]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/proc/task_mmu.c
mm, proc: account for shmem swap in /proc/pid/smaps
[mirror_ubuntu-bionic-kernel.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25 unsigned long data, text, lib, swap, ptes, pmds;
26 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28 /*
29 * Note: to minimize their overhead, mm maintains hiwater_vm and
30 * hiwater_rss only when about to *lower* total_vm or rss. Any
31 * collector of these hiwater stats must therefore get total_vm
32 * and rss too, which will usually be the higher. Barriers? not
33 * worth the effort, such snapshots can always be inconsistent.
34 */
35 hiwater_vm = total_vm = mm->total_vm;
36 if (hiwater_vm < mm->hiwater_vm)
37 hiwater_vm = mm->hiwater_vm;
38 hiwater_rss = total_rss = get_mm_rss(mm);
39 if (hiwater_rss < mm->hiwater_rss)
40 hiwater_rss = mm->hiwater_rss;
41
42 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45 swap = get_mm_counter(mm, MM_SWAPENTS);
46 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48 seq_printf(m,
49 "VmPeak:\t%8lu kB\n"
50 "VmSize:\t%8lu kB\n"
51 "VmLck:\t%8lu kB\n"
52 "VmPin:\t%8lu kB\n"
53 "VmHWM:\t%8lu kB\n"
54 "VmRSS:\t%8lu kB\n"
55 "VmData:\t%8lu kB\n"
56 "VmStk:\t%8lu kB\n"
57 "VmExe:\t%8lu kB\n"
58 "VmLib:\t%8lu kB\n"
59 "VmPTE:\t%8lu kB\n"
60 "VmPMD:\t%8lu kB\n"
61 "VmSwap:\t%8lu kB\n",
62 hiwater_vm << (PAGE_SHIFT-10),
63 total_vm << (PAGE_SHIFT-10),
64 mm->locked_vm << (PAGE_SHIFT-10),
65 mm->pinned_vm << (PAGE_SHIFT-10),
66 hiwater_rss << (PAGE_SHIFT-10),
67 total_rss << (PAGE_SHIFT-10),
68 data << (PAGE_SHIFT-10),
69 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70 ptes >> 10,
71 pmds >> 10,
72 swap << (PAGE_SHIFT-10));
73 hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78 return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82 unsigned long *shared, unsigned long *text,
83 unsigned long *data, unsigned long *resident)
84 {
85 *shared = get_mm_counter(mm, MM_FILEPAGES);
86 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87 >> PAGE_SHIFT;
88 *data = mm->total_vm - mm->shared_vm;
89 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90 return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95 * Save get_task_policy() for show_numa_map().
96 */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99 struct task_struct *task = priv->task;
100
101 task_lock(task);
102 priv->task_mempolicy = get_task_policy(task);
103 mpol_get(priv->task_mempolicy);
104 task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108 mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void vma_stop(struct proc_maps_private *priv)
120 {
121 struct mm_struct *mm = priv->mm;
122
123 release_task_mempolicy(priv);
124 up_read(&mm->mmap_sem);
125 mmput(mm);
126 }
127
128 static struct vm_area_struct *
129 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
130 {
131 if (vma == priv->tail_vma)
132 return NULL;
133 return vma->vm_next ?: priv->tail_vma;
134 }
135
136 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
137 {
138 if (m->count < m->size) /* vma is copied successfully */
139 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144 struct proc_maps_private *priv = m->private;
145 unsigned long last_addr = m->version;
146 struct mm_struct *mm;
147 struct vm_area_struct *vma;
148 unsigned int pos = *ppos;
149
150 /* See m_cache_vma(). Zero at the start or after lseek. */
151 if (last_addr == -1UL)
152 return NULL;
153
154 priv->task = get_proc_task(priv->inode);
155 if (!priv->task)
156 return ERR_PTR(-ESRCH);
157
158 mm = priv->mm;
159 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
160 return NULL;
161
162 down_read(&mm->mmap_sem);
163 hold_task_mempolicy(priv);
164 priv->tail_vma = get_gate_vma(mm);
165
166 if (last_addr) {
167 vma = find_vma(mm, last_addr);
168 if (vma && (vma = m_next_vma(priv, vma)))
169 return vma;
170 }
171
172 m->version = 0;
173 if (pos < mm->map_count) {
174 for (vma = mm->mmap; pos; pos--) {
175 m->version = vma->vm_start;
176 vma = vma->vm_next;
177 }
178 return vma;
179 }
180
181 /* we do not bother to update m->version in this case */
182 if (pos == mm->map_count && priv->tail_vma)
183 return priv->tail_vma;
184
185 vma_stop(priv);
186 return NULL;
187 }
188
189 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
190 {
191 struct proc_maps_private *priv = m->private;
192 struct vm_area_struct *next;
193
194 (*pos)++;
195 next = m_next_vma(priv, v);
196 if (!next)
197 vma_stop(priv);
198 return next;
199 }
200
201 static void m_stop(struct seq_file *m, void *v)
202 {
203 struct proc_maps_private *priv = m->private;
204
205 if (!IS_ERR_OR_NULL(v))
206 vma_stop(priv);
207 if (priv->task) {
208 put_task_struct(priv->task);
209 priv->task = NULL;
210 }
211 }
212
213 static int proc_maps_open(struct inode *inode, struct file *file,
214 const struct seq_operations *ops, int psize)
215 {
216 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
217
218 if (!priv)
219 return -ENOMEM;
220
221 priv->inode = inode;
222 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
223 if (IS_ERR(priv->mm)) {
224 int err = PTR_ERR(priv->mm);
225
226 seq_release_private(inode, file);
