]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/reiserfs/inode.c
77d6d47abc838be3a18acc837f9f97816974e6e1
[mirror_ubuntu-bionic-kernel.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/aio.h>
22
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25
26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 int jbegin_count =
30 JOURNAL_PER_BALANCE_CNT * 2 +
31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 struct reiserfs_transaction_handle th;
33 int depth;
34 int err;
35
36 if (!inode->i_nlink && !is_bad_inode(inode))
37 dquot_initialize(inode);
38
39 truncate_inode_pages(&inode->i_data, 0);
40 if (inode->i_nlink)
41 goto no_delete;
42
43 depth = reiserfs_write_lock_once(inode->i_sb);
44
45 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
47 reiserfs_delete_xattrs(inode);
48
49 if (journal_begin(&th, inode->i_sb, jbegin_count))
50 goto out;
51 reiserfs_update_inode_transaction(inode);
52
53 reiserfs_discard_prealloc(&th, inode);
54
55 err = reiserfs_delete_object(&th, inode);
56
57 /* Do quota update inside a transaction for journaled quotas. We must do that
58 * after delete_object so that quota updates go into the same transaction as
59 * stat data deletion */
60 if (!err)
61 dquot_free_inode(inode);
62
63 if (journal_end(&th, inode->i_sb, jbegin_count))
64 goto out;
65
66 /* check return value from reiserfs_delete_object after
67 * ending the transaction
68 */
69 if (err)
70 goto out;
71
72 /* all items of file are deleted, so we can remove "save" link */
73 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
74 * about an error here */
75 } else {
76 /* no object items are in the tree */
77 ;
78 }
79 out:
80 reiserfs_write_unlock_once(inode->i_sb, depth);
81 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
82 dquot_drop(inode);
83 inode->i_blocks = 0;
84 return;
85
86 no_delete:
87 clear_inode(inode);
88 dquot_drop(inode);
89 }
90
91 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
92 __u32 objectid, loff_t offset, int type, int length)
93 {
94 key->version = version;
95
96 key->on_disk_key.k_dir_id = dirid;
97 key->on_disk_key.k_objectid = objectid;
98 set_cpu_key_k_offset(key, offset);
99 set_cpu_key_k_type(key, type);
100 key->key_length = length;
101 }
102
103 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
104 offset and type of key */
105 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
106 int type, int length)
107 {
108 _make_cpu_key(key, get_inode_item_key_version(inode),
109 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
110 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
111 length);
112 }
113
114 //
115 // when key is 0, do not set version and short key
116 //
117 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
118 int version,
119 loff_t offset, int type, int length,
120 int entry_count /*or ih_free_space */ )
121 {
122 if (key) {
123 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
124 ih->ih_key.k_objectid =
125 cpu_to_le32(key->on_disk_key.k_objectid);
126 }
127 put_ih_version(ih, version);
128 set_le_ih_k_offset(ih, offset);
129 set_le_ih_k_type(ih, type);
130 put_ih_item_len(ih, length);
131 /* set_ih_free_space (ih, 0); */
132 // for directory items it is entry count, for directs and stat
133 // datas - 0xffff, for indirects - 0
134 put_ih_entry_count(ih, entry_count);
135 }
136
137 //
138 // FIXME: we might cache recently accessed indirect item
139
140 // Ugh. Not too eager for that....
141 // I cut the code until such time as I see a convincing argument (benchmark).
142 // I don't want a bloated inode struct..., and I don't like code complexity....
143
144 /* cutting the code is fine, since it really isn't in use yet and is easy
145 ** to add back in. But, Vladimir has a really good idea here. Think
146 ** about what happens for reading a file. For each page,
147 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
148 ** an indirect item. This indirect item has X number of pointers, where
149 ** X is a big number if we've done the block allocation right. But,
150 ** we only use one or two of these pointers during each call to readpage,
151 ** needlessly researching again later on.
152 **
153 ** The size of the cache could be dynamic based on the size of the file.
154 **
155 ** I'd also like to see us cache the location the stat data item, since
156 ** we are needlessly researching for that frequently.
157 **
158 ** --chris
159 */
160
161 /* If this page has a file tail in it, and
162 ** it was read in by get_block_create_0, the page data is valid,
163 ** but tail is still sitting in a direct item, and we can't write to
164 ** it. So, look through this page, and check all the mapped buffers
165 ** to make sure they have valid block numbers. Any that don't need
166 ** to be unmapped, so that __block_write_begin will correctly call
167 ** reiserfs_get_block to convert the tail into an unformatted node
168 */
169 static inline void fix_tail_page_for_writing(struct page *page)
170 {
171 struct buffer_head *head, *next, *bh;
172
173 if (page && page_has_buffers(page)) {
174 head = page_buffers(page);
175 bh = head;
176 do {
177 next = bh->b_this_page;
178 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
179 reiserfs_unmap_buffer(bh);
180 }
181 bh = next;
182 } while (bh != head);
183 }
184 }
185
186 /* reiserfs_get_block does not need to allocate a block only if it has been
187 done already or non-hole position has been found in the indirect item */
188 static inline int allocation_needed(int retval, b_blocknr_t allocated,
189 struct item_head *ih,
190 __le32 * item, int pos_in_item)
191 {
192 if (allocated)
193 return 0;
194 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
195 get_block_num(item, pos_in_item))
196 return 0;
197 return 1;
198 }
199
200 static inline int indirect_item_found(int retval, struct item_head *ih)
201 {
202 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
203 }
204
205 static inline void set_block_dev_mapped(struct buffer_head *bh,
206 b_blocknr_t block, struct inode *inode)
207 {
208 map_bh(bh, inode->i_sb, block);
209 }
210
211 //
212 // files which were created in the earlier version can not be longer,
213 // than 2 gb
214 //
215 static int file_capable(struct inode *inode, sector_t block)
216 {
217 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
218 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
219 return 1;
220
221 return 0;
222 }
223
224 static int restart_transaction(struct reiserfs_transaction_handle *th,
225 struct inode *inode, struct treepath *path)
226 {
227 struct super_block *s = th->t_super;
228 int len = th->t_blocks_allocated;
229 int err;
230
231 BUG_ON(!th->t_trans_id);
232 BUG_ON(!th->t_refcount);
233
234 pathrelse(path);
235
236 /* we cannot restart while nested */
237 if (th->t_refcount > 1) {
238 return 0;
239 }
240 reiserfs_update_sd(th, inode);
241 err = journal_end(th, s, len);
242 if (!err) {
243 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
244 if (!err)
245 reiserfs_update_inode_transaction(inode);
246 }
247 return err;
248 }
249
250 // it is called by get_block when create == 0. Returns block number
251 // for 'block'-th logical block of file. When it hits direct item it
252 // returns 0 (being called from bmap) or read direct item into piece
253 // of page (bh_result)
254
255 // Please improve the english/clarity in the comment above, as it is
256 // hard to understand.
257
258 static int _get_block_create_0(struct inode *inode, sector_t block,
259 struct buffer_head *bh_result, int args)
260 {
261 INITIALIZE_PATH(path);
262 struct cpu_key key;
263 struct buffer_head *bh;
264 struct item_head *ih, tmp_ih;
265 b_blocknr_t blocknr;
266 char *p = NULL;
267 int chars;
268 int ret;
269 int result;
270 int done = 0;
271 unsigned long offset;
272
273 // prepare the key to look for the 'block'-th block of file
274 make_cpu_key(&key, inode,
275 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
276 3);
277
278 result = search_for_position_by_key(inode->i_sb, &key, &path);
279 if (result != POSITION_FOUND) {
280 pathrelse(&path);
281 if (p)
282 kunmap(bh_result->b_page);
283 if (result == IO_ERROR)
284 return -EIO;
285 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
286 // That there is some MMAPED data associated with it that is yet to be written to disk.
287 if ((args & GET_BLOCK_NO_HOLE)
288 && !PageUptodate(bh_result->b_page)) {
289 return -ENOENT;
290 }
291 return 0;
292 }
293 //
294 bh = get_last_bh(&path);
295 ih = get_ih(&path);
296 if (is_indirect_le_ih(ih)) {
297 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
298
299 /* FIXME: here we could cache indirect item or part of it in
300 the inode to avoid search_by_key in case of subsequent
301 access to file */
302 blocknr = get_block_num(ind_item, path.pos_in_item);
303 ret = 0;
304 if (blocknr) {
305 map_bh(bh_result, inode->i_sb, blocknr);
306 if (path.pos_in_item ==
307 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
308 set_buffer_boundary(bh_result);
309 }
310 } else
311 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
312 // That there is some MMAPED data associated with it that is yet to be written to disk.
313 if ((args & GET_BLOCK_NO_HOLE)
314 && !PageUptodate(bh_result->b_page)) {
315 ret = -ENOENT;
316 }
317
318 pathrelse(&path);
319 if (p)
320 kunmap(bh_result->b_page);
321 return ret;
322 }
323 // requested data are in direct item(s)
324 if (!(args & GET_BLOCK_READ_DIRECT)) {
325 // we are called by bmap. FIXME: we can not map block of file
326 // when it is stored in direct item(s)
327 pathrelse(&path);
328 if (p)
329 kunmap(bh_result->b_page);
330 return -ENOENT;
331 }
332
333 /* if we've got a direct item, and the buffer or page was uptodate,
334 ** we don't want to pull data off disk again. skip to the
335 ** end, where we map the buffer and return
336 */
337 if (buffer_uptodate(bh_result)) {
338 goto finished;
339 } else
340 /*
341 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
342 ** pages without any buffers. If the page is up to date, we don't want
343 ** read old data off disk. Set the up to date bit on the buffer instead
344 ** and jump to the end
345 */
346 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
347 set_buffer_uptodate(bh_result);
348 goto finished;
349 }
350 // read file tail into part of page
351 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
352 copy_item_head(&tmp_ih, ih);
353
354 /* we only want to kmap if we are reading the tail into the page.
355 ** this is not the common case, so we don't kmap until we are
356 ** sure we need to. But, this means the item might move if
357 ** kmap schedules
358 */
359 if (!p)
360 p = (char *)kmap(bh_result->b_page);
361
362 p += offset;
363 memset(p, 0, inode->i_sb->s_blocksize);
364 do {
365 if (!is_direct_le_ih(ih)) {
366 BUG();
367 }
368 /* make sure we don't read more bytes than actually exist in
369 ** the file. This can happen in odd cases where i_size isn't
370 ** correct, and when direct item padding results in a few
371 ** extra bytes at the end of the direct item
372 */
373 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
374 break;
375 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
376 chars =
377 inode->i_size - (le_ih_k_offset(ih) - 1) -
378 path.pos_in_item;
379 done = 1;
380 } else {
381 chars = ih_item_len(ih) - path.pos_in_item;
382 }
383 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
384
385 if (done)
386 break;
387
388 p += chars;
389
390 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
391 // we done, if read direct item is not the last item of
392 // node FIXME: we could try to check right delimiting key
393 // to see whether direct item continues in the right
394 // neighbor or rely on i_size
395 break;
396
397 // update key to look for the next piece
398 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
399 result = search_for_position_by_key(inode->i_sb, &key, &path);
400 if (result != POSITION_FOUND)
401 // i/o error most likely
402 break;
403 bh = get_last_bh(&path);
404 ih = get_ih(&path);
405 } while (1);
406
407 flush_dcache_page(bh_result->b_page);
408 kunmap(bh_result->b_page);
409
410 finished:
411 pathrelse(&path);
412
413 if (result == IO_ERROR)
414 return -EIO;
415
416 /* this buffer has valid data, but isn't valid for io. mapping it to
417 * block #0 tells the rest of reiserfs it just has a tail in it
418 */
419 map_bh(bh_result, inode->i_sb, 0);
420 set_buffer_uptodate(bh_result);
421 return 0;
422 }
423
424 // this is called to create file map. So, _get_block_create_0 will not
425 // read direct item
426 static int reiserfs_bmap(struct inode *inode, sector_t block,
427 struct buffer_head *bh_result, int create)
428 {
429 if (!file_capable(inode, block))
430 return -EFBIG;
431
432 reiserfs_write_lock(inode->i_sb);
433 /* do not read the direct item */
434 _get_block_create_0(inode, block, bh_result, 0);
435 reiserfs_write_unlock(inode->i_sb);
436 return 0;
437 }
438
439 /* special version of get_block that is only used by grab_tail_page right
440 ** now. It is sent to __block_write_begin, and when you try to get a
441 ** block past the end of the file (or a block from a hole) it returns
442 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
443 ** be able to do i/o on the buffers returned, unless an error value
444 ** is also returned.
