]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/proc/task_mmu.c
Merge tag 'iwlwifi-next-for-kalle-2016-10-25-2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-zesty-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200 }
201
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212 }
213
214 static void m_stop(struct seq_file *m, void *v)
215 {
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224 }
225
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228 {
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244 }
245
246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255 }
256
257 static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259 {
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262 }
263
264 /*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
268 static int is_stack(struct proc_maps_private *priv,
269 struct vm_area_struct *vma, int is_pid)
270 {
271 int stack = 0;
272
273 if (is_pid) {
274 stack = vma->vm_start <= vma->vm_mm->start_stack &&
275 vma->vm_end >= vma->vm_mm->start_stack;
276 } else {
277 struct inode *inode = priv->inode;
278 struct task_struct *task;
279
280 rcu_read_lock();
281 task = pid_task(proc_pid(inode), PIDTYPE_PID);
282 if (task)
283 stack = vma_is_stack_for_task(vma, task);
284 rcu_read_unlock();
285 }
286 return stack;
287 }
288
289 static void
290 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
291 {
292 struct mm_struct *mm = vma->vm_mm;
293 struct file *file = vma->vm_file;
294 struct proc_maps_private *priv = m->private;
295 vm_flags_t flags = vma->vm_flags;
296 unsigned long ino = 0;
297 unsigned long long pgoff = 0;
298 unsigned long start, end;
299 dev_t dev = 0;
300 const char *name = NULL;
301
302 if (file) {
303 struct inode *inode = file_inode(vma->vm_file);
304 dev = inode->i_sb->s_dev;
305 ino = inode->i_ino;
306 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
307 }
308
309 /* We don't show the stack guard page in /proc/maps */
310 start = vma->vm_start;
311 if (stack_guard_page_start(vma, start))
312 start += PAGE_SIZE;
313 end = vma->vm_end;
314 if (stack_guard_page_end(vma, end))
315 end -= PAGE_SIZE;
316
317 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
318 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
319 start,
320 end,
321 flags & VM_READ ? 'r' : '-',
322 flags & VM_WRITE ? 'w' : '-',
323 flags & VM_EXEC ? 'x' : '-',
324 flags & VM_MAYSHARE ? 's' : 'p',
325 pgoff,
326 MAJOR(dev), MINOR(dev), ino);
327
328 /*
329 * Print the dentry name for named mappings, and a
330 * special [heap] marker for the heap:
331 */
332 if (file) {
333 seq_pad(m, ' ');
334 seq_file_path(m, file, "\n");
335 goto done;
336 }
337
338 if (vma->vm_ops && vma->vm_ops->name) {
339 name = vma->vm_ops->name(vma);
340 if (name)
341 goto done;
342 }
343
344 name = arch_vma_name(vma);
345 if (!name) {
346 if (!mm) {
347 name = "[vdso]";
348 goto done;
349 }
350
351 if (vma->vm_start <= mm->brk &&
352 vma->vm_end >= mm->start_brk) {
353 name = "[heap]";
354 goto done;
355 }
356
357 if (is_stack(priv, vma, is_pid))
358 name = "[stack]";
359 }
360
361 done:
362 if (name) {
363 seq_pad(m, ' ');
364 seq_puts(m, name);
365 }
366 seq_putc(m, '\n');
367 }
368
369 static int show_map(struct seq_file *m, void *v, int is_pid)
370 {
371 show_map_vma(m, v, is_pid);
372 m_cache_vma(m, v);
373 return 0;
374 }
375
376 static int show_pid_map(struct seq_file *m, void *v)
377 {
378 return show_map(m, v, 1);
379 }
380
381 static int show_tid_map(struct seq_file *m, void *v)
382 {
383 return show_map(m, v, 0);
384 }
385
386 static const struct seq_operations proc_pid_maps_op = {
387 .start = m_start,
388 .next = m_next,
389 .stop = m_stop,
390 .show = show_pid_map
391 };
392
393 static const struct seq_operations proc_tid_maps_op = {
394 .start = m_start,
395 .next = m_next,
396 .stop = m_stop,
397 .show = show_tid_map
398 };
399
400 static int pid_maps_open(struct inode *inode, struct file *file)
401 {
402 return do_maps_open(inode, file, &proc_pid_maps_op);
403 }
404
405 static int tid_maps_open(struct inode *inode, struct file *file)
406 {
407 return do_maps_open(inode, file, &proc_tid_maps_op);
408 }
409
410 const struct file_operations proc_pid_maps_operations = {
411 .open = pid_maps_open,
412 .read = seq_read,
413 .llseek = seq_lseek,
414 .release = proc_map_release,
415 };
416
417 const struct file_operations proc_tid_maps_operations = {
418 .open = tid_maps_open,
419 .read = seq_read,
420 .llseek = seq_lseek,
421 .release = proc_map_release,
422 };
423
424 /*
425 * Proportional Set Size(PSS): my share of RSS.
426 *
427 * PSS of a process is the count of pages it has in memory, where each
428 * page is divided by the number of processes sharing it. So if a
429 * process has 1000 pages all to itself, and 1000 shared with one other
430 * process, its PSS will be 1500.
431 *
432 * To keep (accumulated) division errors low, we adopt a 64bit
433 * fixed-point pss counter to minimize division errors. So (pss >>
434 * PSS_SHIFT) would be the real byte count.
435 *
436 * A shift of 12 before division means (assuming 4K page size):
437 * - 1M 3-user-pages add up to 8KB errors;
438 * - supports mapcount up to 2^24, or 16M;
439 * - supports PSS up to 2^52 bytes, or 4PB.