227 return err;
228 }
229
230 return 0;
231 }
232
233 static int proc_map_release(struct inode *inode, struct file *file)
234 {
235 struct seq_file *seq = file->private_data;
236 struct proc_maps_private *priv = seq->private;
237
238 if (priv->mm)
239 mmdrop(priv->mm);
240
241 return seq_release_private(inode, file);
242 }
243
244 static int do_maps_open(struct inode *inode, struct file *file,
245 const struct seq_operations *ops)
246 {
247 return proc_maps_open(inode, file, ops,
248 sizeof(struct proc_maps_private));
249 }
250
251 static pid_t pid_of_stack(struct proc_maps_private *priv,
252 struct vm_area_struct *vma, bool is_pid)
253 {
254 struct inode *inode = priv->inode;
255 struct task_struct *task;
256 pid_t ret = 0;
257
258 rcu_read_lock();
259 task = pid_task(proc_pid(inode), PIDTYPE_PID);
260 if (task) {
261 task = task_of_stack(task, vma, is_pid);
262 if (task)
263 ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
264 }
265 rcu_read_unlock();
266
267 return ret;
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 struct proc_maps_private *priv = m->private;
276 vm_flags_t flags = vma->vm_flags;
277 unsigned long ino = 0;
278 unsigned long long pgoff = 0;
279 unsigned long start, end;
280 dev_t dev = 0;
281 const char *name = NULL;
282
283 if (file) {
284 struct inode *inode = file_inode(vma->vm_file);
285 dev = inode->i_sb->s_dev;
286 ino = inode->i_ino;
287 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288 }
289
290 /* We don't show the stack guard page in /proc/maps */
291 start = vma->vm_start;
292 if (stack_guard_page_start(vma, start))
293 start += PAGE_SIZE;
294 end = vma->vm_end;
295 if (stack_guard_page_end(vma, end))
296 end -= PAGE_SIZE;
297
298 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
299 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
300 start,
301 end,
302 flags & VM_READ ? 'r' : '-',
303 flags & VM_WRITE ? 'w' : '-',
304 flags & VM_EXEC ? 'x' : '-',
305 flags & VM_MAYSHARE ? 's' : 'p',
306 pgoff,
307 MAJOR(dev), MINOR(dev), ino);
308
309 /*
310 * Print the dentry name for named mappings, and a
311 * special [heap] marker for the heap:
312 */
313 if (file) {
314 seq_pad(m, ' ');
315 seq_file_path(m, file, "\n");
316 goto done;
317 }
318
319 if (vma->vm_ops && vma->vm_ops->name) {
320 name = vma->vm_ops->name(vma);
321 if (name)
322 goto done;
323 }
324
325 name = arch_vma_name(vma);
326 if (!name) {
327 pid_t tid;
328
329 if (!mm) {
330 name = "[vdso]";
331 goto done;
332 }
333
334 if (vma->vm_start <= mm->brk &&
335 vma->vm_end >= mm->start_brk) {
336 name = "[heap]";
337 goto done;
338 }
339
340 tid = pid_of_stack(priv, vma, is_pid);
341 if (tid != 0) {
342 /*
343 * Thread stack in /proc/PID/task/TID/maps or
344 * the main process stack.
345 */
346 if (!is_pid || (vma->vm_start <= mm->start_stack &&
347 vma->vm_end >= mm->start_stack)) {
348 name = "[stack]";
349 } else {
350 /* Thread stack in /proc/PID/maps */
351 seq_pad(m, ' ');
352 seq_printf(m, "[stack:%d]", tid);
353 }
354 }
355 }
356
357 done:
358 if (name) {
359 seq_pad(m, ' ');
360 seq_puts(m, name);
361 }
362 seq_putc(m, '\n');
363 }
364
365 static int show_map(struct seq_file *m, void *v, int is_pid)
366 {
367 show_map_vma(m, v, is_pid);
368 m_cache_vma(m, v);
369 return 0;
370 }
371
372 static int show_pid_map(struct seq_file *m, void *v)
373 {
374 return show_map(m, v, 1);
375 }
376
377 static int show_tid_map(struct seq_file *m, void *v)
378 {
379 return show_map(m, v, 0);
380 }
381
382 static const struct seq_operations proc_pid_maps_op = {
383 .start = m_start,
384 .next = m_next,
385 .stop = m_stop,
386 .show = show_pid_map
387 };
388
389 static const struct seq_operations proc_tid_maps_op = {
390 .start = m_start,
391 .next = m_next,
392 .stop = m_stop,
393 .show = show_tid_map
394 };
395
396 static int pid_maps_open(struct inode *inode, struct file *file)
397 {
398 return do_maps_open(inode, file, &proc_pid_maps_op);
399 }
400
401 static int tid_maps_open(struct inode *inode, struct file *file)
402 {
403 return do_maps_open(inode, file, &proc_tid_maps_op);
404 }
405
406 const struct file_operations proc_pid_maps_operations = {
407 .open = pid_maps_open,
408 .read = seq_read,
409 .llseek = seq_lseek,
410 .release = proc_map_release,
411 };
412
413 const struct file_operations proc_tid_maps_operations = {
414 .open = tid_maps_open,
415 .read = seq_read,
416 .llseek = seq_lseek,
417 .release = proc_map_release,
418 };
419
420 /*
421 * Proportional Set Size(PSS): my share of RSS.
422 *
423 * PSS of a process is the count of pages it has in memory, where each
424 * page is divided by the number of processes sharing it. So if a
425 * process has 1000 pages all to itself, and 1000 shared with one other
426 * process, its PSS will be 1500.
427 *
428 * To keep (accumulated) division errors low, we adopt a 64bit
429 * fixed-point pss counter to minimize division errors. So (pss >>
430 * PSS_SHIFT) would be the real byte count.
431 *
432 * A shift of 12 before division means (assuming 4K page size):
433 * - 1M 3-user-pages add up to 8KB errors;
434 * - supports mapcount up to 2^24, or 16M;
435 * - supports PSS up to 2^52 bytes, or 4PB.