445 **
446 ** So, this allows __block_write_begin to be used for reading a single block
447 ** in a page. Where it does not produce a valid page for holes, or past the
448 ** end of the file. This turns out to be exactly what we need for reading
449 ** tails for conversion.
450 **
451 ** The point of the wrapper is forcing a certain value for create, even
452 ** though the VFS layer is calling this function with create==1. If you
453 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
454 ** don't use this function.
455 */
456 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
457 struct buffer_head *bh_result,
458 int create)
459 {
460 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
461 }
462
463 /* This is special helper for reiserfs_get_block in case we are executing
464 direct_IO request. */
465 static int reiserfs_get_blocks_direct_io(struct inode *inode,
466 sector_t iblock,
467 struct buffer_head *bh_result,
468 int create)
469 {
470 int ret;
471
472 bh_result->b_page = NULL;
473
474 /* We set the b_size before reiserfs_get_block call since it is
475 referenced in convert_tail_for_hole() that may be called from
476 reiserfs_get_block() */
477 bh_result->b_size = (1 << inode->i_blkbits);
478
479 ret = reiserfs_get_block(inode, iblock, bh_result,
480 create | GET_BLOCK_NO_DANGLE);
481 if (ret)
482 goto out;
483
484 /* don't allow direct io onto tail pages */
485 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
486 /* make sure future calls to the direct io funcs for this offset
487 ** in the file fail by unmapping the buffer
488 */
489 clear_buffer_mapped(bh_result);
490 ret = -EINVAL;
491 }
492 /* Possible unpacked tail. Flush the data before pages have
493 disappeared */
494 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
495 int err;
496
497 reiserfs_write_lock(inode->i_sb);
498
499 err = reiserfs_commit_for_inode(inode);
500 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
501
502 reiserfs_write_unlock(inode->i_sb);
503
504 if (err < 0)
505 ret = err;
506 }
507 out:
508 return ret;
509 }
510
511 /*
512 ** helper function for when reiserfs_get_block is called for a hole
513 ** but the file tail is still in a direct item
514 ** bh_result is the buffer head for the hole
515 ** tail_offset is the offset of the start of the tail in the file
516 **
517 ** This calls prepare_write, which will start a new transaction
518 ** you should not be in a transaction, or have any paths held when you
519 ** call this.
520 */
521 static int convert_tail_for_hole(struct inode *inode,
522 struct buffer_head *bh_result,
523 loff_t tail_offset)
524 {
525 unsigned long index;
526 unsigned long tail_end;
527 unsigned long tail_start;
528 struct page *tail_page;
529 struct page *hole_page = bh_result->b_page;
530 int retval = 0;
531
532 if ((tail_offset & (bh_result->b_size - 1)) != 1)
533 return -EIO;
534
535 /* always try to read until the end of the block */
536 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
537 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538
539 index = tail_offset >> PAGE_CACHE_SHIFT;
540 /* hole_page can be zero in case of direct_io, we are sure
541 that we cannot get here if we write with O_DIRECT into
542 tail page */
543 if (!hole_page || index != hole_page->index) {
544 tail_page = grab_cache_page(inode->i_mapping, index);
545 retval = -ENOMEM;
546 if (!tail_page) {
547 goto out;
548 }
549 } else {
550 tail_page = hole_page;
551 }
552
553 /* we don't have to make sure the conversion did not happen while
554 ** we were locking the page because anyone that could convert
555 ** must first take i_mutex.
556 **
557 ** We must fix the tail page for writing because it might have buffers
558 ** that are mapped, but have a block number of 0. This indicates tail
559 ** data that has been read directly into the page, and
560 ** __block_write_begin won't trigger a get_block in this case.
561 */
562 fix_tail_page_for_writing(tail_page);
563 retval = __reiserfs_write_begin(tail_page, tail_start,
564 tail_end - tail_start);
565 if (retval)
566 goto unlock;
567
568 /* tail conversion might change the data in the page */
569 flush_dcache_page(tail_page);
570
571 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
572
573 unlock:
574 if (tail_page != hole_page) {
575 unlock_page(tail_page);
576 page_cache_release(tail_page);
577 }
578 out:
579 return retval;
580 }
581
582 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
583 sector_t block,
584 struct inode *inode,
585 b_blocknr_t * allocated_block_nr,
586 struct treepath *path, int flags)
587 {
588 BUG_ON(!th->t_trans_id);
589
590 #ifdef REISERFS_PREALLOCATE
591 if (!(flags & GET_BLOCK_NO_IMUX)) {
592 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
593 path, block);
594 }
595 #endif
596 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
597 block);
598 }
599
600 int reiserfs_get_block(struct inode *inode, sector_t block,
601 struct buffer_head *bh_result, int create)
602 {
603 int repeat, retval = 0;
604 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
605 INITIALIZE_PATH(path);
606 int pos_in_item;
607 struct cpu_key key;
608 struct buffer_head *bh, *unbh = NULL;
609 struct item_head *ih, tmp_ih;
610 __le32 *item;
611 int done;
612 int fs_gen;
613 int lock_depth;
614 struct reiserfs_transaction_handle *th = NULL;
615 /* space reserved in transaction batch:
616 . 3 balancings in direct->indirect conversion
617 . 1 block involved into reiserfs_update_sd()
618 XXX in practically impossible worst case direct2indirect()
619 can incur (much) more than 3 balancings.
620 quota update for user, group */
621 int jbegin_count =
622 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
623 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
624 int version;
625 int dangle = 1;
626 loff_t new_offset =
627 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
628
629 lock_depth = reiserfs_write_lock_once(inode->i_sb);
630 version = get_inode_item_key_version(inode);
631
632 if (!file_capable(inode, block)) {
633 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
634 return -EFBIG;
635 }
636
637 /* if !create, we aren't changing the FS, so we don't need to
638 ** log anything, so we don't need to start a transaction
639 */
640 if (!(create & GET_BLOCK_CREATE)) {
641 int ret;
642 /* find number of block-th logical block of the file */
643 ret = _get_block_create_0(inode, block, bh_result,
644 create | GET_BLOCK_READ_DIRECT);
645 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
646 return ret;
647 }
648 /*
649 * if we're already in a transaction, make sure to close
650 * any new transactions we start in this func
651 */
652 if ((create & GET_BLOCK_NO_DANGLE) ||
653 reiserfs_transaction_running(inode->i_sb))
654 dangle = 0;
655
656 /* If file is of such a size, that it might have a tail and tails are enabled
657 ** we should mark it as possibly needing tail packing on close
658 */
659 if ((have_large_tails(inode->i_sb)
660 && inode->i_size < i_block_size(inode) * 4)
661 || (have_small_tails(inode->i_sb)
662 && inode->i_size < i_block_size(inode)))
663 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
664
665 /* set the key of the first byte in the 'block'-th block of file */
666 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
667 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
668 start_trans:
669 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
670 if (!th) {
671 retval = -ENOMEM;
672 goto failure;
673 }
674 reiserfs_update_inode_transaction(inode);
675 }
676 research:
677
678 retval = search_for_position_by_key(inode->i_sb, &key, &path);
679 if (retval == IO_ERROR) {
680 retval = -EIO;
681 goto failure;
682 }
683
684 bh = get_last_bh(&path);
685 ih = get_ih(&path);
686 item = get_item(&path);
687 pos_in_item = path.pos_in_item;
688
689 fs_gen = get_generation(inode->i_sb);
690 copy_item_head(&tmp_ih, ih);
691
692 if (allocation_needed
693 (retval, allocated_block_nr, ih, item, pos_in_item)) {
694 /* we have to allocate block for the unformatted node */
695 if (!th) {
696 pathrelse(&path);
697 goto start_trans;
698 }
699
700 repeat =
701 _allocate_block(th, block, inode, &allocated_block_nr,
702 &path, create);
703
704 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
705 /* restart the transaction to give the journal a chance to free
706 ** some blocks. releases the path, so we have to go back to
707 ** research if we succeed on the second try
708 */
709 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
710 retval = restart_transaction(th, inode, &path);
711 if (retval)
712 goto failure;
713 repeat =
714 _allocate_block(th, block, inode,
715 &allocated_block_nr, NULL, create);
716
717 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
718 goto research;
719 }
720 if (repeat == QUOTA_EXCEEDED)
721 retval = -EDQUOT;
722 else
723 retval = -ENOSPC;
724 goto failure;
725 }
726
727 if (fs_changed(fs_gen, inode->i_sb)
728 && item_moved(&tmp_ih, &path)) {
729 goto research;
730 }
731 }
732
733 if (indirect_item_found(retval, ih)) {
734 b_blocknr_t unfm_ptr;
735 /* 'block'-th block is in the file already (there is
736 corresponding cell in some indirect item). But it may be
737 zero unformatted node pointer (hole) */
738 unfm_ptr = get_block_num(item, pos_in_item);
739 if (unfm_ptr == 0) {
740 /* use allocated block to plug the hole */
741 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
742 if (fs_changed(fs_gen, inode->i_sb)
743 && item_moved(&tmp_ih, &path)) {
744 reiserfs_restore_prepared_buffer(inode->i_sb,
745 bh);
746 goto research;
747 }
748 set_buffer_new(bh_result);
749 if (buffer_dirty(bh_result)
750 && reiserfs_data_ordered(inode->i_sb))
751 reiserfs_add_ordered_list(inode, bh_result);
752 put_block_num(item, pos_in_item, allocated_block_nr);
753 unfm_ptr = allocated_block_nr;
754 journal_mark_dirty(th, inode->i_sb, bh);
755 reiserfs_update_sd(th, inode);
756 }
757 set_block_dev_mapped(bh_result, unfm_ptr, inode);
758 pathrelse(&path);
759 retval = 0;
760 if (!dangle && th)
761 retval = reiserfs_end_persistent_transaction(th);
762
763 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
764
765 /* the item was found, so new blocks were not added to the file
766 ** there is no need to make sure the inode is updated with this
767 ** transaction
768 */
769 return retval;
770 }
771
772 if (!th) {
773 pathrelse(&path);
774 goto start_trans;
775 }
776
777 /* desired position is not found or is in the direct item. We have
778 to append file with holes up to 'block'-th block converting
779 direct items to indirect one if necessary */
780 done = 0;
781 do {
782 if (is_statdata_le_ih(ih)) {
783 __le32 unp = 0;
784 struct cpu_key tmp_key;
785
786 /* indirect item has to be inserted */
787 make_le_item_head(&tmp_ih, &key, version, 1,
788 TYPE_INDIRECT, UNFM_P_SIZE,
789 0 /* free_space */ );
790
791 if (cpu_key_k_offset(&key) == 1) {
792 /* we are going to add 'block'-th block to the file. Use
793 allocated block for that */
794 unp = cpu_to_le32(allocated_block_nr);
795 set_block_dev_mapped(bh_result,
796 allocated_block_nr, inode);
797 set_buffer_new(bh_result);
798 done = 1;
799 }
800 tmp_key = key; // ;)
801 set_cpu_key_k_offset(&tmp_key, 1);
802 PATH_LAST_POSITION(&path)++;
803
804 retval =
805 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
806 inode, (char *)&unp);
807 if (retval) {
808 reiserfs_free_block(th, inode,
809 allocated_block_nr, 1);
810 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
811 }
812 //mark_tail_converted (inode);
813 } else if (is_direct_le_ih(ih)) {
814 /* direct item has to be converted */