440 */
441 #define PSS_SHIFT 12
442
443 #ifdef CONFIG_PROC_PAGE_MONITOR
444 struct mem_size_stats {
445 unsigned long resident;
446 unsigned long shared_clean;
447 unsigned long shared_dirty;
448 unsigned long private_clean;
449 unsigned long private_dirty;
450 unsigned long referenced;
451 unsigned long anonymous;
452 unsigned long anonymous_thp;
453 unsigned long shmem_thp;
454 unsigned long swap;
455 unsigned long shared_hugetlb;
456 unsigned long private_hugetlb;
457 u64 pss;
458 u64 swap_pss;
459 bool check_shmem_swap;
460 };
461
462 static void smaps_account(struct mem_size_stats *mss, struct page *page,
463 bool compound, bool young, bool dirty)
464 {
465 int i, nr = compound ? 1 << compound_order(page) : 1;
466 unsigned long size = nr * PAGE_SIZE;
467
468 if (PageAnon(page))
469 mss->anonymous += size;
470
471 mss->resident += size;
472 /* Accumulate the size in pages that have been accessed. */
473 if (young || page_is_young(page) || PageReferenced(page))
474 mss->referenced += size;
475
476 /*
477 * page_count(page) == 1 guarantees the page is mapped exactly once.
478 * If any subpage of the compound page mapped with PTE it would elevate
479 * page_count().
480 */
481 if (page_count(page) == 1) {
482 if (dirty || PageDirty(page))
483 mss->private_dirty += size;
484 else
485 mss->private_clean += size;
486 mss->pss += (u64)size << PSS_SHIFT;
487 return;
488 }
489
490 for (i = 0; i < nr; i++, page++) {
491 int mapcount = page_mapcount(page);
492
493 if (mapcount >= 2) {
494 if (dirty || PageDirty(page))
495 mss->shared_dirty += PAGE_SIZE;
496 else
497 mss->shared_clean += PAGE_SIZE;
498 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
499 } else {
500 if (dirty || PageDirty(page))
501 mss->private_dirty += PAGE_SIZE;
502 else
503 mss->private_clean += PAGE_SIZE;
504 mss->pss += PAGE_SIZE << PSS_SHIFT;
505 }
506 }
507 }
508
509 #ifdef CONFIG_SHMEM
510 static int smaps_pte_hole(unsigned long addr, unsigned long end,
511 struct mm_walk *walk)
512 {
513 struct mem_size_stats *mss = walk->private;
514
515 mss->swap += shmem_partial_swap_usage(
516 walk->vma->vm_file->f_mapping, addr, end);
517
518 return 0;
519 }
520 #endif
521
522 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
523 struct mm_walk *walk)
524 {
525 struct mem_size_stats *mss = walk->private;
526 struct vm_area_struct *vma = walk->vma;
527 struct page *page = NULL;
528
529 if (pte_present(*pte)) {
530 page = vm_normal_page(vma, addr, *pte);
531 } else if (is_swap_pte(*pte)) {
532 swp_entry_t swpent = pte_to_swp_entry(*pte);
533
534 if (!non_swap_entry(swpent)) {
535 int mapcount;
536
537 mss->swap += PAGE_SIZE;
538 mapcount = swp_swapcount(swpent);
539 if (mapcount >= 2) {
540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
541
542 do_div(pss_delta, mapcount);
543 mss->swap_pss += pss_delta;
544 } else {
545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
546 }
547 } else if (is_migration_entry(swpent))
548 page = migration_entry_to_page(swpent);
549 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
550 && pte_none(*pte))) {
551 page = find_get_entry(vma->vm_file->f_mapping,
552 linear_page_index(vma, addr));
553 if (!page)
554 return;
555
556 if (radix_tree_exceptional_entry(page))
557 mss->swap += PAGE_SIZE;
558 else
559 put_page(page);
560
561 return;
562 }
563
564 if (!page)
565 return;
566
567 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
568 }
569
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572 struct mm_walk *walk)
573 {
574 struct mem_size_stats *mss = walk->private;
575 struct vm_area_struct *vma = walk->vma;
576 struct page *page;
577
578 /* FOLL_DUMP will return -EFAULT on huge zero page */
579 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580 if (IS_ERR_OR_NULL(page))
581 return;
582 if (PageAnon(page))
583 mss->anonymous_thp += HPAGE_PMD_SIZE;
584 else if (PageSwapBacked(page))
585 mss->shmem_thp += HPAGE_PMD_SIZE;
586 else if (is_zone_device_page(page))
587 /* pass */;
588 else
589 VM_BUG_ON_PAGE(1, page);
590 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594 struct mm_walk *walk)
595 {
596 }
597 #endif
598
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600 struct mm_walk *walk)
601 {
602 struct vm_area_struct *vma = walk->vma;
603 pte_t *pte;
604 spinlock_t *ptl;
605
606 ptl = pmd_trans_huge_lock(pmd, vma);
607 if (ptl) {
608 smaps_pmd_entry(pmd, addr, walk);
609 spin_unlock(ptl);
610 return 0;
611 }
612
613 if (pmd_trans_unstable(pmd))
614 return 0;
615 /*
616 * The mmap_sem held all the way back in m_start() is what
617 * keeps khugepaged out of here and from collapsing things
618 * in here.
619 */
620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
621 for (; addr != end; pte++, addr += PAGE_SIZE)
622 smaps_pte_entry(pte, addr, walk);
623 pte_unmap_unlock(pte - 1, ptl);
624 cond_resched();
625 return 0;
626 }
627
628 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
629 {
630 /*
631 * Don't forget to update Documentation/ on changes.
632 */
633 static const char mnemonics[BITS_PER_LONG][2] = {
634 /*
635 * In case if we meet a flag we don't know about.