436 */
437 #define PSS_SHIFT 12
438
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats {
441 unsigned long resident;
442 unsigned long shared_clean;
443 unsigned long shared_dirty;
444 unsigned long private_clean;
445 unsigned long private_dirty;
446 unsigned long referenced;
447 unsigned long anonymous;
448 unsigned long anonymous_thp;
449 unsigned long swap;
450 unsigned long shared_hugetlb;
451 unsigned long private_hugetlb;
452 u64 pss;
453 u64 swap_pss;
454 bool check_shmem_swap;
455 };
456
457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458 unsigned long size, bool young, bool dirty)
459 {
460 int mapcount;
461
462 if (PageAnon(page))
463 mss->anonymous += size;
464
465 mss->resident += size;
466 /* Accumulate the size in pages that have been accessed. */
467 if (young || page_is_young(page) || PageReferenced(page))
468 mss->referenced += size;
469 mapcount = page_mapcount(page);
470 if (mapcount >= 2) {
471 u64 pss_delta;
472
473 if (dirty || PageDirty(page))
474 mss->shared_dirty += size;
475 else
476 mss->shared_clean += size;
477 pss_delta = (u64)size << PSS_SHIFT;
478 do_div(pss_delta, mapcount);
479 mss->pss += pss_delta;
480 } else {
481 if (dirty || PageDirty(page))
482 mss->private_dirty += size;
483 else
484 mss->private_clean += size;
485 mss->pss += (u64)size << PSS_SHIFT;
486 }
487 }
488
489 #ifdef CONFIG_SHMEM
490 static unsigned long smaps_shmem_swap(struct vm_area_struct *vma,
491 unsigned long addr)
492 {
493 struct page *page;
494
495 page = find_get_entry(vma->vm_file->f_mapping,
496 linear_page_index(vma, addr));
497 if (!page)
498 return 0;
499
500 if (radix_tree_exceptional_entry(page))
501 return PAGE_SIZE;
502
503 page_cache_release(page);
504 return 0;
505
506 }
507
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 struct mm_walk *walk)
510 {
511 struct mem_size_stats *mss = walk->private;
512
513 while (addr < end) {
514 mss->swap += smaps_shmem_swap(walk->vma, addr);
515 addr += PAGE_SIZE;
516 }
517
518 return 0;
519 }
520 #else
521 static unsigned long smaps_shmem_swap(struct vm_area_struct *vma,
522 unsigned long addr)
523 {
524 return 0;
525 }
526 #endif
527
528 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
529 struct mm_walk *walk)
530 {
531 struct mem_size_stats *mss = walk->private;
532 struct vm_area_struct *vma = walk->vma;
533 struct page *page = NULL;
534
535 if (pte_present(*pte)) {
536 page = vm_normal_page(vma, addr, *pte);
537 } else if (is_swap_pte(*pte)) {
538 swp_entry_t swpent = pte_to_swp_entry(*pte);
539
540 if (!non_swap_entry(swpent)) {
541 int mapcount;
542
543 mss->swap += PAGE_SIZE;
544 mapcount = swp_swapcount(swpent);
545 if (mapcount >= 2) {
546 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
547
548 do_div(pss_delta, mapcount);
549 mss->swap_pss += pss_delta;
550 } else {
551 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
552 }
553 } else if (is_migration_entry(swpent))
554 page = migration_entry_to_page(swpent);
555 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
556 && pte_none(*pte))) {
557 mss->swap += smaps_shmem_swap(vma, addr);
558 }
559
560 if (!page)
561 return;
562 smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
563 }
564
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567 struct mm_walk *walk)
568 {
569 struct mem_size_stats *mss = walk->private;
570 struct vm_area_struct *vma = walk->vma;
571 struct page *page;
572
573 /* FOLL_DUMP will return -EFAULT on huge zero page */
574 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
575 if (IS_ERR_OR_NULL(page))
576 return;
577 mss->anonymous_thp += HPAGE_PMD_SIZE;
578 smaps_account(mss, page, HPAGE_PMD_SIZE,
579 pmd_young(*pmd), pmd_dirty(*pmd));
580 }
581 #else
582 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
583 struct mm_walk *walk)
584 {
585 }
586 #endif
587
588 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
589 struct mm_walk *walk)
590 {
591 struct vm_area_struct *vma = walk->vma;
592 pte_t *pte;
593 spinlock_t *ptl;
594
595 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
596 smaps_pmd_entry(pmd, addr, walk);
597 spin_unlock(ptl);
598 return 0;
599 }
600
601 if (pmd_trans_unstable(pmd))
602 return 0;
603 /*
604 * The mmap_sem held all the way back in m_start() is what
605 * keeps khugepaged out of here and from collapsing things
606 * in here.
607 */
608 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
609 for (; addr != end; pte++, addr += PAGE_SIZE)
610 smaps_pte_entry(pte, addr, walk);
611 pte_unmap_unlock(pte - 1, ptl);
612 cond_resched();
613 return 0;
614 }
615
616 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
617 {
618 /*
619 * Don't forget to update Documentation/ on changes.
620 */
621 static const char mnemonics[BITS_PER_LONG][2] = {
622 /*
623 * In case if we meet a flag we don't know about.
624 */
625 [0 ... (BITS_PER_LONG-1)] = "??",
626
627 [ilog2(VM_READ)] = "rd",
628 [ilog2(VM_WRITE)] = "wr",
629 [ilog2(VM_EXEC)] = "ex",
630 [ilog2(VM_SHARED)] = "sh",
631 [ilog2(VM_MAYREAD)] = "mr",
632 [ilog2(VM_MAYWRITE)] = "mw",
633 [ilog2(VM_MAYEXEC)] = "me",
634 [ilog2(VM_MAYSHARE)] = "ms",
635 [ilog2(VM_GROWSDOWN)] = "gd",
636 [ilog2(VM_PFNMAP)] = "pf",
637 [ilog2(VM_DENYWRITE)] = "dw",
638 #ifdef CONFIG_X86_INTEL_MPX
639 [ilog2(VM_MPX)] = "mp",
640 #endif
641 [ilog2(VM_LOCKED)] = "lo",
