actually covers this address,
1043 * and that it isn't a huge page vma */
1044 if (vma && (vma->vm_start <= addr) &&
1045 !is_vm_hugetlb_page(vma)) {
1046 pte = pte_offset_map(pmd, addr);
1047 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1048 /* unmap before userspace copy */
1049 pte_unmap(pte);
1050 }
1051 err = add_to_pagemap(addr, &pme, pm);
1052 if (err)
1053 return err;
1054 }
1055
1056 cond_resched();
1057
1058 return err;
1059 }
1060
1061 #ifdef CONFIG_HUGETLB_PAGE
1062 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1063 pte_t pte, int offset, int flags2)
1064 {
1065 if (pte_present(pte))
1066 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1067 PM_STATUS2(pm->v2, flags2) |
1068 PM_PRESENT);
1069 else
1070 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1071 PM_STATUS2(pm->v2, flags2));
1072 }
1073
1074 /* This function walks within one hugetlb entry in the single call */
1075 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1076 unsigned long addr, unsigned long end,
1077 struct mm_walk *walk)
1078 {
1079 struct pagemapread *pm = walk->private;
1080 struct vm_area_struct *vma;
1081 int err = 0;
1082 int flags2;
1083 pagemap_entry_t pme;
1084
1085 vma = find_vma(walk->mm, addr);
1086 WARN_ON_ONCE(!vma);
1087
1088 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1089 flags2 = __PM_SOFT_DIRTY;
1090 else
1091 flags2 = 0;
1092
1093 for (; addr != end; addr += PAGE_SIZE) {
1094 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1095 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1096 err = add_to_pagemap(addr, &pme, pm);
1097 if (err)
1098 return err;
1099 }
1100
1101 cond_resched();
1102
1103 return err;
1104 }
1105 #endif /* HUGETLB_PAGE */
1106
1107 /*
1108 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1109 *
1110 * For each page in the address space, this file contains one 64-bit entry
1111 * consisting of the following:
1112 *
1113 * Bits 0-54 page frame number (PFN) if present
1114 * Bits 0-4 swap type if swapped
1115 * Bits 5-54 swap offset if swapped
1116 * Bits 55-60 page shift (page size = 1<<page shift)
1117 * Bit 61 page is file-page or shared-anon
1118 * Bit 62 page swapped
1119 * Bit 63 page present
1120 *
1121 * If the page is not present but in swap, then the PFN contains an
1122 * encoding of the swap file number and the page's offset into the
1123 * swap. Unmapped pages return a null PFN. This allows determining
1124 * precisely which pages are mapped (or in swap) and comparing mapped
1125 * pages between processes.
1126 *
1127 * Efficient users of this interface will use /proc/pid/maps to
1128 * determine which areas of memory are actually mapped and llseek to
1129 * skip over unmapped regions.
1130 */
1131 static ssize_t pagemap_read(struct file *file, char __user *buf,
1132 size_t count, loff_t *ppos)
1133 {
1134 struct task_struct *task = get_proc_task(file_inode(file));
1135 struct mm_struct *mm;
1136 struct pagemapread pm;
1137 int ret = -ESRCH;
1138 struct mm_walk pagemap_walk = {};
1139 unsigned long src;
1140 unsigned long svpfn;
1141 unsigned long start_vaddr;
1142 unsigned long end_vaddr;
1143 int copied = 0;
1144
1145 if (!task)
1146 goto out;
1147
1148 ret = -EINVAL;
1149 /* file position must be aligned */
1150 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1151 goto out_task;
1152
1153 ret = 0;
1154 if (!count)
1155 goto out_task;
1156
1157 pm.v2 = soft_dirty_cleared;
1158 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1159 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1160 ret = -ENOMEM;
1161 if (!pm.buffer)
1162 goto out_task;
1163
1164 mm = mm_access(task, PTRACE_MODE_READ);
1165 ret = PTR_ERR(mm);
1166 if (!mm || IS_ERR(mm))
1167 goto out_free;
1168
1169 pagemap_walk.pmd_entry = pagemap_pte_range;
1170 pagemap_walk.pte_hole = pagemap_pte_hole;
1171 #ifdef CONFIG_HUGETLB_PAGE
1172 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1173 #endif
1174 pagemap_walk.mm = mm;
1175 pagemap_walk.private = &pm;
1176
1177 src = *ppos;
1178 svpfn = src / PM_ENTRY_BYTES;
1179 start_vaddr = svpfn << PAGE_SHIFT;
1180 end_vaddr = TASK_SIZE_OF(task);
1181
1182 /* watch out for wraparound */
1183 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1184 start_vaddr = end_vaddr;
1185
1186 /*
1187 * The odds are that this will stop walking way
1188 * before end_vaddr, because the length of the
1189 * user buffer is tracked in "pm", and the walk
1190 * will stop when we hit the end of the buffer.