636 */
637 [0 ... (BITS_PER_LONG-1)] = "??",
638
639 [ilog2(VM_READ)] = "rd",
640 [ilog2(VM_WRITE)] = "wr",
641 [ilog2(VM_EXEC)] = "ex",
642 [ilog2(VM_SHARED)] = "sh",
643 [ilog2(VM_MAYREAD)] = "mr",
644 [ilog2(VM_MAYWRITE)] = "mw",
645 [ilog2(VM_MAYEXEC)] = "me",
646 [ilog2(VM_MAYSHARE)] = "ms",
647 [ilog2(VM_GROWSDOWN)] = "gd",
648 [ilog2(VM_PFNMAP)] = "pf",
649 [ilog2(VM_DENYWRITE)] = "dw",
650 #ifdef CONFIG_X86_INTEL_MPX
651 [ilog2(VM_MPX)] = "mp",
652 #endif
653 [ilog2(VM_LOCKED)] = "lo",
654 [ilog2(VM_IO)] = "io",
655 [ilog2(VM_SEQ_READ)] = "sr",
656 [ilog2(VM_RAND_READ)] = "rr",
657 [ilog2(VM_DONTCOPY)] = "dc",
658 [ilog2(VM_DONTEXPAND)] = "de",
659 [ilog2(VM_ACCOUNT)] = "ac",
660 [ilog2(VM_NORESERVE)] = "nr",
661 [ilog2(VM_HUGETLB)] = "ht",
662 [ilog2(VM_ARCH_1)] = "ar",
663 [ilog2(VM_DONTDUMP)] = "dd",
664 #ifdef CONFIG_MEM_SOFT_DIRTY
665 [ilog2(VM_SOFTDIRTY)] = "sd",
666 #endif
667 [ilog2(VM_MIXEDMAP)] = "mm",
668 [ilog2(VM_HUGEPAGE)] = "hg",
669 [ilog2(VM_NOHUGEPAGE)] = "nh",
670 [ilog2(VM_MERGEABLE)] = "mg",
671 [ilog2(VM_UFFD_MISSING)]= "um",
672 [ilog2(VM_UFFD_WP)] = "uw",
673 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
674 /* These come out via ProtectionKey: */
675 [ilog2(VM_PKEY_BIT0)] = "",
676 [ilog2(VM_PKEY_BIT1)] = "",
677 [ilog2(VM_PKEY_BIT2)] = "",
678 [ilog2(VM_PKEY_BIT3)] = "",
679 #endif
680 };
681 size_t i;
682
683 seq_puts(m, "VmFlags: ");
684 for (i = 0; i < BITS_PER_LONG; i++) {
685 if (!mnemonics[i][0])
686 continue;
687 if (vma->vm_flags & (1UL << i)) {
688 seq_printf(m, "%c%c ",
689 mnemonics[i][0], mnemonics[i][1]);
690 }
691 }
692 seq_putc(m, '\n');
693 }
694
695 #ifdef CONFIG_HUGETLB_PAGE
696 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
697 unsigned long addr, unsigned long end,
698 struct mm_walk *walk)
699 {
700 struct mem_size_stats *mss = walk->private;
701 struct vm_area_struct *vma = walk->vma;
702 struct page *page = NULL;
703
704 if (pte_present(*pte)) {
705 page = vm_normal_page(vma, addr, *pte);
706 } else if (is_swap_pte(*pte)) {
707 swp_entry_t swpent = pte_to_swp_entry(*pte);
708
709 if (is_migration_entry(swpent))
710 page = migration_entry_to_page(swpent);
711 }
712 if (page) {
713 int mapcount = page_mapcount(page);
714
715 if (mapcount >= 2)
716 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
717 else
718 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
719 }
720 return 0;
721 }
722 #endif /* HUGETLB_PAGE */
723
724 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
725 {
726 }
727
728 static int show_smap(struct seq_file *m, void *v, int is_pid)
729 {
730 struct vm_area_struct *vma = v;
731 struct mem_size_stats mss;
732 struct mm_walk smaps_walk = {
733 .pmd_entry = smaps_pte_range,
734 #ifdef CONFIG_HUGETLB_PAGE
735 .hugetlb_entry = smaps_hugetlb_range,
736 #endif
737 .mm = vma->vm_mm,
738 .private = &mss,
739 };
740
741 memset(&mss, 0, sizeof mss);
742
743 #ifdef CONFIG_SHMEM
744 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
745 /*
746 * For shared or readonly shmem mappings we know that all
747 * swapped out pages belong to the shmem object, and we can
748 * obtain the swap value much more efficiently. For private
749 * writable mappings, we might have COW pages that are
750 * not affected by the parent swapped out pages of the shmem
751 * object, so we have to distinguish them during the page walk.
752 * Unless we know that the shmem object (or the part mapped by
753 * our VMA) has no swapped out pages at all.
754 */
755 unsigned long shmem_swapped = shmem_swap_usage(vma);
756
757 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
758 !(vma->vm_flags & VM_WRITE)) {
759 mss.swap = shmem_swapped;
760 } else {
761 mss.check_shmem_swap = true;
762 smaps_walk.pte_hole = smaps_pte_hole;
763 }
764 }
765 #endif
766
767 /* mmap_sem is held in m_start */
768 walk_page_vma(vma, &smaps_walk);
769
770 show_map_vma(m, vma, is_pid);
771
772 seq_printf(m,
773 "Size: %8lu kB\n"
774 "Rss: %8lu kB\n"
775 "Pss: %8lu kB\n"
776 "Shared_Clean: %8lu kB\n"
777 "Shared_Dirty: %8lu kB\n"
778 "Private_Clean: %8lu kB\n"
779 "Private_Dirty: %8lu kB\n"
780 "Referenced: %8lu kB\n"
781 "Anonymous: %8lu kB\n"
782 "AnonHugePages: %8lu kB\n"
783 "ShmemPmdMapped: %8lu kB\n"
784 "Shared_Hugetlb: %8lu kB\n"
785 "Private_Hugetlb: %7lu kB\n"
786 "Swap: %8lu kB\n"
787 "SwapPss: %8lu kB\n"
788 "KernelPageSize: %8lu kB\n"
789 "MMUPageSize: %8lu kB\n"
790 "Locked: %8lu kB\n",
791 (vma->vm_end - vma->vm_start) >> 10,
792 mss.resident >> 10,
793 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
794 mss.shared_clean >> 10,
795 mss.shared_dirty >> 10,
796 mss.private_clean >> 10,
797 mss.private_dirty >> 10,
798 mss.referenced >> 10,
799 mss.anonymous >> 10,
800 mss.anonymous_thp >> 10,
801 mss.shmem_thp >> 10,
802 mss.shared_hugetlb >> 10,
803 mss.private_hugetlb >> 10,
804 mss.swap >> 10,
805 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
806 vma_kernel_pagesize(vma) >> 10,
807 vma_mmu_pagesize(vma) >> 10,
808 (vma->vm_flags & VM_LOCKED) ?