642 [ilog2(VM_IO)] = "io",
643 [ilog2(VM_SEQ_READ)] = "sr",
644 [ilog2(VM_RAND_READ)] = "rr",
645 [ilog2(VM_DONTCOPY)] = "dc",
646 [ilog2(VM_DONTEXPAND)] = "de",
647 [ilog2(VM_ACCOUNT)] = "ac",
648 [ilog2(VM_NORESERVE)] = "nr",
649 [ilog2(VM_HUGETLB)] = "ht",
650 [ilog2(VM_ARCH_1)] = "ar",
651 [ilog2(VM_DONTDUMP)] = "dd",
652 #ifdef CONFIG_MEM_SOFT_DIRTY
653 [ilog2(VM_SOFTDIRTY)] = "sd",
654 #endif
655 [ilog2(VM_MIXEDMAP)] = "mm",
656 [ilog2(VM_HUGEPAGE)] = "hg",
657 [ilog2(VM_NOHUGEPAGE)] = "nh",
658 [ilog2(VM_MERGEABLE)] = "mg",
659 [ilog2(VM_UFFD_MISSING)]= "um",
660 [ilog2(VM_UFFD_WP)] = "uw",
661 };
662 size_t i;
663
664 seq_puts(m, "VmFlags: ");
665 for (i = 0; i < BITS_PER_LONG; i++) {
666 if (vma->vm_flags & (1UL << i)) {
667 seq_printf(m, "%c%c ",
668 mnemonics[i][0], mnemonics[i][1]);
669 }
670 }
671 seq_putc(m, '\n');
672 }
673
674 #ifdef CONFIG_HUGETLB_PAGE
675 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
676 unsigned long addr, unsigned long end,
677 struct mm_walk *walk)
678 {
679 struct mem_size_stats *mss = walk->private;
680 struct vm_area_struct *vma = walk->vma;
681 struct page *page = NULL;
682
683 if (pte_present(*pte)) {
684 page = vm_normal_page(vma, addr, *pte);
685 } else if (is_swap_pte(*pte)) {
686 swp_entry_t swpent = pte_to_swp_entry(*pte);
687
688 if (is_migration_entry(swpent))
689 page = migration_entry_to_page(swpent);
690 }
691 if (page) {
692 int mapcount = page_mapcount(page);
693
694 if (mapcount >= 2)
695 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
696 else
697 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
698 }
699 return 0;
700 }
701 #endif /* HUGETLB_PAGE */
702
703 static int show_smap(struct seq_file *m, void *v, int is_pid)
704 {
705 struct vm_area_struct *vma = v;
706 struct mem_size_stats mss;
707 struct mm_walk smaps_walk = {
708 .pmd_entry = smaps_pte_range,
709 #ifdef CONFIG_HUGETLB_PAGE
710 .hugetlb_entry = smaps_hugetlb_range,
711 #endif
712 .mm = vma->vm_mm,
713 .private = &mss,
714 };
715
716 memset(&mss, 0, sizeof mss);
717
718 #ifdef CONFIG_SHMEM
719 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
720 mss.check_shmem_swap = true;
721 smaps_walk.pte_hole = smaps_pte_hole;
722 }
723 #endif
724
725 /* mmap_sem is held in m_start */
726 walk_page_vma(vma, &smaps_walk);
727
728 show_map_vma(m, vma, is_pid);
729
730 seq_printf(m,
731 "Size: %8lu kB\n"
732 "Rss: %8lu kB\n"
733 "Pss: %8lu kB\n"
734 "Shared_Clean: %8lu kB\n"
735 "Shared_Dirty: %8lu kB\n"
736 "Private_Clean: %8lu kB\n"
737 "Private_Dirty: %8lu kB\n"
738 "Referenced: %8lu kB\n"
739 "Anonymous: %8lu kB\n"
740 "AnonHugePages: %8lu kB\n"
741 "Shared_Hugetlb: %8lu kB\n"
742 "Private_Hugetlb: %7lu kB\n"
743 "Swap: %8lu kB\n"
744 "SwapPss: %8lu kB\n"
745 "KernelPageSize: %8lu kB\n"
746 "MMUPageSize: %8lu kB\n"
747 "Locked: %8lu kB\n",
748 (vma->vm_end - vma->vm_start) >> 10,
749 mss.resident >> 10,
750 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
751 mss.shared_clean >> 10,
752 mss.shared_dirty >> 10,
753 mss.private_clean >> 10,
754 mss.private_dirty >> 10,
755 mss.referenced >> 10,
756 mss.anonymous >> 10,
757 mss.anonymous_thp >> 10,
758 mss.shared_hugetlb >> 10,
759 mss.private_hugetlb >> 10,
760 mss.swap >> 10,
761 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
762 vma_kernel_pagesize(vma) >> 10,
763 vma_mmu_pagesize(vma) >> 10,
764 (vma->vm_flags & VM_LOCKED) ?
765 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
766
767 show_smap_vma_flags(m, vma);
768 m_cache_vma(m, vma);
769 return 0;
770 }
771
772 static int show_pid_smap(struct seq_file *m, void *v)
773 {
774 return show_smap(m, v, 1);
775 }
776
777 static int show_tid_smap(struct seq_file *m, void *v)
778 {
779 return show_smap(m, v, 0);
780 }
781
782 static const struct seq_operations proc_pid_smaps_op = {
783 .start = m_start,
784 .next = m_next,
785 .stop = m_stop,
786 .show = show_pid_smap
787 };
788
789 static const struct seq_operations proc_tid_smaps_op = {
790 .start = m_start,
791 .next = m_next,
792 .stop = m_stop,
793 .show = show_tid_smap
794 };
795
796 static int pid_smaps_open(struct inode *inode, struct file *file)
797 {
798 return do_maps_open(inode, file, &proc_pid_smaps_op);
799 }
800
801 static int tid_smaps_open(struct inode *inode, struct file *file)
802 {
803 return do_maps_open(inode, file, &proc_tid_smaps_op);
804 }
805
806 const struct file_operations proc_pid_smaps_operations = {
807 .open = pid_smaps_open,
808 .read = seq_read,
809 .llseek = seq_lseek,
810 .release = proc_map_release,
811 };
812
813 const struct file_operations proc_tid_smaps_operations = {
814 .open = tid_smaps_open,
815 .read = seq_read,
816 .llseek = seq_lseek,
817 .release = proc_map_release,
818 };
819
820 enum clear_refs_types {
821 CLEAR_REFS_ALL = 1,
822 CLEAR_REFS_ANON,
823 CLEAR_REFS_MAPPED,
824 CLEAR_REFS_SOFT_DIRTY,
825 CLEAR_REFS_MM_HIWATER_RSS,
826 CLEAR_REFS_LAST,
827 };
828
829 struct clear_refs_private {
830 enum clear_refs_types type;
831 };
832
833 #ifdef CONFIG_MEM_SOFT_DIRTY
834 static inline void clear_soft_dirty(struct vm_area_struct *vma,
835 unsigned long addr, pte_t *pte)
836 {
837 /*
838 * The soft-dirty tracker uses #PF-s to catch writes
839 * to pages, so write-protect the pte as well. See the
840 * Documentation/vm/soft-dirty.txt for full description
841 * of how soft-dirty works.