1191 */
1192 ret = 0;
1193 while (count && (start_vaddr < end_vaddr)) {
1194 int len;
1195 unsigned long end;
1196
1197 pm.pos = 0;
1198 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1199 /* overflow ? */
1200 if (end < start_vaddr || end > end_vaddr)
1201 end = end_vaddr;
1202 down_read(&mm->mmap_sem);
1203 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1204 up_read(&mm->mmap_sem);
1205 start_vaddr = end;
1206
1207 len = min(count, PM_ENTRY_BYTES * pm.pos);
1208 if (copy_to_user(buf, pm.buffer, len)) {
1209 ret = -EFAULT;
1210 goto out_mm;
1211 }
1212 copied += len;
1213 buf += len;
1214 count -= len;
1215 }
1216 *ppos += copied;
1217 if (!ret || ret == PM_END_OF_BUFFER)
1218 ret = copied;
1219
1220 out_mm:
1221 mmput(mm);
1222 out_free:
1223 kfree(pm.buffer);
1224 out_task:
1225 put_task_struct(task);
1226 out:
1227 return ret;
1228 }
1229
1230 static int pagemap_open(struct inode *inode, struct file *file)
1231 {
1232 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1233 "to stop being page-shift some time soon. See the "
1234 "linux/Documentation/vm/pagemap.txt for details.\n");
1235 return 0;
1236 }
1237
1238 const struct file_operations proc_pagemap_operations = {
1239 .llseek = mem_lseek, /* borrow this */
1240 .read = pagemap_read,
1241 .open = pagemap_open,
1242 };
1243 #endif /* CONFIG_PROC_PAGE_MONITOR */
1244
1245 #ifdef CONFIG_NUMA
1246
1247 struct numa_maps {
1248 struct vm_area_struct *vma;
1249 unsigned long pages;
1250 unsigned long anon;
1251 unsigned long active;
1252 unsigned long writeback;
1253 unsigned long mapcount_max;
1254 unsigned long dirty;
1255 unsigned long swapcache;
1256 unsigned long node[MAX_NUMNODES];
1257 };
1258
1259 struct numa_maps_private {
1260 struct proc_maps_private proc_maps;
1261 struct numa_maps md;
1262 };
1263
1264 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1265 unsigned long nr_pages)
1266 {
1267 int count = page_mapcount(page);
1268
1269 md->pages += nr_pages;
1270 if (pte_dirty || PageDirty(page))
1271 md->dirty += nr_pages;
1272
1273 if (PageSwapCache(page))
1274 md->swapcache += nr_pages;
1275
1276 if (PageActive(page) || PageUnevictable(page))
1277 md->active += nr_pages;
1278
1279 if (PageWriteback(page))
1280 md->writeback += nr_pages;
1281
1282 if (PageAnon(page))
1283 md->anon += nr_pages;
1284
1285 if (count > md->mapcount_max)
1286 md->mapcount_max = count;
1287
1288 md->node[page_to_nid(page)] += nr_pages;
1289 }
1290
1291 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1292 unsigned long addr)
1293 {
1294 struct page *page;
1295 int nid;
1296
1297 if (!pte_present(pte))
1298 return NULL;
1299
1300 page = vm_normal_page(vma, addr, pte);
1301 if (!page)
1302 return NULL;
1303
1304 if (PageReserved(page))
1305 return NULL;
1306
1307 nid = page_to_nid(page);
1308 if (!node_isset(nid, node_states[N_MEMORY]))
1309 return NULL;
1310
1311 return page;
1312 }
1313
1314 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1315 unsigned long end, struct mm_walk *walk)
1316 {
1317 struct numa_maps *md;
1318 spinlock_t *ptl;
1319 pte_t *orig_pte;
1320 pte_t *pte;
1321
1322 md = walk->private;
1323
1324 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1325 pte_t huge_pte = *(pte_t *)pmd;
1326 struct page *page;
1327
1328 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1329 if (page)
1330 gather_stats(page, md, pte_dirty(huge_pte),
1331 HPAGE_PMD_SIZE/PAGE_SIZE);
1332 spin_unlock(&walk->mm->page_table_lock);
1333 return 0;
1334 }
1335
1336 if (pmd_trans_unstable(pmd))
1337 return 0;
1338 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1339 do {
1340 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1341 if (!page)
1342 continue;
1343 gather_stats(page, md, pte_dirty(*pte), 1);
1344
1345 } while (pte++, addr += PAGE_SIZE, addr != end);
1346 pte_unmap_unlock(orig_pte, ptl);
1347 return 0;
1348 }
1349 #ifdef CONFIG_HUGETLB_PAGE
1350 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1351 unsigned long addr, unsigned long end, struct mm_walk *walk)
1352 {
1353 struct numa_maps *md;
1354 struct page *page;
1355
1356 if (pte_none(*pte))
1357 return 0;
1358
1359 page = pte_page(*pte);
1360 if (!page)
1361 return 0;
1362
1363 md = walk->private;
1364 gather_stats(page, md, pte_dirty(*pte), 1);
1365 return 0;
1366 }
1367
1368 #else
1369 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1370 unsigned long addr, unsigned long end, struct mm_walk *walk)
1371 {
1372 return 0;
1373 }
1374 #endif
1375
1376 /*
1377 * Display pages allocated per node and memory policy via /proc.