809 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
810
811 arch_show_smap(m, vma);
812 show_smap_vma_flags(m, vma);
813 m_cache_vma(m, vma);
814 return 0;
815 }
816
817 static int show_pid_smap(struct seq_file *m, void *v)
818 {
819 return show_smap(m, v, 1);
820 }
821
822 static int show_tid_smap(struct seq_file *m, void *v)
823 {
824 return show_smap(m, v, 0);
825 }
826
827 static const struct seq_operations proc_pid_smaps_op = {
828 .start = m_start,
829 .next = m_next,
830 .stop = m_stop,
831 .show = show_pid_smap
832 };
833
834 static const struct seq_operations proc_tid_smaps_op = {
835 .start = m_start,
836 .next = m_next,
837 .stop = m_stop,
838 .show = show_tid_smap
839 };
840
841 static int pid_smaps_open(struct inode *inode, struct file *file)
842 {
843 return do_maps_open(inode, file, &proc_pid_smaps_op);
844 }
845
846 static int tid_smaps_open(struct inode *inode, struct file *file)
847 {
848 return do_maps_open(inode, file, &proc_tid_smaps_op);
849 }
850
851 const struct file_operations proc_pid_smaps_operations = {
852 .open = pid_smaps_open,
853 .read = seq_read,
854 .llseek = seq_lseek,
855 .release = proc_map_release,
856 };
857
858 const struct file_operations proc_tid_smaps_operations = {
859 .open = tid_smaps_open,
860 .read = seq_read,
861 .llseek = seq_lseek,
862 .release = proc_map_release,
863 };
864
865 enum clear_refs_types {
866 CLEAR_REFS_ALL = 1,
867 CLEAR_REFS_ANON,
868 CLEAR_REFS_MAPPED,
869 CLEAR_REFS_SOFT_DIRTY,
870 CLEAR_REFS_MM_HIWATER_RSS,
871 CLEAR_REFS_LAST,
872 };
873
874 struct clear_refs_private {
875 enum clear_refs_types type;
876 };
877
878 #ifdef CONFIG_MEM_SOFT_DIRTY
879 static inline void clear_soft_dirty(struct vm_area_struct *vma,
880 unsigned long addr, pte_t *pte)
881 {
882 /*
883 * The soft-dirty tracker uses #PF-s to catch writes
884 * to pages, so write-protect the pte as well. See the
885 * Documentation/vm/soft-dirty.txt for full description
886 * of how soft-dirty works.
887 */
888 pte_t ptent = *pte;
889
890 if (pte_present(ptent)) {
891 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
892 ptent = pte_wrprotect(ptent);
893 ptent = pte_clear_soft_dirty(ptent);
894 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
895 } else if (is_swap_pte(ptent)) {
896 ptent = pte_swp_clear_soft_dirty(ptent);
897 set_pte_at(vma->vm_mm, addr, pte, ptent);
898 }
899 }
900 #else
901 static inline void clear_soft_dirty(struct vm_area_struct *vma,
902 unsigned long addr, pte_t *pte)
903 {
904 }
905 #endif
906
907 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
908 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
909 unsigned long addr, pmd_t *pmdp)
910 {
911 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
912
913 pmd = pmd_wrprotect(pmd);
914 pmd = pmd_clear_soft_dirty(pmd);
915
916 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
917 }
918 #else
919 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
920 unsigned long addr, pmd_t *pmdp)
921 {
922 }
923 #endif
924
925 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
926 unsigned long end, struct mm_walk *walk)
927 {
928 struct clear_refs_private *cp = walk->private;
929 struct vm_area_struct *vma = walk->vma;
930 pte_t *pte, ptent;
931 spinlock_t *ptl;
932 struct page *page;
933
934 ptl = pmd_trans_huge_lock(pmd, vma);
935 if (ptl) {
936 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
937 clear_soft_dirty_pmd(vma, addr, pmd);
938 goto out;
939 }
940
941 page = pmd_page(*pmd);
942
943 /* Clear accessed and referenced bits. */
944 pmdp_test_and_clear_young(vma, addr, pmd);
945 test_and_clear_page_young(page);
946 ClearPageReferenced(page);
947 out:
948 spin_unlock(ptl);
949 return 0;
950 }
951
952 if (pmd_trans_unstable(pmd))
953 return 0;
954
955 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
956 for (; addr != end; pte++, addr += PAGE_SIZE) {
957 ptent = *pte;
958
959 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
960 clear_soft_dirty(vma, addr, pte);
961 continue;
962 }
963
964 if (!pte_present(ptent))
965 continue;
966
967 page = vm_normal_page(vma, addr, ptent);
968 if (!page)
969 continue;
970
971 /* Clear accessed and referenced bits. */
972 ptep_test_and_clear_young(vma, addr, pte);
973 test_and_clear_page_young(page);
974 ClearPageReferenced(page);
975 }
976 pte_unmap_unlock(pte - 1, ptl);
977 cond_resched();
978 return 0;
979 }
980
981 static int clear_refs_test_walk(unsigned long start, unsigned long end,
982 struct mm_walk *walk)
983 {
984 struct clear_refs_private *cp = walk->private;
985 struct vm_area_struct *vma = walk->vma;
986
987 if (vma->vm_flags & VM_PFNMAP)
988 return 1;
989
990 /*
991 * Writing 1 to /proc/pid/clear_refs affects all pages.