842 */
843 pte_t ptent = *pte;
844
845 if (pte_present(ptent)) {
846 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
847 ptent = pte_wrprotect(ptent);
848 ptent = pte_clear_soft_dirty(ptent);
849 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
850 } else if (is_swap_pte(ptent)) {
851 ptent = pte_swp_clear_soft_dirty(ptent);
852 set_pte_at(vma->vm_mm, addr, pte, ptent);
853 }
854 }
855 #else
856 static inline void clear_soft_dirty(struct vm_area_struct *vma,
857 unsigned long addr, pte_t *pte)
858 {
859 }
860 #endif
861
862 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
863 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
864 unsigned long addr, pmd_t *pmdp)
865 {
866 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
867
868 pmd = pmd_wrprotect(pmd);
869 pmd = pmd_clear_soft_dirty(pmd);
870
871 if (vma->vm_flags & VM_SOFTDIRTY)
872 vma->vm_flags &= ~VM_SOFTDIRTY;
873
874 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
875 }
876 #else
877 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
878 unsigned long addr, pmd_t *pmdp)
879 {
880 }
881 #endif
882
883 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
884 unsigned long end, struct mm_walk *walk)
885 {
886 struct clear_refs_private *cp = walk->private;
887 struct vm_area_struct *vma = walk->vma;
888 pte_t *pte, ptent;
889 spinlock_t *ptl;
890 struct page *page;
891
892 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
893 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
894 clear_soft_dirty_pmd(vma, addr, pmd);
895 goto out;
896 }
897
898 page = pmd_page(*pmd);
899
900 /* Clear accessed and referenced bits. */
901 pmdp_test_and_clear_young(vma, addr, pmd);
902 test_and_clear_page_young(page);
903 ClearPageReferenced(page);
904 out:
905 spin_unlock(ptl);
906 return 0;
907 }
908
909 if (pmd_trans_unstable(pmd))
910 return 0;
911
912 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
913 for (; addr != end; pte++, addr += PAGE_SIZE) {
914 ptent = *pte;
915
916 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
917 clear_soft_dirty(vma, addr, pte);
918 continue;
919 }
920
921 if (!pte_present(ptent))
922 continue;
923
924 page = vm_normal_page(vma, addr, ptent);
925 if (!page)
926 continue;
927
928 /* Clear accessed and referenced bits. */
929 ptep_test_and_clear_young(vma, addr, pte);
930 test_and_clear_page_young(page);
931 ClearPageReferenced(page);
932 }
933 pte_unmap_unlock(pte - 1, ptl);
934 cond_resched();
935 return 0;
936 }
937
938 static int clear_refs_test_walk(unsigned long start, unsigned long end,
939 struct mm_walk *walk)
940 {
941 struct clear_refs_private *cp = walk->private;
942 struct vm_area_struct *vma = walk->vma;
943
944 if (vma->vm_flags & VM_PFNMAP)
945 return 1;
946
947 /*
948 * Writing 1 to /proc/pid/clear_refs affects all pages.
949 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
950 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
951 * Writing 4 to /proc/pid/clear_refs affects all pages.
952 */
953 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
954 return 1;
955 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
956 return 1;
957 return 0;
958 }
959
960 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
961 size_t count, loff_t *ppos)
962 {
963 struct task_struct *task;
964 char buffer[PROC_NUMBUF];
965 struct mm_struct *mm;
966 struct vm_area_struct *vma;
967 enum clear_refs_types type;
968 int itype;
969 int rv;
970
971 memset(buffer, 0, sizeof(buffer));
972 if (count > sizeof(buffer) - 1)
973 count = sizeof(buffer) - 1;
974 if (copy_from_user(buffer, buf, count))
975 return -EFAULT;
976 rv = kstrtoint(strstrip(buffer), 10, &itype);
977 if (rv < 0)
978 return rv;
979 type = (enum clear_refs_types)itype;
980 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
981 return -EINVAL;
982
983 task = get_proc_task(file_inode(file));
984 if (!task)
985 return -ESRCH;
986 mm = get_task_mm(task);
987 if (mm) {
988 struct clear_refs_private cp = {
989 .type = type,
990 };
991 struct mm_walk clear_refs_walk = {
992 .pmd_entry = clear_refs_pte_range,
993 .test_walk = clear_refs_test_walk,
994 .mm = mm,
995 .private = &cp,
996 };
997
998 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
999 /*
1000 * Writing 5 to /proc/pid/clear_refs resets the peak
1001 * resident set size to this mm's current rss value.
1002 */
1003 down_write(&mm->mmap_sem);
1004 reset_mm_hiwater_rss(mm);
1005 up_write(&mm->mmap_sem);
1006 goto out_mm;
1007 }
1008
1009 down_read(&mm->mmap_sem);
1010 if (type == CLEAR_REFS_SOFT_DIRTY) {
1011 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1012 if (!(vma->vm_flags & VM_SOFTDIRTY))
1013 continue;
1014 up_read(&mm->mmap_sem);
1015 down_write(&mm->mmap_sem);
1016 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1017 vma->vm_flags &= ~VM_SOFTDIRTY;
1018 vma_set_page_prot(vma);
1019 }
1020 downgrade_write(&mm->mmap_sem);
1021 break;
1022 }
1023 mmu_notifier_invalidate_range_start(mm, 0, -1);
1024 }
1025 walk_page_range(0, ~0UL, &clear_refs_walk);
1026 if (type == CLEAR_REFS_SOFT_DIRTY)
1027 mmu_notifier_invalidate_range_end(mm, 0, -1);
1028 flush_tlb_mm(mm);
1029 up_read(&mm->mmap_sem);
1030 out_mm:
1031 mmput(mm);
1032 }
1033 put_task_struct(task);
1034
1035 return count;
1036 }
1037
1038 const struct file_operations proc_clear_refs_operations = {
1039 .write = clear_refs_write,
1040 .llseek = noop_llseek,
1041 };
1042
1043 typedef struct {
1044 u64 pme;
1045 } pagemap_entry_t;
1046
1047 struct pagemapread {
1048 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1049 pagemap_entry_t *buffer;
1050 bool show_pfn;
1051 };
1052
1053 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1054 #define PAGEMAP_WALK_MASK (PMD_MASK)
1055
1056 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1057 #define PM_PFRAME_BITS 55
1058 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1059 #define PM_SOFT_DIRTY BIT_ULL(55)
1060 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1061 #define PM_FILE BIT_ULL(61)
1062 #define PM_SWAP BIT_ULL(62)
1063 #define PM_PRESENT BIT_ULL(63)
1064
1065 #define PM_END_OF_BUFFER 1
1066
1067 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1068 {
1069 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1070 }