815 loff_t tail_offset;
816
817 tail_offset =
818 ((le_ih_k_offset(ih) -
819 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
820 if (tail_offset == cpu_key_k_offset(&key)) {
821 /* direct item we just found fits into block we have
822 to map. Convert it into unformatted node: use
823 bh_result for the conversion */
824 set_block_dev_mapped(bh_result,
825 allocated_block_nr, inode);
826 unbh = bh_result;
827 done = 1;
828 } else {
829 /* we have to padd file tail stored in direct item(s)
830 up to block size and convert it to unformatted
831 node. FIXME: this should also get into page cache */
832
833 pathrelse(&path);
834 /*
835 * ugly, but we can only end the transaction if
836 * we aren't nested
837 */
838 BUG_ON(!th->t_refcount);
839 if (th->t_refcount == 1) {
840 retval =
841 reiserfs_end_persistent_transaction
842 (th);
843 th = NULL;
844 if (retval)
845 goto failure;
846 }
847
848 retval =
849 convert_tail_for_hole(inode, bh_result,
850 tail_offset);
851 if (retval) {
852 if (retval != -ENOSPC)
853 reiserfs_error(inode->i_sb,
854 "clm-6004",
855 "convert tail failed "
856 "inode %lu, error %d",
857 inode->i_ino,
858 retval);
859 if (allocated_block_nr) {
860 /* the bitmap, the super, and the stat data == 3 */
861 if (!th)
862 th = reiserfs_persistent_transaction(inode->i_sb, 3);
863 if (th)
864 reiserfs_free_block(th,
865 inode,
866 allocated_block_nr,
867 1);
868 }
869 goto failure;
870 }
871 goto research;
872 }
873 retval =
874 direct2indirect(th, inode, &path, unbh,
875 tail_offset);
876 if (retval) {
877 reiserfs_unmap_buffer(unbh);
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
880 goto failure;
881 }
882 /* it is important the set_buffer_uptodate is done after
883 ** the direct2indirect. The buffer might contain valid
884 ** data newer than the data on disk (read by readpage, changed,
885 ** and then sent here by writepage). direct2indirect needs
886 ** to know if unbh was already up to date, so it can decide
887 ** if the data in unbh needs to be replaced with data from
888 ** the disk
889 */
890 set_buffer_uptodate(unbh);
891
892 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
893 buffer will disappear shortly, so it should not be added to
894 */
895 if (unbh->b_page) {
896 /* we've converted the tail, so we must
897 ** flush unbh before the transaction commits
898 */
899 reiserfs_add_tail_list(inode, unbh);
900
901 /* mark it dirty now to prevent commit_write from adding
902 ** this buffer to the inode's dirty buffer list
903 */
904 /*
905 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
906 * It's still atomic, but it sets the page dirty too,
907 * which makes it eligible for writeback at any time by the
908 * VM (which was also the case with __mark_buffer_dirty())
909 */
910 mark_buffer_dirty(unbh);
911 }
912 } else {
913 /* append indirect item with holes if needed, when appending
914 pointer to 'block'-th block use block, which is already
915 allocated */
916 struct cpu_key tmp_key;
917 unp_t unf_single = 0; // We use this in case we need to allocate only
918 // one block which is a fastpath
919 unp_t *un;
920 __u64 max_to_insert =
921 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
922 UNFM_P_SIZE;
923 __u64 blocks_needed;
924
925 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
926 "vs-804: invalid position for append");
927 /* indirect item has to be appended, set up key of that position */
928 make_cpu_key(&tmp_key, inode,
929 le_key_k_offset(version,
930 &(ih->ih_key)) +
931 op_bytes_number(ih,
932 inode->i_sb->s_blocksize),
933 //pos_in_item * inode->i_sb->s_blocksize,
934 TYPE_INDIRECT, 3); // key type is unimportant
935
936 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
937 "green-805: invalid offset");
938 blocks_needed =
939 1 +
940 ((cpu_key_k_offset(&key) -
941 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
942 s_blocksize_bits);
943
944 if (blocks_needed == 1) {
945 un = &unf_single;
946 } else {
947 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
948 if (!un) {
949 un = &unf_single;
950 blocks_needed = 1;
951 max_to_insert = 0;
952 }
953 }
954 if (blocks_needed <= max_to_insert) {
955 /* we are going to add target block to the file. Use allocated
956 block for that */
957 un[blocks_needed - 1] =
958 cpu_to_le32(allocated_block_nr);
959 set_block_dev_mapped(bh_result,
960 allocated_block_nr, inode);
961 set_buffer_new(bh_result);
962 done = 1;
963 } else {
964 /* paste hole to the indirect item */
965 /* If kmalloc failed, max_to_insert becomes zero and it means we
966 only have space for one block */
967 blocks_needed =
968 max_to_insert ? max_to_insert : 1;
969 }
970 retval =
971 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
972 (char *)un,
973 UNFM_P_SIZE *
974 blocks_needed);
975
976 if (blocks_needed != 1)
977 kfree(un);
978
979 if (retval) {
980 reiserfs_free_block(th, inode,
981 allocated_block_nr, 1);
982 goto failure;
983 }
984 if (!done) {
985 /* We need to mark new file size in case this function will be
986 interrupted/aborted later on. And we may do this only for
987 holes. */
988 inode->i_size +=
989 inode->i_sb->s_blocksize * blocks_needed;
990 }
991 }
992
993 if (done == 1)
994 break;
995
996 /* this loop could log more blocks than we had originally asked
997 ** for. So, we have to allow the transaction to end if it is
998 ** too big or too full. Update the inode so things are
999 ** consistent if we crash before the function returns
1000 **
1001 ** release the path so that anybody waiting on the path before
1002 ** ending their transaction will be able to continue.
1003 */
1004 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1005 retval = restart_transaction(th, inode, &path);
1006 if (retval)
1007 goto failure;
1008 }
1009 /*
1010 * inserting indirect pointers for a hole can take a
1011 * long time. reschedule if needed and also release the write
1012 * lock for others.
1013 */
1014 if (need_resched()) {
1015 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1016 schedule();
1017 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1018 }
1019
1020 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1021 if (retval == IO_ERROR) {
1022 retval = -EIO;
1023 goto failure;
1024 }
1025 if (retval == POSITION_FOUND) {
1026 reiserfs_warning(inode->i_sb, "vs-825",
1027 "%K should not be found", &key);
1028 retval = -EEXIST;
1029 if (allocated_block_nr)
1030 reiserfs_free_block(th, inode,
1031 allocated_block_nr, 1);
1032 pathrelse(&path);
1033 goto failure;
1034 }
1035 bh = get_last_bh(&path);
1036 ih = get_ih(&path);
1037 item = get_item(&path);
1038 pos_in_item = path.pos_in_item;
1039 } while (1);
1040
1041 retval = 0;
1042
1043 failure:
1044 if (th && (!dangle || (retval && !th->t_trans_id))) {
1045 int err;
1046 if (th->t_trans_id)
1047 reiserfs_update_sd(th, inode);
1048 err = reiserfs_end_persistent_transaction(th);
1049 if (err)
1050 retval = err;
1051 }
1052
1053 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1054 reiserfs_check_path(&path);
1055 return retval;
1056 }
1057
1058 static int
1059 reiserfs_readpages(struct file *file, struct address_space *mapping,
1060 struct list_head *pages, unsigned nr_pages)
1061 {
1062 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1063 }
1064
1065 /* Compute real number of used bytes by file
1066 * Following three functions can go away when we'll have enough space in stat item
1067 */
1068 static int real_space_diff(struct inode *inode, int sd_size)
1069 {
1070 int bytes;
1071 loff_t blocksize = inode->i_sb->s_blocksize;
1072
1073 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1074 return sd_size;
1075
1076 /* End of file is also in full block with indirect reference, so round
1077 ** up to the next block.
1078 **
1079 ** there is just no way to know if the tail is actually packed
1080 ** on the file, so we have to assume it isn't. When we pack the
1081 ** tail, we add 4 bytes to pretend there really is an unformatted
1082 ** node pointer
1083 */
1084 bytes =
1085 ((inode->i_size +
1086 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1087 sd_size;
1088 return bytes;
1089 }
1090
1091 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1092 int sd_size)
1093 {
1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 return inode->i_size +
1096 (loff_t) (real_space_diff(inode, sd_size));
1097 }
1098 return ((loff_t) real_space_diff(inode, sd_size)) +
1099 (((loff_t) blocks) << 9);
1100 }
1101
1102 /* Compute number of blocks used by file in ReiserFS counting */
1103 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1104 {
1105 loff_t bytes = inode_get_bytes(inode);
1106 loff_t real_space = real_space_diff(inode, sd_size);
1107
1108 /* keeps fsck and non-quota versions of reiserfs happy */
1109 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1110 bytes += (loff_t) 511;
1111 }
1112
1113 /* files from before the quota patch might i_blocks such that
1114 ** bytes < real_space. Deal with that here to prevent it from
1115 ** going negative.
1116 */
1117 if (bytes < real_space)
1118 return 0;
1119 return (bytes - real_space) >> 9;
1120 }
1121
1122 //
1123 // BAD: new directories have stat data of new type and all other items
1124 // of old type. Version stored in the inode says about body items, so
1125 // in update_stat_data we can not rely on inode, but have to check
1126 // item version directly
1127 //
1128
1129 // called by read_locked_inode
1130 static void init_inode(struct inode *inode, struct treepath *path)
1131 {
1132 struct buffer_head *bh;
1133 struct item_head *ih;
1134 __u32 rdev;
1135 //int version = ITEM_VERSION_1;
1136
1137 bh = PATH_PLAST_BUFFER(path);
1138 ih = PATH_PITEM_HEAD(path);
1139
1140 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1141
1142 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1143 REISERFS_I(inode)->i_flags = 0;
1144 REISERFS_I(inode)->i_prealloc_block = 0;
1145 REISERFS_I(inode)->i_prealloc_count = 0;
1146 REISERFS_I(inode)->i_trans_id = 0;
1147 REISERFS_I(inode)->i_jl = NULL;
1148 reiserfs_init_xattr_rwsem(inode);
1149
1150 if (stat_data_v1(ih)) {
1151 struct stat_data_v1 *sd =
1152 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1153 unsigned long blocks;
1154
1155 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1156 set_inode_sd_version(inode, STAT_DATA_V1);
1157 inode->i_mode = sd_v1_mode(sd);
1158 set_nlink(inode, sd_v1_nlink(sd));
1159 i_uid_write(inode, sd_v1_uid(sd));
1160 i_gid_write(inode, sd_v1_gid(sd));
1161 inode->i_size = sd_v1_size(sd);
1162 inode->i_atime.tv_sec = sd_v1_atime(sd);
1163 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1164 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1165 inode->i_atime.tv_nsec = 0;
1166 inode->i_ctime.tv_nsec = 0;
1167 inode->i_mtime.tv_nsec = 0;
1168
1169 inode->i_blocks = sd_v1_blocks(sd);
1170 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1171 blocks = (inode->i_size + 511) >> 9;
1172 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1173 if (inode->i_blocks > blocks) {
1174 // there was a bug in <=3.5.23 when i_blocks could take negative
1175 // values. Starting from 3.5.17 this value could even be stored in
1176 // stat data. For such files we set i_blocks based on file
1177 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1178 // only updated if file's inode will ever change
1179 inode->i_blocks = blocks;
1180 }
1181
1182 rdev = sd_v1_rdev(sd);
1183 REISERFS_I(inode)->i_first_direct_byte =
1184 sd_v1_first_direct_byte(sd);
1185 /* an early bug in the quota code can give us an odd number for the
1186 ** block count. This is incorrect, fix it here.