992 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
993 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
994 * Writing 4 to /proc/pid/clear_refs affects all pages.
995 */
996 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
997 return 1;
998 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
999 return 1;
1000 return 0;
1001 }
1002
1003 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1004 size_t count, loff_t *ppos)
1005 {
1006 struct task_struct *task;
1007 char buffer[PROC_NUMBUF];
1008 struct mm_struct *mm;
1009 struct vm_area_struct *vma;
1010 enum clear_refs_types type;
1011 int itype;
1012 int rv;
1013
1014 memset(buffer, 0, sizeof(buffer));
1015 if (count > sizeof(buffer) - 1)
1016 count = sizeof(buffer) - 1;
1017 if (copy_from_user(buffer, buf, count))
1018 return -EFAULT;
1019 rv = kstrtoint(strstrip(buffer), 10, &itype);
1020 if (rv < 0)
1021 return rv;
1022 type = (enum clear_refs_types)itype;
1023 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1024 return -EINVAL;
1025
1026 task = get_proc_task(file_inode(file));
1027 if (!task)
1028 return -ESRCH;
1029 mm = get_task_mm(task);
1030 if (mm) {
1031 struct clear_refs_private cp = {
1032 .type = type,
1033 };
1034 struct mm_walk clear_refs_walk = {
1035 .pmd_entry = clear_refs_pte_range,
1036 .test_walk = clear_refs_test_walk,
1037 .mm = mm,
1038 .private = &cp,
1039 };
1040
1041 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1042 if (down_write_killable(&mm->mmap_sem)) {
1043 count = -EINTR;
1044 goto out_mm;
1045 }
1046
1047 /*
1048 * Writing 5 to /proc/pid/clear_refs resets the peak
1049 * resident set size to this mm's current rss value.
1050 */
1051 reset_mm_hiwater_rss(mm);
1052 up_write(&mm->mmap_sem);
1053 goto out_mm;
1054 }
1055
1056 down_read(&mm->mmap_sem);
1057 if (type == CLEAR_REFS_SOFT_DIRTY) {
1058 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1059 if (!(vma->vm_flags & VM_SOFTDIRTY))
1060 continue;
1061 up_read(&mm->mmap_sem);
1062 if (down_write_killable(&mm->mmap_sem)) {
1063 count = -EINTR;
1064 goto out_mm;
1065 }
1066 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1067 vma->vm_flags &= ~VM_SOFTDIRTY;
1068 vma_set_page_prot(vma);
1069 }
1070 downgrade_write(&mm->mmap_sem);
1071 break;
1072 }
1073 mmu_notifier_invalidate_range_start(mm, 0, -1);
1074 }
1075 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1076 if (type == CLEAR_REFS_SOFT_DIRTY)
1077 mmu_notifier_invalidate_range_end(mm, 0, -1);
1078 flush_tlb_mm(mm);
1079 up_read(&mm->mmap_sem);
1080 out_mm:
1081 mmput(mm);
1082 }
1083 put_task_struct(task);
1084
1085 return count;
1086 }
1087
1088 const struct file_operations proc_clear_refs_operations = {
1089 .write = clear_refs_write,
1090 .llseek = noop_llseek,
1091 };
1092
1093 typedef struct {
1094 u64 pme;
1095 } pagemap_entry_t;
1096
1097 struct pagemapread {
1098 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1099 pagemap_entry_t *buffer;
1100 bool show_pfn;
1101 };
1102
1103 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1104 #define PAGEMAP_WALK_MASK (PMD_MASK)
1105
1106 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1107 #define PM_PFRAME_BITS 55
1108 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1109 #define PM_SOFT_DIRTY BIT_ULL(55)
1110 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1111 #define PM_FILE BIT_ULL(61)
1112 #define PM_SWAP BIT_ULL(62)
1113 #define PM_PRESENT BIT_ULL(63)
1114
1115 #define PM_END_OF_BUFFER 1
1116
1117 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1118 {
1119 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1120 }
1121
1122 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1123 struct pagemapread *pm)
1124 {
1125 pm->buffer[pm->pos++] = *pme;
1126 if (pm->pos >= pm->len)
1127 return PM_END_OF_BUFFER;
1128 return 0;
1129 }
1130
1131 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1132 struct mm_walk *walk)
1133 {
1134 struct pagemapread *pm = walk->private;
1135 unsigned long addr = start;
1136 int err = 0;
1137
1138 while (addr < end) {
1139 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1140 pagemap_entry_t pme = make_pme(0, 0);
1141 /* End of address space hole, which we mark as non-present. */
1142 unsigned long hole_end;
1143
1144 if (vma)
1145 hole_end = min(end, vma->vm_start);
1146 else
1147 hole_end = end;
1148
1149 for (; addr < hole_end; addr += PAGE_SIZE) {
1150 err = add_to_pagemap(addr, &pme, pm);
1151 if (err)
1152 goto out;
1153 }
1154
1155 if (!vma)
1156 break;
1157
1158 /* Addresses in the VMA. */
1159 if (vma->vm_flags & VM_SOFTDIRTY)
1160 pme = make_pme(0, PM_SOFT_DIRTY);
1161 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1162 err = add_to_pagemap(addr, &pme, pm);
1163 if (err)
1164 goto out;
1165 }
1166 }
1167 out:
1168 return err;
1169 }
1170
1171 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1172 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1173 {
1174 u64 frame = 0, flags = 0;
1175 struct page *page = NULL;
1176
1177 if (pte_present(pte)) {
1178 if (pm->show_pfn)
1179 frame = pte_pfn(pte);
1180 flags |= PM_PRESENT;
1181 page = vm_normal_page(vma, addr, pte);
1182 if (pte_soft_dirty(pte))
1183 flags |= PM_SOFT_DIRTY;
1184 } else if (is_swap_pte(pte)) {
1185 swp_entry_t entry;
1186 if (pte_swp_soft_dirty(pte))
1187 flags |= PM_SOFT_DIRTY;
1188 entry = pte_to_swp_entry(pte);
1189 frame = swp_type(entry) |
1190 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1191 flags |= PM_SWAP;
1192 if (is_migration_entry(entry))
1193 page = migration_entry_to_page(entry);
1194 }
1195
1196 if (page && !PageAnon(page))
1197 flags |= PM_FILE;
1198 if (page && page_mapcount(page) == 1)
1199 flags |= PM_MMAP_EXCLUSIVE;
1200 if (vma->vm_flags & VM_SOFTDIRTY)
1201 flags |= PM_SOFT_DIRTY;
1202
1203 return make_pme(frame, flags);
1204 }
1205
1206 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1207 struct mm_walk *walk)
1208 {
1209 struct vm_area_struct *vma = walk->vma;
1210 struct pagemapread *pm = walk->private;
1211 spinlock_t *ptl;
1212 pte_t *pte, *orig_pte;
1213 int err = 0;
1214
1215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1216 ptl = pmd_trans_huge_lock(pmdp, vma);
1217 if (ptl) {
1218 u64 flags = 0, frame = 0;
1219 pmd_t pmd = *pmdp;
1220
1221 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1222 flags |= PM_SOFT_DIRTY;
1223
1224 /*
1225 * Currently pmd for thp is always present because thp
1226 * can not be swapped-out, migrated, or HWPOISONed
1227 * (split in such cases instead.)