1071
1072 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1073 struct pagemapread *pm)
1074 {
1075 pm->buffer[pm->pos++] = *pme;
1076 if (pm->pos >= pm->len)
1077 return PM_END_OF_BUFFER;
1078 return 0;
1079 }
1080
1081 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1082 struct mm_walk *walk)
1083 {
1084 struct pagemapread *pm = walk->private;
1085 unsigned long addr = start;
1086 int err = 0;
1087
1088 while (addr < end) {
1089 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1090 pagemap_entry_t pme = make_pme(0, 0);
1091 /* End of address space hole, which we mark as non-present. */
1092 unsigned long hole_end;
1093
1094 if (vma)
1095 hole_end = min(end, vma->vm_start);
1096 else
1097 hole_end = end;
1098
1099 for (; addr < hole_end; addr += PAGE_SIZE) {
1100 err = add_to_pagemap(addr, &pme, pm);
1101 if (err)
1102 goto out;
1103 }
1104
1105 if (!vma)
1106 break;
1107
1108 /* Addresses in the VMA. */
1109 if (vma->vm_flags & VM_SOFTDIRTY)
1110 pme = make_pme(0, PM_SOFT_DIRTY);
1111 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1112 err = add_to_pagemap(addr, &pme, pm);
1113 if (err)
1114 goto out;
1115 }
1116 }
1117 out:
1118 return err;
1119 }
1120
1121 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1122 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1123 {
1124 u64 frame = 0, flags = 0;
1125 struct page *page = NULL;
1126
1127 if (pte_present(pte)) {
1128 if (pm->show_pfn)
1129 frame = pte_pfn(pte);
1130 flags |= PM_PRESENT;
1131 page = vm_normal_page(vma, addr, pte);
1132 if (pte_soft_dirty(pte))
1133 flags |= PM_SOFT_DIRTY;
1134 } else if (is_swap_pte(pte)) {
1135 swp_entry_t entry;
1136 if (pte_swp_soft_dirty(pte))
1137 flags |= PM_SOFT_DIRTY;
1138 entry = pte_to_swp_entry(pte);
1139 frame = swp_type(entry) |
1140 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1141 flags |= PM_SWAP;
1142 if (is_migration_entry(entry))
1143 page = migration_entry_to_page(entry);
1144 }
1145
1146 if (page && !PageAnon(page))
1147 flags |= PM_FILE;
1148 if (page && page_mapcount(page) == 1)
1149 flags |= PM_MMAP_EXCLUSIVE;
1150 if (vma->vm_flags & VM_SOFTDIRTY)
1151 flags |= PM_SOFT_DIRTY;
1152
1153 return make_pme(frame, flags);
1154 }
1155
1156 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1157 struct mm_walk *walk)
1158 {
1159 struct vm_area_struct *vma = walk->vma;
1160 struct pagemapread *pm = walk->private;
1161 spinlock_t *ptl;
1162 pte_t *pte, *orig_pte;
1163 int err = 0;
1164
1165 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1166 if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1167 u64 flags = 0, frame = 0;
1168 pmd_t pmd = *pmdp;
1169
1170 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1171 flags |= PM_SOFT_DIRTY;
1172
1173 /*
1174 * Currently pmd for thp is always present because thp
1175 * can not be swapped-out, migrated, or HWPOISONed
1176 * (split in such cases instead.)
1177 * This if-check is just to prepare for future implementation.
1178 */
1179 if (pmd_present(pmd)) {
1180 struct page *page = pmd_page(pmd);
1181
1182 if (page_mapcount(page) == 1)
1183 flags |= PM_MMAP_EXCLUSIVE;
1184
1185 flags |= PM_PRESENT;
1186 if (pm->show_pfn)
1187 frame = pmd_pfn(pmd) +
1188 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1189 }
1190
1191 for (; addr != end; addr += PAGE_SIZE) {
1192 pagemap_entry_t pme = make_pme(frame, flags);
1193
1194 err = add_to_pagemap(addr, &pme, pm);
1195 if (err)
1196 break;
1197 if (pm->show_pfn && (flags & PM_PRESENT))
1198 frame++;
1199 }
1200 spin_unlock(ptl);
1201 return err;
1202 }
1203
1204 if (pmd_trans_unstable(pmdp))
1205 return 0;
1206 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1207
1208 /*
1209 * We can assume that @vma always points to a valid one and @end never
1210 * goes beyond vma->vm_end.
1211 */
1212 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1213 for (; addr < end; pte++, addr += PAGE_SIZE) {
1214 pagemap_entry_t pme;
1215
1216 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1217 err = add_to_pagemap(addr, &pme, pm);
1218 if (err)
1219 break;
1220 }
1221 pte_unmap_unlock(orig_pte, ptl);
1222
1223 cond_resched();
1224
1225 return err;
1226 }
1227
1228 #ifdef CONFIG_HUGETLB_PAGE
1229 /* This function walks within one hugetlb entry in the single call */
1230 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1231 unsigned long addr, unsigned long end,
1232 struct mm_walk *walk)
1233 {
1234 struct pagemapread *pm = walk->private;
1235 struct vm_area_struct *vma = walk->vma;
1236 u64 flags = 0, frame = 0;
1237 int err = 0;
1238 pte_t pte;
1239
1240 if (vma->vm_flags & VM_SOFTDIRTY)
1241 flags |= PM_SOFT_DIRTY;
1242
1243 pte = huge_ptep_get(ptep);
1244 if (pte_present(pte)) {
1245 struct page *page = pte_page(pte);
1246
1247 if (!PageAnon(page))
1248 flags |= PM_FILE;
1249
1250 if (page_mapcount(page) == 1)
1251 flags |= PM_MMAP_EXCLUSIVE;
1252
1253 flags |= PM_PRESENT;
1254 if (pm->show_pfn)
1255 frame = pte_pfn(pte) +
1256 ((addr & ~hmask) >> PAGE_SHIFT);
1257 }
1258
1259 for (; addr != end; addr += PAGE_SIZE) {
1260 pagemap_entry_t pme = make_pme(frame, flags);
1261
1262 err = add_to_pagemap(addr, &pme, pm);
1263 if (err)
1264 return err;
1265 if (pm->show_pfn && (flags & PM_PRESENT))
1266 frame++;
1267 }
1268
1269 cond_resched();
1270
1271 return err;
1272 }
1273 #endif /* HUGETLB_PAGE */
1274
1275 /*
1276 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1277 *
1278 * For each page in the address space, this file contains one 64-bit entry
1279 * consisting of the following:
1280 *
1281 * Bits 0-54 page frame number (PFN) if present
1282 * Bits 0-4 swap type if swapped
1283 * Bits 5-54 swap offset if swapped
1284 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1285 * Bit 56 page exclusively mapped
1286 * Bits 57-60 zero
1287 * Bit 61 page is file-page or shared-anon
1288 * Bit 62 page swapped
1289 * Bit 63 page present
1290 *
1291 * If the page is not present but in swap, then the PFN contains an
1292 * encoding of the swap file number and the page's offset into the
1293 * swap. Unmapped pages return a null PFN. This allows determining
1294 * precisely which pages are mapped (or in swap) and comparing mapped
1295 * pages between processes.