1187 */
1188 if (inode->i_blocks & 1) {
1189 inode->i_blocks++;
1190 }
1191 inode_set_bytes(inode,
1192 to_real_used_space(inode, inode->i_blocks,
1193 SD_V1_SIZE));
1194 /* nopack is initially zero for v1 objects. For v2 objects,
1195 nopack is initialised from sd_attrs */
1196 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1197 } else {
1198 // new stat data found, but object may have old items
1199 // (directories and symlinks)
1200 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1201
1202 inode->i_mode = sd_v2_mode(sd);
1203 set_nlink(inode, sd_v2_nlink(sd));
1204 i_uid_write(inode, sd_v2_uid(sd));
1205 inode->i_size = sd_v2_size(sd);
1206 i_gid_write(inode, sd_v2_gid(sd));
1207 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1208 inode->i_atime.tv_sec = sd_v2_atime(sd);
1209 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1210 inode->i_ctime.tv_nsec = 0;
1211 inode->i_mtime.tv_nsec = 0;
1212 inode->i_atime.tv_nsec = 0;
1213 inode->i_blocks = sd_v2_blocks(sd);
1214 rdev = sd_v2_rdev(sd);
1215 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1216 inode->i_generation =
1217 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1218 else
1219 inode->i_generation = sd_v2_generation(sd);
1220
1221 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1223 else
1224 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1225 REISERFS_I(inode)->i_first_direct_byte = 0;
1226 set_inode_sd_version(inode, STAT_DATA_V2);
1227 inode_set_bytes(inode,
1228 to_real_used_space(inode, inode->i_blocks,
1229 SD_V2_SIZE));
1230 /* read persistent inode attributes from sd and initialise
1231 generic inode flags from them */
1232 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1233 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1234 }
1235
1236 pathrelse(path);
1237 if (S_ISREG(inode->i_mode)) {
1238 inode->i_op = &reiserfs_file_inode_operations;
1239 inode->i_fop = &reiserfs_file_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else if (S_ISDIR(inode->i_mode)) {
1242 inode->i_op = &reiserfs_dir_inode_operations;
1243 inode->i_fop = &reiserfs_dir_operations;
1244 } else if (S_ISLNK(inode->i_mode)) {
1245 inode->i_op = &reiserfs_symlink_inode_operations;
1246 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1247 } else {
1248 inode->i_blocks = 0;
1249 inode->i_op = &reiserfs_special_inode_operations;
1250 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1251 }
1252 }
1253
1254 // update new stat data with inode fields
1255 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1256 {
1257 struct stat_data *sd_v2 = (struct stat_data *)sd;
1258 __u16 flags;
1259
1260 set_sd_v2_mode(sd_v2, inode->i_mode);
1261 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1262 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1263 set_sd_v2_size(sd_v2, size);
1264 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1265 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1266 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1267 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1268 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1270 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1271 else
1272 set_sd_v2_generation(sd_v2, inode->i_generation);
1273 flags = REISERFS_I(inode)->i_attrs;
1274 i_attrs_to_sd_attrs(inode, &flags);
1275 set_sd_v2_attrs(sd_v2, flags);
1276 }
1277
1278 // used to copy inode's fields to old stat data
1279 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1280 {
1281 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1282
1283 set_sd_v1_mode(sd_v1, inode->i_mode);
1284 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1285 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1286 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1287 set_sd_v1_size(sd_v1, size);
1288 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1289 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1290 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1291
1292 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1293 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1294 else
1295 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1296
1297 // Sigh. i_first_direct_byte is back
1298 set_sd_v1_first_direct_byte(sd_v1,
1299 REISERFS_I(inode)->i_first_direct_byte);
1300 }
1301
1302 /* NOTE, you must prepare the buffer head before sending it here,
1303 ** and then log it after the call
1304 */
1305 static void update_stat_data(struct treepath *path, struct inode *inode,
1306 loff_t size)
1307 {
1308 struct buffer_head *bh;
1309 struct item_head *ih;
1310
1311 bh = PATH_PLAST_BUFFER(path);
1312 ih = PATH_PITEM_HEAD(path);
1313
1314 if (!is_statdata_le_ih(ih))
1315 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1316 INODE_PKEY(inode), ih);
1317
1318 if (stat_data_v1(ih)) {
1319 // path points to old stat data
1320 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1321 } else {
1322 inode2sd(B_I_PITEM(bh, ih), inode, size);
1323 }
1324
1325 return;
1326 }
1327
1328 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1329 struct inode *inode, loff_t size)
1330 {
1331 struct cpu_key key;
1332 INITIALIZE_PATH(path);
1333 struct buffer_head *bh;
1334 int fs_gen;
1335 struct item_head *ih, tmp_ih;
1336 int retval;
1337
1338 BUG_ON(!th->t_trans_id);
1339
1340 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1341
1342 for (;;) {
1343 int pos;
1344 /* look for the object's stat data */
1345 retval = search_item(inode->i_sb, &key, &path);
1346 if (retval == IO_ERROR) {
1347 reiserfs_error(inode->i_sb, "vs-13050",
1348 "i/o failure occurred trying to "
1349 "update %K stat data", &key);
1350 return;
1351 }
1352 if (retval == ITEM_NOT_FOUND) {
1353 pos = PATH_LAST_POSITION(&path);
1354 pathrelse(&path);
1355 if (inode->i_nlink == 0) {
1356 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1357 return;
1358 }
1359 reiserfs_warning(inode->i_sb, "vs-13060",
1360 "stat data of object %k (nlink == %d) "
1361 "not found (pos %d)",
1362 INODE_PKEY(inode), inode->i_nlink,
1363 pos);
1364 reiserfs_check_path(&path);
1365 return;
1366 }
1367
1368 /* sigh, prepare_for_journal might schedule. When it schedules the
1369 ** FS might change. We have to detect that, and loop back to the
1370 ** search if the stat data item has moved
1371 */
1372 bh = get_last_bh(&path);
1373 ih = get_ih(&path);
1374 copy_item_head(&tmp_ih, ih);
1375 fs_gen = get_generation(inode->i_sb);
1376 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1377 if (fs_changed(fs_gen, inode->i_sb)
1378 && item_moved(&tmp_ih, &path)) {
1379 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1380 continue; /* Stat_data item has been moved after scheduling. */
1381 }
1382 break;
1383 }
1384 update_stat_data(&path, inode, size);
1385 journal_mark_dirty(th, th->t_super, bh);
1386 pathrelse(&path);
1387 return;
1388 }
1389
1390 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1391 ** does a make_bad_inode when things go wrong. But, we need to make sure
1392 ** and clear the key in the private portion of the inode, otherwise a
1393 ** corresponding iput might try to delete whatever object the inode last
1394 ** represented.
1395 */
1396 static void reiserfs_make_bad_inode(struct inode *inode)
1397 {
1398 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1399 make_bad_inode(inode);
1400 }
1401
1402 //
1403 // initially this function was derived from minix or ext2's analog and
1404 // evolved as the prototype did
1405 //
1406
1407 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1408 {
1409 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1410 inode->i_ino = args->objectid;
1411 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1412 return 0;
1413 }
1414
1415 /* looks for stat data in the tree, and fills up the fields of in-core
1416 inode stat data fields */
1417 void reiserfs_read_locked_inode(struct inode *inode,
1418 struct reiserfs_iget_args *args)
1419 {
1420 INITIALIZE_PATH(path_to_sd);
1421 struct cpu_key key;
1422 unsigned long dirino;
1423 int retval;
1424
1425 dirino = args->dirid;
1426
1427 /* set version 1, version 2 could be used too, because stat data
1428 key is the same in both versions */
1429 key.version = KEY_FORMAT_3_5;
1430 key.on_disk_key.k_dir_id = dirino;
1431 key.on_disk_key.k_objectid = inode->i_ino;
1432 key.on_disk_key.k_offset = 0;
1433 key.on_disk_key.k_type = 0;
1434
1435 /* look for the object's stat data */
1436 retval = search_item(inode->i_sb, &key, &path_to_sd);
1437 if (retval == IO_ERROR) {
1438 reiserfs_error(inode->i_sb, "vs-13070",
1439 "i/o failure occurred trying to find "
1440 "stat data of %K", &key);
1441 reiserfs_make_bad_inode(inode);
1442 return;
1443 }
1444 if (retval != ITEM_FOUND) {
1445 /* a stale NFS handle can trigger this without it being an error */
1446 pathrelse(&path_to_sd);
1447 reiserfs_make_bad_inode(inode);
1448 clear_nlink(inode);
1449 return;
1450 }
1451
1452 init_inode(inode, &path_to_sd);
1453
1454 /* It is possible that knfsd is trying to access inode of a file
1455 that is being removed from the disk by some other thread. As we
1456 update sd on unlink all that is required is to check for nlink
1457 here. This bug was first found by Sizif when debugging
1458 SquidNG/Butterfly, forgotten, and found again after Philippe
1459 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1460
1461 More logical fix would require changes in fs/inode.c:iput() to
1462 remove inode from hash-table _after_ fs cleaned disk stuff up and
1463 in iget() to return NULL if I_FREEING inode is found in
1464 hash-table. */
1465 /* Currently there is one place where it's ok to meet inode with
1466 nlink==0: processing of open-unlinked and half-truncated files
1467 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1468 if ((inode->i_nlink == 0) &&
1469 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1470 reiserfs_warning(inode->i_sb, "vs-13075",
1471 "dead inode read from disk %K. "
1472 "This is likely to be race with knfsd. Ignore",
1473 &key);
1474 reiserfs_make_bad_inode(inode);
1475 }
1476
1477 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1478
1479 /*
1480 * Stat data v1 doesn't support ACLs.
1481 */
1482 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1483 cache_no_acl(inode);
1484 }
1485
1486 /**
1487 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1488 *
1489 * @inode: inode from hash table to check
1490 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1491 *
1492 * This function is called by iget5_locked() to distinguish reiserfs inodes
1493 * having the same inode numbers. Such inodes can only exist due to some
1494 * error condition. One of them should be bad. Inodes with identical
1495 * inode numbers (objectids) are distinguished by parent directory ids.
1496 *
1497 */
1498 int reiserfs_find_actor(struct inode *inode, void *opaque)
1499 {
1500 struct reiserfs_iget_args *args;
1501
1502 args = opaque;
1503 /* args is already in CPU order */
1504 return (inode->i_ino == args->objectid) &&
1505 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1506 }
1507
1508 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1509 {
1510 struct inode *inode;
1511 struct reiserfs_iget_args args;
1512
1513 args.objectid = key->on_disk_key.k_objectid;
1514 args.dirid = key->on_disk_key.k_dir_id;
1515 reiserfs_write_unlock(s);
1516 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1517 reiserfs_find_actor, reiserfs_init_locked_inode,
1518 (void *)(&args));
1519 reiserfs_write_lock(s);
1520 if (!inode)
1521 return ERR_PTR(-ENOMEM);
1522
1523 if (inode->i_state & I_NEW) {
1524 reiserfs_read_locked_inode(inode, &args);
1525 unlock_new_inode(inode);
1526 }
1527
1528 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1529 /* either due to i/o error or a stale NFS handle */
1530 iput(inode);
1531 inode = NULL;
1532 }
1533 return inode;
1534 }
1535
1536 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1537 u32 objectid, u32 dir_id, u32 generation)
1538
1539 {
1540 struct cpu_key key;
1541 struct inode *inode;
1542
1543 key.on_disk_key.k_objectid = objectid;
1544 key.on_disk_key.k_dir_id = dir_id;
1545 reiserfs_write_lock(sb);
1546 inode = reiserfs_iget(sb, &key);
1547 if (inode && !IS_ERR(inode) && generation != 0 &&
1548 generation != inode->i_generation) {
1549 iput(inode);
1550 inode = NULL;
1551 }
1552 reiserfs_write_unlock(sb);
1553
1554 return d_obtain_alias(inode);
1555 }
1556
1557 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1558 int fh_len, int fh_type)
1559 {
1560 /* fhtype happens to reflect the number of u32s encoded.
1561 * due to a bug in earlier code, fhtype might indicate there
1562 * are more u32s then actually fitted.
1563 * so if fhtype seems to be more than len, reduce fhtype.
1564 * Valid types are:
1565 * 2 - objectid + dir_id - legacy support
1566 * 3 - objectid + dir_id + generation
1567 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1568 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1569 * 6 - as above plus generation of directory
1570 * 6 does not fit in NFSv2 handles
1571 */
1572 if (fh_type > fh_len) {
1573 if (fh_type != 6 || fh_len != 5)
1574 reiserfs_warning(sb, "reiserfs-13077",
1575 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1576 fh_type, fh_len);
1577 fh_type = fh_len;
1578 }
1579 if (fh_len < 2)
1580 return NULL;
1581
1582 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1583 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1584 }
1585
1586 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1587 int fh_len, int fh_type)
1588 {
1589 if (fh_type > fh_len)
1590 fh_type = fh_len;
1591 if (fh_type < 4)
1592 return NULL;
1593
1594 return reiserfs_get_dentry(sb,
1595 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1596 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1597 (fh_type == 6) ? fid->raw[5] : 0);
1598 }
1599
1600 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1601 struct inode *parent)
1602 {
1603 int maxlen = *lenp;
1604
1605 if (parent && (maxlen < 5)) {
1606 *lenp = 5;
1607 return FILEID_INVALID;
1608 } else if (maxlen < 3) {
1609 *lenp = 3;
1610 return FILEID_INVALID;
1611 }
1612
1613 data[0] = inode->i_ino;
1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 data[2] = inode->i_generation;
1616 *lenp = 3;
1617 if (parent) {
1618 data[3] = parent->i_ino;
1619 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1620 *lenp = 5;
1621 if (maxlen >= 6) {
1622 data[5] = parent->i_generation;
1623 *lenp = 6;
1624 }
1625 }
1626 return *lenp;
1627 }
1628
1629 /* looks for stat data, then copies fields to it, marks the buffer
1630 containing stat data as dirty */
1631 /* reiserfs inodes are never really dirty, since the dirty inode call
1632 ** always logs them. This call allows the VFS inode marking routines
1633 ** to properly mark inodes for datasync and such, but only actually
1634 ** does something when called for a synchronous update.
1635 */
1636 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 struct reiserfs_transaction_handle th;
1639 int jbegin_count = 1;
1640
1641 if (inode->i_sb->s_flags & MS_RDONLY)
1642 return -EROFS;
1643 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1644 ** these cases are just when the system needs ram, not when the
1645 ** inode needs to reach disk for safety, and they can safely be
1646 ** ignored because the altered inode has already been logged.