1228 * This if-check is just to prepare for future implementation.
1229 */
1230 if (pmd_present(pmd)) {
1231 struct page *page = pmd_page(pmd);
1232
1233 if (page_mapcount(page) == 1)
1234 flags |= PM_MMAP_EXCLUSIVE;
1235
1236 flags |= PM_PRESENT;
1237 if (pm->show_pfn)
1238 frame = pmd_pfn(pmd) +
1239 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1240 }
1241
1242 for (; addr != end; addr += PAGE_SIZE) {
1243 pagemap_entry_t pme = make_pme(frame, flags);
1244
1245 err = add_to_pagemap(addr, &pme, pm);
1246 if (err)
1247 break;
1248 if (pm->show_pfn && (flags & PM_PRESENT))
1249 frame++;
1250 }
1251 spin_unlock(ptl);
1252 return err;
1253 }
1254
1255 if (pmd_trans_unstable(pmdp))
1256 return 0;
1257 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1258
1259 /*
1260 * We can assume that @vma always points to a valid one and @end never
1261 * goes beyond vma->vm_end.
1262 */
1263 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1264 for (; addr < end; pte++, addr += PAGE_SIZE) {
1265 pagemap_entry_t pme;
1266
1267 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1268 err = add_to_pagemap(addr, &pme, pm);
1269 if (err)
1270 break;
1271 }
1272 pte_unmap_unlock(orig_pte, ptl);
1273
1274 cond_resched();
1275
1276 return err;
1277 }
1278
1279 #ifdef CONFIG_HUGETLB_PAGE
1280 /* This function walks within one hugetlb entry in the single call */
1281 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1282 unsigned long addr, unsigned long end,
1283 struct mm_walk *walk)
1284 {
1285 struct pagemapread *pm = walk->private;
1286 struct vm_area_struct *vma = walk->vma;
1287 u64 flags = 0, frame = 0;
1288 int err = 0;
1289 pte_t pte;
1290
1291 if (vma->vm_flags & VM_SOFTDIRTY)
1292 flags |= PM_SOFT_DIRTY;
1293
1294 pte = huge_ptep_get(ptep);
1295 if (pte_present(pte)) {
1296 struct page *page = pte_page(pte);
1297
1298 if (!PageAnon(page))
1299 flags |= PM_FILE;
1300
1301 if (page_mapcount(page) == 1)
1302 flags |= PM_MMAP_EXCLUSIVE;
1303
1304 flags |= PM_PRESENT;
1305 if (pm->show_pfn)
1306 frame = pte_pfn(pte) +
1307 ((addr & ~hmask) >> PAGE_SHIFT);
1308 }
1309
1310 for (; addr != end; addr += PAGE_SIZE) {
1311 pagemap_entry_t pme = make_pme(frame, flags);
1312
1313 err = add_to_pagemap(addr, &pme, pm);
1314 if (err)
1315 return err;
1316 if (pm->show_pfn && (flags & PM_PRESENT))
1317 frame++;
1318 }
1319
1320 cond_resched();
1321
1322 return err;
1323 }
1324 #endif /* HUGETLB_PAGE */
1325
1326 /*
1327 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1328 *
1329 * For each page in the address space, this file contains one 64-bit entry
1330 * consisting of the following:
1331 *
1332 * Bits 0-54 page frame number (PFN) if present
1333 * Bits 0-4 swap type if swapped
1334 * Bits 5-54 swap offset if swapped
1335 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1336 * Bit 56 page exclusively mapped
1337 * Bits 57-60 zero
1338 * Bit 61 page is file-page or shared-anon
1339 * Bit 62 page swapped
1340 * Bit 63 page present
1341 *
1342 * If the page is not present but in swap, then the PFN contains an
1343 * encoding of the swap file number and the page's offset into the
1344 * swap. Unmapped pages return a null PFN. This allows determining
1345 * precisely which pages are mapped (or in swap) and comparing mapped
1346 * pages between processes.
1347 *
1348 * Efficient users of this interface will use /proc/pid/maps to
1349 * determine which areas of memory are actually mapped and llseek to
1350 * skip over unmapped regions.