1296 *
1297 * Efficient users of this interface will use /proc/pid/maps to
1298 * determine which areas of memory are actually mapped and llseek to
1299 * skip over unmapped regions.
1300 */
1301 static ssize_t pagemap_read(struct file *file, char __user *buf,
1302 size_t count, loff_t *ppos)
1303 {
1304 struct mm_struct *mm = file->private_data;
1305 struct pagemapread pm;
1306 struct mm_walk pagemap_walk = {};
1307 unsigned long src;
1308 unsigned long svpfn;
1309 unsigned long start_vaddr;
1310 unsigned long end_vaddr;
1311 int ret = 0, copied = 0;
1312
1313 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1314 goto out;
1315
1316 ret = -EINVAL;
1317 /* file position must be aligned */
1318 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1319 goto out_mm;
1320
1321 ret = 0;
1322 if (!count)
1323 goto out_mm;
1324
1325 /* do not disclose physical addresses: attack vector */
1326 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1327
1328 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1329 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1330 ret = -ENOMEM;
1331 if (!pm.buffer)
1332 goto out_mm;
1333
1334 pagemap_walk.pmd_entry = pagemap_pmd_range;
1335 pagemap_walk.pte_hole = pagemap_pte_hole;
1336 #ifdef CONFIG_HUGETLB_PAGE
1337 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1338 #endif
1339 pagemap_walk.mm = mm;
1340 pagemap_walk.private = &pm;
1341
1342 src = *ppos;
1343 svpfn = src / PM_ENTRY_BYTES;
1344 start_vaddr = svpfn << PAGE_SHIFT;
1345 end_vaddr = mm->task_size;
1346
1347 /* watch out for wraparound */
1348 if (svpfn > mm->task_size >> PAGE_SHIFT)
1349 start_vaddr = end_vaddr;
1350
1351 /*
1352 * The odds are that this will stop walking way
1353 * before end_vaddr, because the length of the
1354 * user buffer is tracked in "pm", and the walk
1355 * will stop when we hit the end of the buffer.
1356 */
1357 ret = 0;
1358 while (count && (start_vaddr < end_vaddr)) {
1359 int len;
1360 unsigned long end;
1361
1362 pm.pos = 0;
1363 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1364 /* overflow ? */
1365 if (end < start_vaddr || end > end_vaddr)
1366 end = end_vaddr;
1367 down_read(&mm->mmap_sem);
1368 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1369 up_read(&mm->mmap_sem);
1370 start_vaddr = end;
1371
1372 len = min(count, PM_ENTRY_BYTES * pm.pos);
1373 if (copy_to_user(buf, pm.buffer, len)) {
1374 ret = -EFAULT;
1375 goto out_free;
1376 }
1377 copied += len;
1378 buf += len;
1379 count -= len;
1380 }
1381 *ppos += copied;
1382 if (!ret || ret == PM_END_OF_BUFFER)
1383 ret = copied;
1384
1385 out_free:
1386 kfree(pm.buffer);
1387 out_mm:
1388 mmput(mm);
1389 out:
1390 return ret;
1391 }
1392
1393 static int pagemap_open(struct inode *inode, struct file *file)
1394 {
1395 struct mm_struct *mm;
1396
1397 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1398 if (IS_ERR(mm))
1399 return PTR_ERR(mm);
1400 file->private_data = mm;
1401 return 0;
1402 }
1403
1404 static int pagemap_release(struct inode *inode, struct file *file)
1405 {
1406 struct mm_struct *mm = file->private_data;
1407
1408 if (mm)
1409 mmdrop(mm);
1410 return 0;
1411 }
1412
1413 const struct file_operations proc_pagemap_operations = {
1414 .llseek = mem_lseek, /* borrow this */
1415 .read = pagemap_read,
1416 .open = pagemap_open,
1417 .release = pagemap_release,
1418 };
1419 #endif /* CONFIG_PROC_PAGE_MONITOR */
1420
1421 #ifdef CONFIG_NUMA
1422
1423 struct numa_maps {
1424 unsigned long pages;
1425 unsigned long anon;
1426 unsigned long active;
1427 unsigned long writeback;
1428 unsigned long mapcount_max;
1429 unsigned long dirty;
1430 unsigned long swapcache;
1431 unsigned long node[MAX_NUMNODES];
1432 };
1433
1434 struct numa_maps_private {
1435 struct proc_maps_private proc_maps;
1436 struct numa_maps md;
1437 };
1438
1439 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1440 unsigned long nr_pages)
1441 {
1442 int count = page_mapcount(page);
1443
1444 md->pages += nr_pages;
1445 if (pte_dirty || PageDirty(page))
1446 md->dirty += nr_pages;
1447
1448 if (PageSwapCache(page))
1449 md->swapcache += nr_pages;
1450
1451 if (PageActive(page) || PageUnevictable(page))
1452 md->active += nr_pages;
1453
1454 if (PageWriteback(page))
1455 md->writeback += nr_pages;
1456
1457 if (PageAnon(page))
1458 md->anon += nr_pages;
1459
1460 if (count > md->mapcount_max)
1461 md->mapcount_max = count;
1462
1463 md->node[page_to_nid(page)] += nr_pages;
1464 }
1465
1466 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1467 unsigned long addr)
1468 {
1469 struct page *page;
1470 int nid;
1471
1472 if (!pte_present(pte))
1473 return NULL;
1474
1475 page = vm_normal_page(vma, addr, pte);
1476 if (!page)
1477 return NULL;
1478
1479 if (PageReserved(page))
1480 return NULL;
1481
1482 nid = page_to_nid(page);
1483 if (!node_isset(nid, node_states[N_MEMORY]))
1484 return NULL;
1485
1486 return page;
1487 }
1488
1489 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1490 unsigned long end, struct mm_walk *walk)
1491 {
1492 struct numa_maps *md = walk->private;
1493 struct vm_area_struct *vma = walk->vma;
1494 spinlock_t *ptl;
1495 pte_t *orig_pte;
1496 pte_t *pte;
1497
1498 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1499 pte_t huge_pte = *(pte_t *)pmd;
1500 struct page *page;
1501
1502 page = can_gather_numa_stats(huge_pte, vma, addr);