1647 */
1648 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1649 reiserfs_write_lock(inode->i_sb);
1650 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1651 reiserfs_update_sd(&th, inode);
1652 journal_end_sync(&th, inode->i_sb, jbegin_count);
1653 }
1654 reiserfs_write_unlock(inode->i_sb);
1655 }
1656 return 0;
1657 }
1658
1659 /* stat data of new object is inserted already, this inserts the item
1660 containing "." and ".." entries */
1661 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1662 struct inode *inode,
1663 struct item_head *ih, struct treepath *path,
1664 struct inode *dir)
1665 {
1666 struct super_block *sb = th->t_super;
1667 char empty_dir[EMPTY_DIR_SIZE];
1668 char *body = empty_dir;
1669 struct cpu_key key;
1670 int retval;
1671
1672 BUG_ON(!th->t_trans_id);
1673
1674 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1675 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1676 TYPE_DIRENTRY, 3 /*key length */ );
1677
1678 /* compose item head for new item. Directories consist of items of
1679 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1680 is done by reiserfs_new_inode */
1681 if (old_format_only(sb)) {
1682 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1683 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1684
1685 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1686 ih->ih_key.k_objectid,
1687 INODE_PKEY(dir)->k_dir_id,
1688 INODE_PKEY(dir)->k_objectid);
1689 } else {
1690 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1691 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1692
1693 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1694 ih->ih_key.k_objectid,
1695 INODE_PKEY(dir)->k_dir_id,
1696 INODE_PKEY(dir)->k_objectid);
1697 }
1698
1699 /* look for place in the tree for new item */
1700 retval = search_item(sb, &key, path);
1701 if (retval == IO_ERROR) {
1702 reiserfs_error(sb, "vs-13080",
1703 "i/o failure occurred creating new directory");
1704 return -EIO;
1705 }
1706 if (retval == ITEM_FOUND) {
1707 pathrelse(path);
1708 reiserfs_warning(sb, "vs-13070",
1709 "object with this key exists (%k)",
1710 &(ih->ih_key));
1711 return -EEXIST;
1712 }
1713
1714 /* insert item, that is empty directory item */
1715 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1716 }
1717
1718 /* stat data of object has been inserted, this inserts the item
1719 containing the body of symlink */
1720 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1721 struct item_head *ih,
1722 struct treepath *path, const char *symname,
1723 int item_len)
1724 {
1725 struct super_block *sb = th->t_super;
1726 struct cpu_key key;
1727 int retval;
1728
1729 BUG_ON(!th->t_trans_id);
1730
1731 _make_cpu_key(&key, KEY_FORMAT_3_5,
1732 le32_to_cpu(ih->ih_key.k_dir_id),
1733 le32_to_cpu(ih->ih_key.k_objectid),
1734 1, TYPE_DIRECT, 3 /*key length */ );
1735
1736 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1737 0 /*free_space */ );
1738
1739 /* look for place in the tree for new item */
1740 retval = search_item(sb, &key, path);
1741 if (retval == IO_ERROR) {
1742 reiserfs_error(sb, "vs-13080",
1743 "i/o failure occurred creating new symlink");
1744 return -EIO;
1745 }
1746 if (retval == ITEM_FOUND) {
1747 pathrelse(path);
1748 reiserfs_warning(sb, "vs-13080",
1749 "object with this key exists (%k)",
1750 &(ih->ih_key));
1751 return -EEXIST;
1752 }
1753
1754 /* insert item, that is body of symlink */
1755 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1756 }
1757
1758 /* inserts the stat data into the tree, and then calls
1759 reiserfs_new_directory (to insert ".", ".." item if new object is
1760 directory) or reiserfs_new_symlink (to insert symlink body if new
1761 object is symlink) or nothing (if new object is regular file)
1762
1763 NOTE! uid and gid must already be set in the inode. If we return
1764 non-zero due to an error, we have to drop the quota previously allocated
1765 for the fresh inode. This can only be done outside a transaction, so
1766 if we return non-zero, we also end the transaction. */
1767 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1768 struct inode *dir, umode_t mode, const char *symname,
1769 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1770 strlen (symname) for symlinks) */
1771 loff_t i_size, struct dentry *dentry,
1772 struct inode *inode,
1773 struct reiserfs_security_handle *security)
1774 {
1775 struct super_block *sb;
1776 struct reiserfs_iget_args args;
1777 INITIALIZE_PATH(path_to_key);
1778 struct cpu_key key;
1779 struct item_head ih;
1780 struct stat_data sd;
1781 int retval;
1782 int err;
1783
1784 BUG_ON(!th->t_trans_id);
1785
1786 reiserfs_write_unlock(inode->i_sb);
1787 err = dquot_alloc_inode(inode);
1788 reiserfs_write_lock(inode->i_sb);
1789 if (err)
1790 goto out_end_trans;
1791 if (!dir->i_nlink) {
1792 err = -EPERM;
1793 goto out_bad_inode;
1794 }
1795
1796 sb = dir->i_sb;
1797
1798 /* item head of new item */
1799 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1800 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1801 if (!ih.ih_key.k_objectid) {
1802 err = -ENOMEM;
1803 goto out_bad_inode;
1804 }
1805 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1806 if (old_format_only(sb))
1807 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1808 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1809 else
1810 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1811 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1812 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1813 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1814 if (insert_inode_locked4(inode, args.objectid,
1815 reiserfs_find_actor, &args) < 0) {
1816 err = -EINVAL;
1817 goto out_bad_inode;
1818 }
1819 if (old_format_only(sb))
1820 /* not a perfect generation count, as object ids can be reused, but
1821 ** this is as good as reiserfs can do right now.
1822 ** note that the private part of inode isn't filled in yet, we have
1823 ** to use the directory.
1824 */
1825 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1826 else
1827 #if defined( USE_INODE_GENERATION_COUNTER )
1828 inode->i_generation =
1829 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1830 #else
1831 inode->i_generation = ++event;
1832 #endif
1833
1834 /* fill stat data */
1835 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1836
1837 /* uid and gid must already be set by the caller for quota init */
1838
1839 /* symlink cannot be immutable or append only, right? */
1840 if (S_ISLNK(inode->i_mode))
1841 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1842
1843 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1844 inode->i_size = i_size;
1845 inode->i_blocks = 0;
1846 inode->i_bytes = 0;
1847 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1848 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1849
1850 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1851 REISERFS_I(inode)->i_flags = 0;
1852 REISERFS_I(inode)->i_prealloc_block = 0;
1853 REISERFS_I(inode)->i_prealloc_count = 0;
1854 REISERFS_I(inode)->i_trans_id = 0;
1855 REISERFS_I(inode)->i_jl = NULL;
1856 REISERFS_I(inode)->i_attrs =
1857 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1858 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1859 reiserfs_init_xattr_rwsem(inode);
1860
1861 /* key to search for correct place for new stat data */
1862 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1863 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1864 TYPE_STAT_DATA, 3 /*key length */ );
1865
1866 /* find proper place for inserting of stat data */
1867 retval = search_item(sb, &key, &path_to_key);
1868 if (retval == IO_ERROR) {
1869 err = -EIO;
1870 goto out_bad_inode;
1871 }
1872 if (retval == ITEM_FOUND) {
1873 pathrelse(&path_to_key);
1874 err = -EEXIST;
1875 goto out_bad_inode;
1876 }
1877 if (old_format_only(sb)) {
1878 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1879 pathrelse(&path_to_key);
1880 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1881 err = -EINVAL;
1882 goto out_bad_inode;
1883 }
1884 inode2sd_v1(&sd, inode, inode->i_size);
1885 } else {
1886 inode2sd(&sd, inode, inode->i_size);
1887 }
1888 // store in in-core inode the key of stat data and version all
1889 // object items will have (directory items will have old offset
1890 // format, other new objects will consist of new items)
1891 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1892 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1893 else
1894 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1895 if (old_format_only(sb))
1896 set_inode_sd_version(inode, STAT_DATA_V1);
1897 else
1898 set_inode_sd_version(inode, STAT_DATA_V2);
1899
1900 /* insert the stat data into the tree */
1901 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1902 if (REISERFS_I(dir)->new_packing_locality)
1903 th->displace_new_blocks = 1;
1904 #endif
1905 retval =
1906 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1907 (char *)(&sd));
1908 if (retval) {
1909 err = retval;
1910 reiserfs_check_path(&path_to_key);
1911 goto out_bad_inode;
1912 }
1913 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1914 if (!th->displace_new_blocks)
1915 REISERFS_I(dir)->new_packing_locality = 0;
1916 #endif
1917 if (S_ISDIR(mode)) {
1918 /* insert item with "." and ".." */
1919 retval =
1920 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1921 }
1922
1923 if (S_ISLNK(mode)) {
1924 /* insert body of symlink */
1925 if (!old_format_only(sb))
1926 i_size = ROUND_UP(i_size);
1927 retval =
1928 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1929 i_size);
1930 }
1931 if (retval) {
1932 err = retval;
1933 reiserfs_check_path(&path_to_key);
1934 journal_end(th, th->t_super, th->t_blocks_allocated);
1935 goto out_inserted_sd;
1936 }
1937
1938 if (reiserfs_posixacl(inode->i_sb)) {
1939 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1940 if (retval) {
1941 err = retval;
1942 reiserfs_check_path(&path_to_key);
1943 journal_end(th, th->t_super, th->t_blocks_allocated);
1944 goto out_inserted_sd;
1945 }
1946 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1947 reiserfs_warning(inode->i_sb, "jdm-13090",
1948 "ACLs aren't enabled in the fs, "
1949 "but vfs thinks they are!");
1950 } else if (IS_PRIVATE(dir))
1951 inode->i_flags |= S_PRIVATE;
1952
1953 if (security->name) {
1954 retval = reiserfs_security_write(th, inode, security);
1955 if (retval) {
1956 err = retval;
1957 reiserfs_check_path(&path_to_key);
1958 retval = journal_end(th, th->t_super,
1959 th->t_blocks_allocated);
1960 if (retval)
1961 err = retval;
1962 goto out_inserted_sd;
1963 }
1964 }
1965
1966 reiserfs_update_sd(th, inode);
1967 reiserfs_check_path(&path_to_key);
1968
1969 return 0;
1970
1971 /* it looks like you can easily compress these two goto targets into
1972 * one. Keeping it like this doesn't actually hurt anything, and they
1973 * are place holders for what the quota code actually needs.
1974 */
1975 out_bad_inode:
1976 /* Invalidate the object, nothing was inserted yet */
1977 INODE_PKEY(inode)->k_objectid = 0;
1978
1979 /* Quota change must be inside a transaction for journaling */
1980 dquot_free_inode(inode);
1981
1982 out_end_trans:
1983 journal_end(th, th->t_super, th->t_blocks_allocated);
1984 reiserfs_write_unlock(inode->i_sb);
1985 /* Drop can be outside and it needs more credits so it's better to have it outside */
1986 dquot_drop(inode);
1987 reiserfs_write_lock(inode->i_sb);
1988 inode->i_flags |= S_NOQUOTA;
1989 make_bad_inode(inode);
1990
1991 out_inserted_sd:
1992 clear_nlink(inode);
1993 th->t_trans_id = 0; /* so the caller can't use this handle later */
1994 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1995 iput(inode);
1996 return err;
1997 }
1998
1999 /*
2000 ** finds the tail page in the page cache,
2001 ** reads the last block in.
2002 **
2003 ** On success, page_result is set to a locked, pinned page, and bh_result
2004 ** is set to an up to date buffer for the last block in the file. returns 0.
2005 **
2006 ** tail conversion is not done, so bh_result might not be valid for writing
2007 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2008 ** trying to write the block.
2009 **
2010 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2011 */
2012 static int grab_tail_page(struct inode *inode,
2013 struct page **page_result,
2014 struct buffer_head **bh_result)
2015 {
2016
2017 /* we want the page with the last byte in the file,
2018 ** not the page that will hold the next byte for appending
2019 */
2020 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2021 unsigned long pos = 0;
2022 unsigned long start = 0;
2023 unsigned long blocksize = inode->i_sb->s_blocksize;
2024 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2025 struct buffer_head *bh;
2026 struct buffer_head *head;
2027 struct page *page;
2028 int error;
2029
2030 /* we know that we are only called with inode->i_size > 0.
2031 ** we also know that a file tail can never be as big as a block
2032 ** If i_size % blocksize == 0, our file is currently block aligned
2033 ** and it won't need converting or zeroing after a truncate.