1351 */
1352 static ssize_t pagemap_read(struct file *file, char __user *buf,
1353 size_t count, loff_t *ppos)
1354 {
1355 struct mm_struct *mm = file->private_data;
1356 struct pagemapread pm;
1357 struct mm_walk pagemap_walk = {};
1358 unsigned long src;
1359 unsigned long svpfn;
1360 unsigned long start_vaddr;
1361 unsigned long end_vaddr;
1362 int ret = 0, copied = 0;
1363
1364 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1365 goto out;
1366
1367 ret = -EINVAL;
1368 /* file position must be aligned */
1369 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1370 goto out_mm;
1371
1372 ret = 0;
1373 if (!count)
1374 goto out_mm;
1375
1376 /* do not disclose physical addresses: attack vector */
1377 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1378
1379 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1380 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1381 ret = -ENOMEM;
1382 if (!pm.buffer)
1383 goto out_mm;
1384
1385 pagemap_walk.pmd_entry = pagemap_pmd_range;
1386 pagemap_walk.pte_hole = pagemap_pte_hole;
1387 #ifdef CONFIG_HUGETLB_PAGE
1388 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1389 #endif
1390 pagemap_walk.mm = mm;
1391 pagemap_walk.private = &pm;
1392
1393 src = *ppos;
1394 svpfn = src / PM_ENTRY_BYTES;
1395 start_vaddr = svpfn << PAGE_SHIFT;
1396 end_vaddr = mm->task_size;
1397
1398 /* watch out for wraparound */
1399 if (svpfn > mm->task_size >> PAGE_SHIFT)
1400 start_vaddr = end_vaddr;
1401
1402 /*
1403 * The odds are that this will stop walking way
1404 * before end_vaddr, because the length of the
1405 * user buffer is tracked in "pm", and the walk
1406 * will stop when we hit the end of the buffer.
1407 */
1408 ret = 0;
1409 while (count && (start_vaddr < end_vaddr)) {
1410 int len;
1411 unsigned long end;
1412
1413 pm.pos = 0;
1414 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1415 /* overflow ? */
1416 if (end < start_vaddr || end > end_vaddr)
1417 end = end_vaddr;
1418 down_read(&mm->mmap_sem);
1419 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1420 up_read(&mm->mmap_sem);
1421 start_vaddr = end;
1422
1423 len = min(count, PM_ENTRY_BYTES * pm.pos);
1424 if (copy_to_user(buf, pm.buffer, len)) {
1425 ret = -EFAULT;
1426 goto out_free;
1427 }
1428 copied += len;
1429 buf += len;
1430 count -= len;
1431 }
1432 *ppos += copied;
1433 if (!ret || ret == PM_END_OF_BUFFER)
1434 ret = copied;
1435
1436 out_free:
1437 kfree(pm.buffer);
1438 out_mm:
1439 mmput(mm);
1440 out:
1441 return ret;
1442 }
1443
1444 static int pagemap_open(struct inode *inode, struct file *file)
1445 {
1446 struct mm_struct *mm;
1447
1448 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1449 if (IS_ERR(mm))
1450 return PTR_ERR(mm);
1451 file->private_data = mm;
1452 return 0;
1453 }
1454
1455 static int pagemap_release(struct inode *inode, struct file *file)
1456 {
1457 struct mm_struct *mm = file->private_data;
1458
1459 if (mm)
1460 mmdrop(mm);
1461 return 0;
1462 }
1463
1464 const struct file_operations proc_pagemap_operations = {
1465 .llseek = mem_lseek, /* borrow this */
1466 .read = pagemap_read,
1467 .open = pagemap_open,
1468 .release = pagemap_release,
1469 };
1470 #endif /* CONFIG_PROC_PAGE_MONITOR */
1471
1472 #ifdef CONFIG_NUMA
1473
1474 struct numa_maps {
1475 unsigned long pages;
1476 unsigned long anon;
1477 unsigned long active;
1478 unsigned long writeback;
1479 unsigned long mapcount_max;
1480 unsigned long dirty;
1481 unsigned long swapcache;
1482 unsigned long node[MAX_NUMNODES];
1483 };
1484
1485 struct numa_maps_private {
1486 struct proc_maps_private proc_maps;
1487 struct numa_maps md;
1488 };
1489
1490 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1491 unsigned long nr_pages)
1492 {
1493 int count = page_mapcount(page);
1494
1495 md->pages += nr_pages;
1496 if (pte_dirty || PageDirty(page))
1497 md->dirty += nr_pages;
1498
1499 if (PageSwapCache(page))
1500 md->swapcache += nr_pages;
1501
1502 if (PageActive(page) || PageUnevictable(page))
1503 md->active += nr_pages;
1504
1505 if (PageWriteback(page))
1506 md->writeback += nr_pages;
1507
1508 if (PageAnon(page))
1509 md->anon += nr_pages;
1510
1511 if (count > md->mapcount_max)
1512 md->mapcount_max = count;
1513
1514 md->node[page_to_nid(page)] += nr_pages;
1515 }
1516
1517 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1518 unsigned long addr)
1519 {
1520 struct page *page;
1521 int nid;
1522
1523 if (!pte_present(pte))
1524 return NULL;
1525
1526 page = vm_normal_page(vma, addr, pte);
1527 if (!page)
1528 return NULL;
1529
1530 if (PageReserved(page))
1531 return NULL;
1532
1533 nid = page_to_nid(page);
1534 if (!node_isset(nid, node_states[N_MEMORY]))
1535 return NULL;
1536
1537 return page;
1538 }
1539
1540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1541 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1542 struct vm_area_struct *vma,
1543 unsigned long addr)
1544 {
1545 struct page *page;
1546 int nid;
1547
1548 if (!pmd_present(pmd))
1549 return NULL;
1550
1551 page = vm_normal_page_pmd(vma, addr, pmd);
1552 if (!page)
1553 return NULL;
1554
1555 if (PageReserved(page))
1556 return NULL;
1557
1558 nid = page_to_nid(page);
1559 if (!node_isset(nid, node_states[N_MEMORY]))
1560 return NULL;
1561
1562 return page;
1563 }
1564 #endif
1565
1566 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1567 unsigned long end, struct mm_walk *walk)
1568 {
1569 struct numa_maps *md = walk->private;
1570 struct vm_area_struct *vma = walk->vma;
1571 spinlock_t *ptl;
1572 pte_t *orig_pte;
1573 pte_t *pte;
1574
1575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1576 ptl = pmd_trans_huge_lock(pmd, vma);
1577 if (ptl) {
1578 struct page *page;
1579
1580 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1581 if (page)
1582 gather_stats(page, md, pmd_dirty(*pmd),
1583 HPAGE_PMD_SIZE/PAGE_SIZE);
1584 spin_unlock(ptl);
1585 return 0;
1586 }
1587
1588 if (pmd_trans_unstable(pmd))
1589 return 0;
1590 #endif
1591 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1592 do {
1593 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1594 if (!page)
1595 continue;
1596 gather_stats(page, md, pte_dirty(*pte), 1);
1597
1598 } while (pte++, addr += PAGE_SIZE, addr != end);
1599 pte_unmap_unlock(orig_pte, ptl);
1600 return 0;
1601 }
1602 #ifdef CONFIG_HUGETLB_PAGE
1603 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1604 unsigned long addr, unsigned long end, struct mm_walk *walk)
1605 {
1606 pte_t huge_pte = huge_ptep_get(pte);
1607 struct numa_maps *md;
1608 struct page *page;
1609
1610 if (!pte_present(huge_pte))
1611 return 0;
1612
1613 page = pte_page(huge_pte);
1614 if (!page)
1615 return 0;
1616
1617 md = walk->private;
1618 gather_stats(page, md, pte_dirty(huge_pte), 1);
1619 return 0;
1620 }
1621
1622 #else
1623 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1624 unsigned long addr, unsigned long end, struct mm_walk *walk)
1625 {
1626 return 0;
1627 }
1628 #endif
1629
1630 /*
1631 * Display pages allocated per node and memory policy via /proc.