1378 */
1379 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1380 {
1381 struct numa_maps_private *numa_priv = m->private;
1382 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1383 struct vm_area_struct *vma = v;
1384 struct numa_maps *md = &numa_priv->md;
1385 struct file *file = vma->vm_file;
1386 struct task_struct *task = proc_priv->task;
1387 struct mm_struct *mm = vma->vm_mm;
1388 struct mm_walk walk = {};
1389 struct mempolicy *pol;
1390 int n;
1391 char buffer[50];
1392
1393 if (!mm)
1394 return 0;
1395
1396 /* Ensure we start with an empty set of numa_maps statistics. */
1397 memset(md, 0, sizeof(*md));
1398
1399 md->vma = vma;
1400
1401 walk.hugetlb_entry = gather_hugetbl_stats;
1402 walk.pmd_entry = gather_pte_stats;
1403 walk.private = md;
1404 walk.mm = mm;
1405
1406 pol = get_vma_policy(task, vma, vma->vm_start);
1407 n = mpol_to_str(buffer, sizeof(buffer), pol);
1408 mpol_cond_put(pol);
1409 if (n < 0)
1410 return n;
1411
1412 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1413
1414 if (file) {
1415 seq_printf(m, " file=");
1416 seq_path(m, &file->f_path, "\n\t= ");
1417 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1418 seq_printf(m, " heap");
1419 } else {
1420 pid_t tid = vm_is_stack(task, vma, is_pid);
1421 if (tid != 0) {
1422 /*
1423 * Thread stack in /proc/PID/task/TID/maps or
1424 * the main process stack.
1425 */
1426 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1427 vma->vm_end >= mm->start_stack))
1428 seq_printf(m, " stack");
1429 else
1430 seq_printf(m, " stack:%d", tid);
1431 }
1432 }
1433
1434 if (is_vm_hugetlb_page(vma))
1435 seq_printf(m, " huge");
1436
1437 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1438
1439 if (!md->pages)
1440 goto out;
1441
1442 if (md->anon)
1443 seq_printf(m, " anon=%lu", md->anon);
1444
1445 if (md->dirty)
1446 seq_printf(m, " dirty=%lu", md->dirty);
1447
1448 if (md->pages != md->anon && md->pages != md->dirty)
1449 seq_printf(m, " mapped=%lu", md->pages);
1450
1451 if (md->mapcount_max > 1)
1452 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1453
1454 if (md->swapcache)
1455 seq_printf(m, " swapcache=%lu", md->swapcache);
1456
1457 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1458 seq_printf(m, " active=%lu", md->active);
1459
1460 if (md->writeback)
1461 seq_printf(m, " writeback=%lu", md->writeback);
1462
1463 for_each_node_state(n, N_MEMORY)
1464 if (md->node[n])
1465 seq_printf(m, " N%d=%lu", n, md->node[n]);
1466 out:
1467 seq_putc(m, '\n');
1468
1469 if (m->count < m->size)
1470 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1471 return 0;
1472 }
1473
1474 static int show_pid_numa_map(struct seq_file *m, void *v)
1475 {
1476 return show_numa_map(m, v, 1);
1477 }
1478
1479 static int show_tid_numa_map(struct seq_file *m, void *v)
1480 {
1481 return show_numa_map(m, v, 0);
1482 }
1483
1484 static const struct seq_operations proc_pid_numa_maps_op = {
1485 .start = m_start,
1486 .next = m_next,
1487 .stop = m_stop,
1488 .show = show_pid_numa_map,
1489 };
1490
1491 static const struct seq_operations proc_tid_numa_maps_op = {
1492 .start = m_start,
1493 .next = m_next,
1494 .stop = m_stop,
1495 .show = show_tid_numa_map,
1496 };
1497
1498 static int numa_maps_open(struct inode *inode, struct file *file,
1499 const struct seq_operations *ops)
1500 {
1501 struct numa_maps_private *priv;
1502 int ret = -ENOMEM;
1503 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1504 if (priv) {
1505 priv->proc_maps.pid = proc_pid(inode);
1506 ret = seq_open(file, ops);
1507 if (!ret) {
1508 struct seq_file *m = file->private_data;
1509 m->private = priv;
1510 } else {
1511 kfree(priv);
1512 }
1513 }
1514 return ret;
1515 }
1516
1517 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1518 {
1519 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1520 }
1521
1522 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1523 {
1524 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1525 }
1526
1527 const struct file_operations proc_pid_numa_maps_operations = {
1528 .open = pid_numa_maps_open,
1529 .read = seq_read,
1530 .llseek = seq_lseek,
1531 .release = seq_release_private,
1532 };
1533
1534 const struct file_operations proc_tid_numa_maps_operations = {
1535 .open = tid_numa_maps_open,
1536 .read = seq_read,
1537 .llseek = seq_lseek,
1538 .release = seq_release_private,
1539 };
1540 #endif /* CONFIG_NUMA */