2034 */
2035 if ((offset & (blocksize - 1)) == 0) {
2036 return -ENOENT;
2037 }
2038 page = grab_cache_page(inode->i_mapping, index);
2039 error = -ENOMEM;
2040 if (!page) {
2041 goto out;
2042 }
2043 /* start within the page of the last block in the file */
2044 start = (offset / blocksize) * blocksize;
2045
2046 error = __block_write_begin(page, start, offset - start,
2047 reiserfs_get_block_create_0);
2048 if (error)
2049 goto unlock;
2050
2051 head = page_buffers(page);
2052 bh = head;
2053 do {
2054 if (pos >= start) {
2055 break;
2056 }
2057 bh = bh->b_this_page;
2058 pos += blocksize;
2059 } while (bh != head);
2060
2061 if (!buffer_uptodate(bh)) {
2062 /* note, this should never happen, prepare_write should
2063 ** be taking care of this for us. If the buffer isn't up to date,
2064 ** I've screwed up the code to find the buffer, or the code to
2065 ** call prepare_write
2066 */
2067 reiserfs_error(inode->i_sb, "clm-6000",
2068 "error reading block %lu", bh->b_blocknr);
2069 error = -EIO;
2070 goto unlock;
2071 }
2072 *bh_result = bh;
2073 *page_result = page;
2074
2075 out:
2076 return error;
2077
2078 unlock:
2079 unlock_page(page);
2080 page_cache_release(page);
2081 return error;
2082 }
2083
2084 /*
2085 ** vfs version of truncate file. Must NOT be called with
2086 ** a transaction already started.
2087 **
2088 ** some code taken from block_truncate_page
2089 */
2090 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2091 {
2092 struct reiserfs_transaction_handle th;
2093 /* we want the offset for the first byte after the end of the file */
2094 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2095 unsigned blocksize = inode->i_sb->s_blocksize;
2096 unsigned length;
2097 struct page *page = NULL;
2098 int error;
2099 struct buffer_head *bh = NULL;
2100 int err2;
2101 int lock_depth;
2102
2103 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2104
2105 if (inode->i_size > 0) {
2106 error = grab_tail_page(inode, &page, &bh);
2107 if (error) {
2108 // -ENOENT means we truncated past the end of the file,
2109 // and get_block_create_0 could not find a block to read in,
2110 // which is ok.
2111 if (error != -ENOENT)
2112 reiserfs_error(inode->i_sb, "clm-6001",
2113 "grab_tail_page failed %d",
2114 error);
2115 page = NULL;
2116 bh = NULL;
2117 }
2118 }
2119
2120 /* so, if page != NULL, we have a buffer head for the offset at
2121 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2122 ** then we have an unformatted node. Otherwise, we have a direct item,
2123 ** and no zeroing is required on disk. We zero after the truncate,
2124 ** because the truncate might pack the item anyway
2125 ** (it will unmap bh if it packs).
2126 */
2127 /* it is enough to reserve space in transaction for 2 balancings:
2128 one for "save" link adding and another for the first
2129 cut_from_item. 1 is for update_sd */
2130 error = journal_begin(&th, inode->i_sb,
2131 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2132 if (error)
2133 goto out;
2134 reiserfs_update_inode_transaction(inode);
2135 if (update_timestamps)
2136 /* we are doing real truncate: if the system crashes before the last
2137 transaction of truncating gets committed - on reboot the file
2138 either appears truncated properly or not truncated at all */
2139 add_save_link(&th, inode, 1);
2140 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2141 error =
2142 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2143 if (error)
2144 goto out;
2145
2146 /* check reiserfs_do_truncate after ending the transaction */
2147 if (err2) {
2148 error = err2;
2149 goto out;
2150 }
2151
2152 if (update_timestamps) {
2153 error = remove_save_link(inode, 1 /* truncate */);
2154 if (error)
2155 goto out;
2156 }
2157
2158 if (page) {
2159 length = offset & (blocksize - 1);
2160 /* if we are not on a block boundary */
2161 if (length) {
2162 length = blocksize - length;
2163 zero_user(page, offset, length);
2164 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2165 mark_buffer_dirty(bh);
2166 }
2167 }
2168 unlock_page(page);
2169 page_cache_release(page);
2170 }
2171
2172 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2173
2174 return 0;
2175 out:
2176 if (page) {
2177 unlock_page(page);
2178 page_cache_release(page);
2179 }
2180
2181 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2182
2183 return error;
2184 }
2185
2186 static int map_block_for_writepage(struct inode *inode,
2187 struct buffer_head *bh_result,
2188 unsigned long block)
2189 {
2190 struct reiserfs_transaction_handle th;
2191 int fs_gen;
2192 struct item_head tmp_ih;
2193 struct item_head *ih;
2194 struct buffer_head *bh;
2195 __le32 *item;
2196 struct cpu_key key;
2197 INITIALIZE_PATH(path);
2198 int pos_in_item;
2199 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2200 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2201 int retval;
2202 int use_get_block = 0;
2203 int bytes_copied = 0;
2204 int copy_size;
2205 int trans_running = 0;
2206
2207 /* catch places below that try to log something without starting a trans */
2208 th.t_trans_id = 0;
2209
2210 if (!buffer_uptodate(bh_result)) {
2211 return -EIO;
2212 }
2213
2214 kmap(bh_result->b_page);
2215 start_over:
2216 reiserfs_write_lock(inode->i_sb);
2217 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2218
2219 research:
2220 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2221 if (retval != POSITION_FOUND) {
2222 use_get_block = 1;
2223 goto out;
2224 }
2225
2226 bh = get_last_bh(&path);
2227 ih = get_ih(&path);
2228 item = get_item(&path);
2229 pos_in_item = path.pos_in_item;
2230
2231 /* we've found an unformatted node */
2232 if (indirect_item_found(retval, ih)) {
2233 if (bytes_copied > 0) {
2234 reiserfs_warning(inode->i_sb, "clm-6002",
2235 "bytes_copied %d", bytes_copied);
2236 }
2237 if (!get_block_num(item, pos_in_item)) {
2238 /* crap, we are writing to a hole */
2239 use_get_block = 1;
2240 goto out;
2241 }
2242 set_block_dev_mapped(bh_result,
2243 get_block_num(item, pos_in_item), inode);
2244 } else if (is_direct_le_ih(ih)) {
2245 char *p;
2246 p = page_address(bh_result->b_page);
2247 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2248 copy_size = ih_item_len(ih) - pos_in_item;
2249
2250 fs_gen = get_generation(inode->i_sb);
2251 copy_item_head(&tmp_ih, ih);
2252
2253 if (!trans_running) {
2254 /* vs-3050 is gone, no need to drop the path */
2255 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2256 if (retval)
2257 goto out;
2258 reiserfs_update_inode_transaction(inode);
2259 trans_running = 1;
2260 if (fs_changed(fs_gen, inode->i_sb)
2261 && item_moved(&tmp_ih, &path)) {
2262 reiserfs_restore_prepared_buffer(inode->i_sb,
2263 bh);
2264 goto research;
2265 }
2266 }
2267
2268 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2269
2270 if (fs_changed(fs_gen, inode->i_sb)
2271 && item_moved(&tmp_ih, &path)) {
2272 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2273 goto research;
2274 }
2275
2276 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2277 copy_size);
2278
2279 journal_mark_dirty(&th, inode->i_sb, bh);
2280 bytes_copied += copy_size;
2281 set_block_dev_mapped(bh_result, 0, inode);
2282
2283 /* are there still bytes left? */
2284 if (bytes_copied < bh_result->b_size &&
2285 (byte_offset + bytes_copied) < inode->i_size) {
2286 set_cpu_key_k_offset(&key,
2287 cpu_key_k_offset(&key) +
2288 copy_size);
2289 goto research;
2290 }
2291 } else {
2292 reiserfs_warning(inode->i_sb, "clm-6003",
2293 "bad item inode %lu", inode->i_ino);
2294 retval = -EIO;
2295 goto out;
2296 }
2297 retval = 0;
2298
2299 out:
2300 pathrelse(&path);
2301 if (trans_running) {
2302 int err = journal_end(&th, inode->i_sb, jbegin_count);
2303 if (err)
2304 retval = err;
2305 trans_running = 0;
2306 }
2307 reiserfs_write_unlock(inode->i_sb);
2308
2309 /* this is where we fill in holes in the file. */
2310 if (use_get_block) {
2311 retval = reiserfs_get_block(inode, block, bh_result,
2312 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2313 | GET_BLOCK_NO_DANGLE);
2314 if (!retval) {
2315 if (!buffer_mapped(bh_result)
2316 || bh_result->b_blocknr == 0) {
2317 /* get_block failed to find a mapped unformatted node. */
2318 use_get_block = 0;
2319 goto start_over;
2320 }
2321 }
2322 }
2323 kunmap(bh_result->b_page);
2324
2325 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2326 /* we've copied data from the page into the direct item, so the
2327 * buffer in the page is now clean, mark it to reflect that.
2328 */
2329 lock_buffer(bh_result);
2330 clear_buffer_dirty(bh_result);
2331 unlock_buffer(bh_result);
2332 }
2333 return retval;
2334 }
2335
2336 /*
2337 * mason@suse.com: updated in 2.5.54 to follow the same general io
2338 * start/recovery path as __block_write_full_page, along with special
2339 * code to handle reiserfs tails.
2340 */
2341 static int reiserfs_write_full_page(struct page *page,
2342 struct writeback_control *wbc)
2343 {
2344 struct inode *inode = page->mapping->host;
2345 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2346 int error = 0;
2347 unsigned long block;
2348 sector_t last_block;
2349 struct buffer_head *head, *bh;
2350 int partial = 0;
2351 int nr = 0;
2352 int checked = PageChecked(page);
2353 struct reiserfs_transaction_handle th;
2354 struct super_block *s = inode->i_sb;
2355 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2356 th.t_trans_id = 0;
2357
2358 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2359 if (checked && (current->flags & PF_MEMALLOC)) {
2360 redirty_page_for_writepage(wbc, page);
2361 unlock_page(page);
2362 return 0;
2363 }
2364
2365 /* The page dirty bit is cleared before writepage is called, which
2366 * means we have to tell create_empty_buffers to make dirty buffers
2367 * The page really should be up to date at this point, so tossing
2368 * in the BH_Uptodate is just a sanity check.
2369 */
2370 if (!page_has_buffers(page)) {
2371 create_empty_buffers(page, s->s_blocksize,
2372 (1 << BH_Dirty) | (1 << BH_Uptodate));
2373 }
2374 head = page_buffers(page);
2375
2376 /* last page in the file, zero out any contents past the
2377 ** last byte in the file
2378 */
2379 if (page->index >= end_index) {
2380 unsigned last_offset;
2381
2382 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2383 /* no file contents in this page */
2384 if (page->index >= end_index + 1 || !last_offset) {
2385 unlock_page(page);
2386 return 0;
2387 }
2388 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2389 }
2390 bh = head;
2391 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2392 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2393 /* first map all the buffers, logging any direct items we find */
2394 do {
2395 if (block > last_block) {
2396 /*
2397 * This can happen when the block size is less than
2398 * the page size. The corresponding bytes in the page
2399 * were zero filled above
2400 */
2401 clear_buffer_dirty(bh);
2402 set_buffer_uptodate(bh);
2403 } else if ((checked || buffer_dirty(bh)) &&
2404 (!buffer_mapped(bh) || (buffer_mapped(bh)
2405 && bh->b_blocknr ==
2406 0))) {
2407 /* not mapped yet, or it points to a direct item, search
2408 * the btree for the mapping info, and log any direct
2409 * items found
2410 */
2411 if ((error = map_block_for_writepage(inode, bh, block))) {
2412 goto fail;
2413 }
2414 }
2415 bh = bh->b_this_page;
2416 block++;
2417 } while (bh != head);
2418
2419 /*
2420 * we start the transaction after map_block_for_writepage,
2421 * because it can create holes in the file (an unbounded operation).
2422 * starting it here, we can make a reliable estimate for how many
2423 * blocks we're going to log
2424 */
2425 if (checked) {
2426 ClearPageChecked(page);
2427 reiserfs_write_lock(s);
2428 error = journal_begin(&th, s, bh_per_page + 1);
2429 if (error) {
2430 reiserfs_write_unlock(s);
2431 goto fail;
2432 }
2433 reiserfs_update_inode_transaction(inode);
2434 }
2435 /* now go through and lock any dirty buffers on the page */
2436 do {
2437 get_bh(bh);
2438 if (!buffer_mapped(bh))
2439 continue;
2440 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2441 continue;
2442
2443 if (checked) {
2444 reiserfs_prepare_for_journal(s, bh, 1);
2445 journal_mark_dirty(&th, s, bh);
2446 continue;
2447 }
2448 /* from this point on, we know the buffer is mapped to a
2449 * real block and not a direct item
2450 */
2451 if (wbc->sync_mode != WB_SYNC_NONE) {
2452 lock_buffer(bh);
2453 } else {
2454 if (!trylock_buffer(bh)) {
2455 redirty_page_for_writepage(wbc, page);
2456 continue;
2457 }
2458 }
2459 if (test_clear_buffer_dirty(bh)) {
2460 mark_buffer_async_write(bh);
2461 } else {
2462 unlock_buffer(bh);
2463 }
2464 } while ((bh = bh->b_this_page) != head);
2465
2466 if (checked) {
2467 error = journal_end(&th, s, bh_per_page + 1);
2468 reiserfs_write_unlock(s);
2469 if (error)
2470 goto fail;
2471 }
2472 BUG_ON(PageWriteback(page));
2473 set_page_writeback(page);
2474 unlock_page(page);
2475
2476 /*
2477 * since any buffer might be the only dirty buffer on the page,
2478 * the first submit_bh can bring the page out of writeback.