1632 */
1633 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1634 {
1635 struct numa_maps_private *numa_priv = m->private;
1636 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1637 struct vm_area_struct *vma = v;
1638 struct numa_maps *md = &numa_priv->md;
1639 struct file *file = vma->vm_file;
1640 struct mm_struct *mm = vma->vm_mm;
1641 struct mm_walk walk = {
1642 .hugetlb_entry = gather_hugetlb_stats,
1643 .pmd_entry = gather_pte_stats,
1644 .private = md,
1645 .mm = mm,
1646 };
1647 struct mempolicy *pol;
1648 char buffer[64];
1649 int nid;
1650
1651 if (!mm)
1652 return 0;
1653
1654 /* Ensure we start with an empty set of numa_maps statistics. */
1655 memset(md, 0, sizeof(*md));
1656
1657 pol = __get_vma_policy(vma, vma->vm_start);
1658 if (pol) {
1659 mpol_to_str(buffer, sizeof(buffer), pol);
1660 mpol_cond_put(pol);
1661 } else {
1662 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1663 }
1664
1665 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1666
1667 if (file) {
1668 seq_puts(m, " file=");
1669 seq_file_path(m, file, "\n\t= ");
1670 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1671 seq_puts(m, " heap");
1672 } else if (is_stack(proc_priv, vma, is_pid)) {
1673 seq_puts(m, " stack");
1674 }
1675
1676 if (is_vm_hugetlb_page(vma))
1677 seq_puts(m, " huge");
1678
1679 /* mmap_sem is held by m_start */
1680 walk_page_vma(vma, &walk);
1681
1682 if (!md->pages)
1683 goto out;
1684
1685 if (md->anon)
1686 seq_printf(m, " anon=%lu", md->anon);
1687
1688 if (md->dirty)
1689 seq_printf(m, " dirty=%lu", md->dirty);
1690
1691 if (md->pages != md->anon && md->pages != md->dirty)
1692 seq_printf(m, " mapped=%lu", md->pages);
1693
1694 if (md->mapcount_max > 1)
1695 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1696
1697 if (md->swapcache)
1698 seq_printf(m, " swapcache=%lu", md->swapcache);
1699
1700 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1701 seq_printf(m, " active=%lu", md->active);
1702
1703 if (md->writeback)
1704 seq_printf(m, " writeback=%lu", md->writeback);
1705
1706 for_each_node_state(nid, N_MEMORY)
1707 if (md->node[nid])
1708 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1709
1710 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1711 out:
1712 seq_putc(m, '\n');
1713 m_cache_vma(m, vma);
1714 return 0;
1715 }
1716
1717 static int show_pid_numa_map(struct seq_file *m, void *v)
1718 {
1719 return show_numa_map(m, v, 1);
1720 }
1721
1722 static int show_tid_numa_map(struct seq_file *m, void *v)
1723 {
1724 return show_numa_map(m, v, 0);
1725 }
1726
1727 static const struct seq_operations proc_pid_numa_maps_op = {
1728 .start = m_start,
1729 .next = m_next,
1730 .stop = m_stop,
1731 .show = show_pid_numa_map,
1732 };
1733
1734 static const struct seq_operations proc_tid_numa_maps_op = {
1735 .start = m_start,
1736 .next = m_next,
1737 .stop = m_stop,
1738 .show = show_tid_numa_map,
1739 };
1740
1741 static int numa_maps_open(struct inode *inode, struct file *file,
1742 const struct seq_operations *ops)
1743 {
1744 return proc_maps_open(inode, file, ops,
1745 sizeof(struct numa_maps_private));
1746 }
1747
1748 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1749 {
1750 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1751 }
1752
1753 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1754 {
1755 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1756 }
1757
1758 const struct file_operations proc_pid_numa_maps_operations = {
1759 .open = pid_numa_maps_open,
1760 .read = seq_read,
1761 .llseek = seq_lseek,
1762 .release = proc_map_release,
1763 };
1764
1765 const struct file_operations proc_tid_numa_maps_operations = {
1766 .open = tid_numa_maps_open,
1767 .read = seq_read,
1768 .llseek = seq_lseek,
1769 .release = proc_map_release,
1770 };
1771 #endif /* CONFIG_NUMA */