1503 if (page)
1504 gather_stats(page, md, pte_dirty(huge_pte),
1505 HPAGE_PMD_SIZE/PAGE_SIZE);
1506 spin_unlock(ptl);
1507 return 0;
1508 }
1509
1510 if (pmd_trans_unstable(pmd))
1511 return 0;
1512 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1513 do {
1514 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1515 if (!page)
1516 continue;
1517 gather_stats(page, md, pte_dirty(*pte), 1);
1518
1519 } while (pte++, addr += PAGE_SIZE, addr != end);
1520 pte_unmap_unlock(orig_pte, ptl);
1521 return 0;
1522 }
1523 #ifdef CONFIG_HUGETLB_PAGE
1524 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1525 unsigned long addr, unsigned long end, struct mm_walk *walk)
1526 {
1527 struct numa_maps *md;
1528 struct page *page;
1529
1530 if (!pte_present(*pte))
1531 return 0;
1532
1533 page = pte_page(*pte);
1534 if (!page)
1535 return 0;
1536
1537 md = walk->private;
1538 gather_stats(page, md, pte_dirty(*pte), 1);
1539 return 0;
1540 }
1541
1542 #else
1543 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1544 unsigned long addr, unsigned long end, struct mm_walk *walk)
1545 {
1546 return 0;
1547 }
1548 #endif
1549
1550 /*
1551 * Display pages allocated per node and memory policy via /proc.
1552 */
1553 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1554 {
1555 struct numa_maps_private *numa_priv = m->private;
1556 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1557 struct vm_area_struct *vma = v;
1558 struct numa_maps *md = &numa_priv->md;
1559 struct file *file = vma->vm_file;
1560 struct mm_struct *mm = vma->vm_mm;
1561 struct mm_walk walk = {
1562 .hugetlb_entry = gather_hugetlb_stats,
1563 .pmd_entry = gather_pte_stats,
1564 .private = md,
1565 .mm = mm,
1566 };
1567 struct mempolicy *pol;
1568 char buffer[64];
1569 int nid;
1570
1571 if (!mm)
1572 return 0;
1573
1574 /* Ensure we start with an empty set of numa_maps statistics. */
1575 memset(md, 0, sizeof(*md));
1576
1577 pol = __get_vma_policy(vma, vma->vm_start);
1578 if (pol) {
1579 mpol_to_str(buffer, sizeof(buffer), pol);
1580 mpol_cond_put(pol);
1581 } else {
1582 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1583 }
1584
1585 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1586
1587 if (file) {
1588 seq_puts(m, " file=");
1589 seq_file_path(m, file, "\n\t= ");
1590 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1591 seq_puts(m, " heap");
1592 } else {
1593 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1594 if (tid != 0) {
1595 /*
1596 * Thread stack in /proc/PID/task/TID/maps or
1597 * the main process stack.
1598 */
1599 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1600 vma->vm_end >= mm->start_stack))
1601 seq_puts(m, " stack");
1602 else
1603 seq_printf(m, " stack:%d", tid);
1604 }
1605 }
1606
1607 if (is_vm_hugetlb_page(vma))
1608 seq_puts(m, " huge");
1609
1610 /* mmap_sem is held by m_start */
1611 walk_page_vma(vma, &walk);
1612
1613 if (!md->pages)
1614 goto out;
1615
1616 if (md->anon)
1617 seq_printf(m, " anon=%lu", md->anon);
1618
1619 if (md->dirty)
1620 seq_printf(m, " dirty=%lu", md->dirty);
1621
1622 if (md->pages != md->anon && md->pages != md->dirty)
1623 seq_printf(m, " mapped=%lu", md->pages);
1624
1625 if (md->mapcount_max > 1)
1626 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1627
1628 if (md->swapcache)
1629 seq_printf(m, " swapcache=%lu", md->swapcache);
1630
1631 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1632 seq_printf(m, " active=%lu", md->active);
1633
1634 if (md->writeback)
1635 seq_printf(m, " writeback=%lu", md->writeback);
1636
1637 for_each_node_state(nid, N_MEMORY)
1638 if (md->node[nid])
1639 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1640
1641 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1642 out:
1643 seq_putc(m, '\n');
1644 m_cache_vma(m, vma);
1645 return 0;
1646 }
1647
1648 static int show_pid_numa_map(struct seq_file *m, void *v)
1649 {
1650 return show_numa_map(m, v, 1);
1651 }
1652
1653 static int show_tid_numa_map(struct seq_file *m, void *v)
1654 {
1655 return show_numa_map(m, v, 0);
1656 }
1657
1658 static const struct seq_operations proc_pid_numa_maps_op = {
1659 .start = m_start,
1660 .next = m_next,
1661 .stop = m_stop,
1662 .show = show_pid_numa_map,
1663 };
1664
1665 static const struct seq_operations proc_tid_numa_maps_op = {
1666 .start = m_start,
1667 .next = m_next,
1668 .stop = m_stop,
1669 .show = show_tid_numa_map,
1670 };
1671
1672 static int numa_maps_open(struct inode *inode, struct file *file,
1673 const struct seq_operations *ops)
1674 {
1675 return proc_maps_open(inode, file, ops,
1676 sizeof(struct numa_maps_private));
1677 }
1678
1679 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1680 {
1681 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1682 }
1683
1684 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1685 {
1686 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1687 }
1688
1689 const struct file_operations proc_pid_numa_maps_operations = {
1690 .open = pid_numa_maps_open,
1691 .read = seq_read,
1692 .llseek = seq_lseek,
1693 .release = proc_map_release,
1694 };
1695
1696 const struct file_operations proc_tid_numa_maps_operations = {
1697 .open = tid_numa_maps_open,
1698 .read = seq_read,
1699 .llseek = seq_lseek,
1700 .release = proc_map_release,
1701 };
1702 #endif /* CONFIG_NUMA */