2479 * be careful with the buffers.
2480 */
2481 do {
2482 struct buffer_head *next = bh->b_this_page;
2483 if (buffer_async_write(bh)) {
2484 submit_bh(WRITE, bh);
2485 nr++;
2486 }
2487 put_bh(bh);
2488 bh = next;
2489 } while (bh != head);
2490
2491 error = 0;
2492 done:
2493 if (nr == 0) {
2494 /*
2495 * if this page only had a direct item, it is very possible for
2496 * no io to be required without there being an error. Or,
2497 * someone else could have locked them and sent them down the
2498 * pipe without locking the page
2499 */
2500 bh = head;
2501 do {
2502 if (!buffer_uptodate(bh)) {
2503 partial = 1;
2504 break;
2505 }
2506 bh = bh->b_this_page;
2507 } while (bh != head);
2508 if (!partial)
2509 SetPageUptodate(page);
2510 end_page_writeback(page);
2511 }
2512 return error;
2513
2514 fail:
2515 /* catches various errors, we need to make sure any valid dirty blocks
2516 * get to the media. The page is currently locked and not marked for
2517 * writeback
2518 */
2519 ClearPageUptodate(page);
2520 bh = head;
2521 do {
2522 get_bh(bh);
2523 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2524 lock_buffer(bh);
2525 mark_buffer_async_write(bh);
2526 } else {
2527 /*
2528 * clear any dirty bits that might have come from getting
2529 * attached to a dirty page
2530 */
2531 clear_buffer_dirty(bh);
2532 }
2533 bh = bh->b_this_page;
2534 } while (bh != head);
2535 SetPageError(page);
2536 BUG_ON(PageWriteback(page));
2537 set_page_writeback(page);
2538 unlock_page(page);
2539 do {
2540 struct buffer_head *next = bh->b_this_page;
2541 if (buffer_async_write(bh)) {
2542 clear_buffer_dirty(bh);
2543 submit_bh(WRITE, bh);
2544 nr++;
2545 }
2546 put_bh(bh);
2547 bh = next;
2548 } while (bh != head);
2549 goto done;
2550 }
2551
2552 static int reiserfs_readpage(struct file *f, struct page *page)
2553 {
2554 return block_read_full_page(page, reiserfs_get_block);
2555 }
2556
2557 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2558 {
2559 struct inode *inode = page->mapping->host;
2560 reiserfs_wait_on_write_block(inode->i_sb);
2561 return reiserfs_write_full_page(page, wbc);
2562 }
2563
2564 static void reiserfs_truncate_failed_write(struct inode *inode)
2565 {
2566 truncate_inode_pages(inode->i_mapping, inode->i_size);
2567 reiserfs_truncate_file(inode, 0);
2568 }
2569
2570 static int reiserfs_write_begin(struct file *file,
2571 struct address_space *mapping,
2572 loff_t pos, unsigned len, unsigned flags,
2573 struct page **pagep, void **fsdata)
2574 {
2575 struct inode *inode;
2576 struct page *page;
2577 pgoff_t index;
2578 int ret;
2579 int old_ref = 0;
2580
2581 inode = mapping->host;
2582 *fsdata = 0;
2583 if (flags & AOP_FLAG_CONT_EXPAND &&
2584 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2585 pos ++;
2586 *fsdata = (void *)(unsigned long)flags;
2587 }
2588
2589 index = pos >> PAGE_CACHE_SHIFT;
2590 page = grab_cache_page_write_begin(mapping, index, flags);
2591 if (!page)
2592 return -ENOMEM;
2593 *pagep = page;
2594
2595 reiserfs_wait_on_write_block(inode->i_sb);
2596 fix_tail_page_for_writing(page);
2597 if (reiserfs_transaction_running(inode->i_sb)) {
2598 struct reiserfs_transaction_handle *th;
2599 th = (struct reiserfs_transaction_handle *)current->
2600 journal_info;
2601 BUG_ON(!th->t_refcount);
2602 BUG_ON(!th->t_trans_id);
2603 old_ref = th->t_refcount;
2604 th->t_refcount++;
2605 }
2606 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2607 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2608 struct reiserfs_transaction_handle *th = current->journal_info;
2609 /* this gets a little ugly. If reiserfs_get_block returned an
2610 * error and left a transacstion running, we've got to close it,
2611 * and we've got to free handle if it was a persistent transaction.
2612 *
2613 * But, if we had nested into an existing transaction, we need
2614 * to just drop the ref count on the handle.
2615 *
2616 * If old_ref == 0, the transaction is from reiserfs_get_block,
2617 * and it was a persistent trans. Otherwise, it was nested above.
2618 */
2619 if (th->t_refcount > old_ref) {
2620 if (old_ref)
2621 th->t_refcount--;
2622 else {
2623 int err;
2624 reiserfs_write_lock(inode->i_sb);
2625 err = reiserfs_end_persistent_transaction(th);
2626 reiserfs_write_unlock(inode->i_sb);
2627 if (err)
2628 ret = err;
2629 }
2630 }
2631 }
2632 if (ret) {
2633 unlock_page(page);
2634 page_cache_release(page);
2635 /* Truncate allocated blocks */
2636 reiserfs_truncate_failed_write(inode);
2637 }
2638 return ret;
2639 }
2640
2641 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2642 {
2643 struct inode *inode = page->mapping->host;
2644 int ret;
2645 int old_ref = 0;
2646
2647 reiserfs_write_unlock(inode->i_sb);
2648 reiserfs_wait_on_write_block(inode->i_sb);
2649 reiserfs_write_lock(inode->i_sb);
2650
2651 fix_tail_page_for_writing(page);
2652 if (reiserfs_transaction_running(inode->i_sb)) {
2653 struct reiserfs_transaction_handle *th;
2654 th = (struct reiserfs_transaction_handle *)current->
2655 journal_info;
2656 BUG_ON(!th->t_refcount);
2657 BUG_ON(!th->t_trans_id);
2658 old_ref = th->t_refcount;
2659 th->t_refcount++;
2660 }
2661
2662 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2663 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2664 struct reiserfs_transaction_handle *th = current->journal_info;
2665 /* this gets a little ugly. If reiserfs_get_block returned an
2666 * error and left a transacstion running, we've got to close it,
2667 * and we've got to free handle if it was a persistent transaction.
2668 *
2669 * But, if we had nested into an existing transaction, we need
2670 * to just drop the ref count on the handle.
2671 *
2672 * If old_ref == 0, the transaction is from reiserfs_get_block,
2673 * and it was a persistent trans. Otherwise, it was nested above.
2674 */
2675 if (th->t_refcount > old_ref) {
2676 if (old_ref)
2677 th->t_refcount--;
2678 else {
2679 int err;
2680 reiserfs_write_lock(inode->i_sb);
2681 err = reiserfs_end_persistent_transaction(th);
2682 reiserfs_write_unlock(inode->i_sb);
2683 if (err)
2684 ret = err;
2685 }
2686 }
2687 }
2688 return ret;
2689
2690 }
2691
2692 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2693 {
2694 return generic_block_bmap(as, block, reiserfs_bmap);
2695 }
2696
2697 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2698 loff_t pos, unsigned len, unsigned copied,
2699 struct page *page, void *fsdata)
2700 {
2701 struct inode *inode = page->mapping->host;
2702 int ret = 0;
2703 int update_sd = 0;
2704 struct reiserfs_transaction_handle *th;
2705 unsigned start;
2706 int lock_depth = 0;
2707 bool locked = false;
2708
2709 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2710 pos ++;
2711
2712 reiserfs_wait_on_write_block(inode->i_sb);
2713 if (reiserfs_transaction_running(inode->i_sb))
2714 th = current->journal_info;
2715 else
2716 th = NULL;
2717
2718 start = pos & (PAGE_CACHE_SIZE - 1);
2719 if (unlikely(copied < len)) {
2720 if (!PageUptodate(page))
2721 copied = 0;
2722
2723 page_zero_new_buffers(page, start + copied, start + len);
2724 }
2725 flush_dcache_page(page);
2726
2727 reiserfs_commit_page(inode, page, start, start + copied);
2728
2729 /* generic_commit_write does this for us, but does not update the
2730 ** transaction tracking stuff when the size changes. So, we have
2731 ** to do the i_size updates here.
2732 */
2733 if (pos + copied > inode->i_size) {
2734 struct reiserfs_transaction_handle myth;
2735 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2736 locked = true;
2737 /* If the file have grown beyond the border where it
2738 can have a tail, unmark it as needing a tail
2739 packing */
2740 if ((have_large_tails(inode->i_sb)
2741 && inode->i_size > i_block_size(inode) * 4)
2742 || (have_small_tails(inode->i_sb)
2743 && inode->i_size > i_block_size(inode)))
2744 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2745
2746 ret = journal_begin(&myth, inode->i_sb, 1);
2747 if (ret)
2748 goto journal_error;
2749
2750 reiserfs_update_inode_transaction(inode);
2751 inode->i_size = pos + copied;
2752 /*
2753 * this will just nest into our transaction. It's important
2754 * to use mark_inode_dirty so the inode gets pushed around on the
2755 * dirty lists, and so that O_SYNC works as expected
2756 */
2757 mark_inode_dirty(inode);
2758 reiserfs_update_sd(&myth, inode);
2759 update_sd = 1;
2760 ret = journal_end(&myth, inode->i_sb, 1);
2761 if (ret)
2762 goto journal_error;
2763 }
2764 if (th) {
2765 if (!locked) {
2766 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2767 locked = true;
2768 }
2769 if (!update_sd)
2770 mark_inode_dirty(inode);
2771 ret = reiserfs_end_persistent_transaction(th);
2772 if (ret)
2773 goto out;
2774 }
2775
2776 out:
2777 if (locked)
2778 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2779 unlock_page(page);
2780 page_cache_release(page);
2781
2782 if (pos + len > inode->i_size)
2783 reiserfs_truncate_failed_write(inode);
2784
2785 return ret == 0 ? copied : ret;
2786
2787 journal_error:
2788 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2789 locked = false;
2790 if (th) {
2791 if (!update_sd)
2792 reiserfs_update_sd(th, inode);
2793 ret = reiserfs_end_persistent_transaction(th);
2794 }
2795 goto out;
2796 }
2797
2798 int reiserfs_commit_write(struct file *f, struct page *page,
2799 unsigned from, unsigned to)
2800 {
2801 struct inode *inode = page->mapping->host;
2802 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2803 int ret = 0;
2804 int update_sd = 0;
2805 struct reiserfs_transaction_handle *th = NULL;
2806
2807 reiserfs_write_unlock(inode->i_sb);
2808 reiserfs_wait_on_write_block(inode->i_sb);
2809 reiserfs_write_lock(inode->i_sb);
2810
2811 if (reiserfs_transaction_running(inode->i_sb)) {
2812 th = current->journal_info;
2813 }
2814 reiserfs_commit_page(inode, page, from, to);
2815
2816 /* generic_commit_write does this for us, but does not update the
2817 ** transaction tracking stuff when the size changes. So, we have
2818 ** to do the i_size updates here.
2819 */
2820 if (pos > inode->i_size) {
2821 struct reiserfs_transaction_handle myth;
2822 /* If the file have grown beyond the border where it
2823 can have a tail, unmark it as needing a tail
2824 packing */
2825 if ((have_large_tails(inode->i_sb)
2826 && inode->i_size > i_block_size(inode) * 4)
2827 || (have_small_tails(inode->i_sb)
2828 && inode->i_size > i_block_size(inode)))
2829 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2830
2831 ret = journal_begin(&myth, inode->i_sb, 1);
2832 if (ret)
2833 goto journal_error;
2834
2835 reiserfs_update_inode_transaction(inode);
2836 inode->i_size = pos;
2837 /*
2838 * this will just nest into our transaction. It's important
2839 * to use mark_inode_dirty so the inode gets pushed around on the
2840 * dirty lists, and so that O_SYNC works as expected
2841 */
2842 mark_inode_dirty(inode);
2843 reiserfs_update_sd(&myth, inode);
2844 update_sd = 1;
2845 ret = journal_end(&myth, inode->i_sb, 1);
2846 if (ret)
2847 goto journal_error;
2848 }
2849 if (th) {
2850 if (!update_sd)
2851 mark_inode_dirty(inode);
2852 ret = reiserfs_end_persistent_transaction(th);
2853 if (ret)
2854 goto out;
2855 }
2856
2857 out:
2858 return ret;
2859
2860 journal_error:
2861 if (th) {
2862 if (!update_sd)
2863 reiserfs_update_sd(th, inode);
2864 ret = reiserfs_end_persistent_transaction(th);
2865 }
2866
2867 return ret;
2868 }
2869
2870 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2871 {
2872 if (reiserfs_attrs(inode->i_sb)) {
2873 if (sd_attrs & REISERFS_SYNC_FL)
2874 inode->i_flags |= S_SYNC;
2875 else
2876 inode->i_flags &= ~S_SYNC;
2877 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2878 inode->i_flags |= S_IMMUTABLE;
2879 else
2880 inode->i_flags &= ~S_IMMUTABLE;
2881 if (sd_attrs & REISERFS_APPEND_FL)
2882 inode->i_flags |= S_APPEND;
2883 else
2884 inode->i_flags &= ~S_APPEND;
2885 if (sd_attrs & REISERFS_NOATIME_FL)
2886 inode->i_flags |= S_NOATIME;
2887 else
2888 inode->i_flags &= ~S_NOATIME;
2889 if (sd_attrs & REISERFS_NOTAIL_FL)
2890 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2891 else
2892 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2893 }
2894 }
2895
2896 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2897 {
2898 if (reiserfs_attrs(inode->i_sb)) {
2899 if (inode->i_flags & S_IMMUTABLE)
2900 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2901 else
2902 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2903 if (inode->i_flags & S_SYNC)
2904 *sd_attrs |= REISERFS_SYNC_FL;
2905 else
2906 *sd_attrs &= ~REISERFS_SYNC_FL;
2907 if (inode->i_flags & S_NOATIME)
2908 *sd_attrs |= REISERFS_NOATIME_FL;
2909 else
2910 *sd_attrs &= ~REISERFS_NOATIME_FL;
2911 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2912 *sd_attrs |= REISERFS_NOTAIL_FL;
2913 else
2914 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2915 }
2916 }
2917
2918 /* decide if this buffer needs to stay around for data logging or ordered
2919 ** write purposes
2920 */
2921 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2922 {
2923 int ret = 1;
2924 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2925
2926 lock_buffer(bh);
2927 spin_lock(&j->j_dirty_buffers_lock);
2928 if (!buffer_mapped(bh)) {
2929 goto free_jh;
2930 }
2931 /* the page is locked, and the only places that log a data buffer
2932 * also lock the page.
2933 */
2934 if (reiserfs_file_data_log(inode)) {
2935 /*
2936 * very conservative, leave the buffer pinned if
2937 * anyone might need it.
2938 */
2939 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2940 ret = 0;
2941 }
2942 } else if (buffer_dirty(bh)) {
2943 struct reiserfs_journal_list *jl;
2944 struct reiserfs_jh *jh = bh->b_private;
2945
2946 /* why is this safe?
2947 * reiserfs_setattr updates i_size in the on disk
2948 * stat data before allowing vmtruncate to be called.
2949 *
2950 * If buffer was put onto the ordered list for this
2951 * transaction, we know for sure either this transaction
2952 * or an older one already has updated i_size on disk,
2953 * and this ordered data won't be referenced in the file
2954 * if we crash.
2955 *
2956 * if the buffer was put onto the ordered list for an older
2957 * transaction, we need to leave it around
2958 */
2959 if (jh && (jl = jh->jl)
2960 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2961 ret = 0;
2962 }
2963 free_jh:
2964 if (ret && bh->b_private) {
2965 reiserfs_free_jh(bh);
2966 }
2967 spin_unlock(&j->j_dirty_buffers_lock);
2968 unlock_buffer(bh);
2969 return ret;
2970 }
2971
2972 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2973 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2974 {
2975 struct buffer_head *head, *bh, *next;
2976 struct inode *inode = page->mapping->host;
2977 unsigned int curr_off = 0;
2978 int ret = 1;
2979
2980 BUG_ON(!PageLocked(page));
2981
2982 if (offset == 0)
2983 ClearPageChecked(page);
2984
2985 if (!page_has_buffers(page))
2986 goto out;
2987
2988 head = page_buffers(page);
2989 bh = head;
2990 do {
2991 unsigned int next_off = curr_off + bh->b_size;
2992 next = bh->b_this_page;
2993
2994 /*
2995 * is this block fully invalidated?
2996 */
2997 if (offset <= curr_off) {
2998 if (invalidatepage_can_drop(inode, bh))
2999 reiserfs_unmap_buffer(bh);
3000 else
3001 ret = 0;
3002 }
3003 curr_off = next_off;
3004 bh = next;
3005 } while (bh != head);
3006
3007 /*
3008 * We release buffers only if the entire page is being invalidated.
3009 * The get_block cached value has been unconditionally invalidated,
3010 * so real IO is not possible anymore.
3011 */
3012 if (!offset && ret) {
3013 ret = try_to_release_page(page, 0);
3014 /* maybe should BUG_ON(!ret); - neilb */
3015 }
3016 out:
3017 return;
3018 }
3019
3020 static int reiserfs_set_page_dirty(struct page *page)
3021 {
3022 struct inode *inode = page->mapping->host;
3023 if (reiserfs_file_data_log(inode)) {
3024 SetPageChecked(page);
3025 return __set_page_dirty_nobuffers(page);
3026 }
3027 return __set_page_dirty_buffers(page);
3028 }
3029
3030 /*
3031 * Returns 1 if the page's buffers were dropped. The page is locked.
3032 *
3033 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3034 * in the buffers at page_buffers(page).
3035 *
3036 * even in -o notail mode, we can't be sure an old mount without -o notail
3037 * didn't create files with tails.
3038 */
3039 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3040 {
3041 struct inode *inode = page->mapping->host;
3042 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3043 struct buffer_head *head;
3044 struct buffer_head *bh;
3045 int ret = 1;
3046
3047 WARN_ON(PageChecked(page));
3048 spin_lock(&j->j_dirty_buffers_lock);
3049 head = page_buffers(page);
3050 bh = head;
3051 do {
3052 if (bh->b_private) {
3053 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3054 reiserfs_free_jh(bh);
3055 } else {
3056 ret = 0;
3057 break;
3058 }
3059 }
3060 bh = bh->b_this_page;
3061 } while (bh != head);
3062 if (ret)
3063 ret = try_to_free_buffers(page);
3064 spin_unlock(&j->j_dirty_buffers_lock);
3065 return ret;
3066 }
3067
3068 /* We thank Mingming Cao for helping us understand in great detail what
3069 to do in this section of the code. */
3070 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3071 const struct iovec *iov, loff_t offset,
3072 unsigned long nr_segs)
3073 {
3074 struct file *file = iocb->ki_filp;
3075 struct inode *inode = file->f_mapping->host;
3076 ssize_t ret;
3077
3078 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3079 reiserfs_get_blocks_direct_io);
3080
3081 /*
3082 * In case of error extending write may have instantiated a few
3083 * blocks outside i_size. Trim these off again.
3084 */
3085 if (unlikely((rw & WRITE) && ret < 0)) {
3086 loff_t isize = i_size_read(inode);
3087 loff_t end = offset + iov_length(iov, nr_segs);
3088
3089 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3090 truncate_setsize(inode, isize);
3091 reiserfs_vfs_truncate_file(inode);
3092 }
3093 }
3094
3095 return ret;
3096 }
3097
3098 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3099 {
3100 struct inode *inode = dentry->d_inode;
3101 unsigned int ia_valid;
3102 int depth;
3103 int error;
3104
3105 error = inode_change_ok(inode, attr);
3106 if (error)
3107 return error;
3108
3109 /* must be turned off for recursive notify_change calls */
3110 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3111
3112 if (is_quota_modification(inode, attr))
3113 dquot_initialize(inode);
3114 depth = reiserfs_write_lock_once(inode->i_sb);
3115 if (attr->ia_valid & ATTR_SIZE) {
3116 /* version 2 items will be caught by the s_maxbytes check
3117 ** done for us in vmtruncate
3118 */
3119 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3120 attr->ia_size > MAX_NON_LFS) {
3121 error = -EFBIG;
3122 goto out;
3123 }
3124
3125 inode_dio_wait(inode);
3126
3127 /* fill in hole pointers in the expanding truncate case. */
3128 if (attr->ia_size > inode->i_size) {
3129 error = generic_cont_expand_simple(inode, attr->ia_size);
3130 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3131 int err;
3132 struct reiserfs_transaction_handle th;
3133 /* we're changing at most 2 bitmaps, inode + super */
3134 err = journal_begin(&th, inode->i_sb, 4);
3135 if (!err) {
3136 reiserfs_discard_prealloc(&th, inode);
3137 err = journal_end(&th, inode->i_sb, 4);
3138 }
3139 if (err)
3140 error = err;
3141 }
3142 if (error)
3143 goto out;
3144 /*
3145 * file size is changed, ctime and mtime are
3146 * to be updated
3147 */
3148 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3149 }
3150 }
3151
3152 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3153 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3154 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3155 /* stat data of format v3.5 has 16 bit uid and gid */
3156 error = -EINVAL;
3157 goto out;
3158 }
3159
3160 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3161 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3162 struct reiserfs_transaction_handle th;
3163 int jbegin_count =
3164 2 *
3165 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3166 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3167 2;
3168
3169 error = reiserfs_chown_xattrs(inode, attr);
3170
3171 if (error)
3172 return error;
3173
3174 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3175 error = journal_begin(&th, inode->i_sb, jbegin_count);
3176 if (error)
3177 goto out;
3178 reiserfs_write_unlock_once(inode->i_sb, depth);
3179 error = dquot_transfer(inode, attr);
3180 depth = reiserfs_write_lock_once(inode->i_sb);
3181 if (error) {
3182 journal_end(&th, inode->i_sb, jbegin_count);
3183 goto out;
3184 }
3185
3186 /* Update corresponding info in inode so that everything is in
3187 * one transaction */
3188 if (attr->ia_valid & ATTR_UID)
3189 inode->i_uid = attr->ia_uid;
3190 if (attr->ia_valid & ATTR_GID)
3191 inode->i_gid = attr->ia_gid;
3192 mark_inode_dirty(inode);
3193 error = journal_end(&th, inode->i_sb, jbegin_count);
3194 if (error)
3195 goto out;
3196 }
3197
3198 /*
3199 * Relax the lock here, as it might truncate the
3200 * inode pages and wait for inode pages locks.
3201 * To release such page lock, the owner needs the
3202 * reiserfs lock
3203 */
3204 reiserfs_write_unlock_once(inode->i_sb, depth);
3205 if ((attr->ia_valid & ATTR_SIZE) &&
3206 attr->ia_size != i_size_read(inode)) {
3207 error = inode_newsize_ok(inode, attr->ia_size);
3208 if (!error) {
3209 truncate_setsize(inode, attr->ia_size);
3210 reiserfs_vfs_truncate_file(inode);
3211 }
3212 }
3213
3214 if (!error) {
3215 setattr_copy(inode, attr);
3216 mark_inode_dirty(inode);
3217 }
3218 depth = reiserfs_write_lock_once(inode->i_sb);
3219
3220 if (!error && reiserfs_posixacl(inode->i_sb)) {
3221 if (attr->ia_valid & ATTR_MODE)
3222 error = reiserfs_acl_chmod(inode);
3223 }
3224
3225 out:
3226 reiserfs_write_unlock_once(inode->i_sb, depth);
3227
3228 return error;
3229 }
3230
3231 const struct address_space_operations reiserfs_address_space_operations = {
3232 .writepage = reiserfs_writepage,
3233 .readpage = reiserfs_readpage,
3234 .readpages = reiserfs_readpages,
3235 .releasepage = reiserfs_releasepage,
3236 .invalidatepage = reiserfs_invalidatepage,
3237 .write_begin = reiserfs_write_begin,
3238 .write_end = reiserfs_write_end,
3239 .bmap = reiserfs_aop_bmap,
3240 .direct_IO = reiserfs_direct_IO,
3241 .set_page_dirty = reiserfs_set_page_dirty,
3242 };