]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/reiserfs/inode.c
Merge tag 'drm-misc-fixes-2017-07-27' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-artful-kernel.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27 void reiserfs_evict_inode(struct inode *inode)
28 {
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92 out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106 no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109 }
110
111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113 {
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121 }
122
123 /*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129 {
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134 }
135
136 /* when key is 0, do not set version and short key */
137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141 {
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157 }
158
159 /*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166 /*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_readpage, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to readpage,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184 /*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
193 static inline void fix_tail_page_for_writing(struct page *page)
194 {
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208 }
209
210 /*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217 {
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224 }
225
226 static inline int indirect_item_found(int retval, struct item_head *ih)
227 {
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229 }
230
231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233 {
234 map_bh(bh, inode->i_sb, block);
235 }
236
237 /*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
241 static int file_capable(struct inode *inode, sector_t block)
242 {
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250 }
251
252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254 {
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275 }
276
277 /*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287 {
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p = NULL;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (p)
309 kunmap(bh_result->b_page);
310 if (result == IO_ERROR)
311 return -EIO;
312 /*
313 * We do not return -ENOENT if there is a hole but page is
314 * uptodate, because it means that there is some MMAPED data
315 * associated with it that is yet to be written to disk.
316 */
317 if ((args & GET_BLOCK_NO_HOLE)
318 && !PageUptodate(bh_result->b_page)) {
319 return -ENOENT;
320 }
321 return 0;
322 }
323
324 bh = get_last_bh(&path);
325 ih = tp_item_head(&path);
326 if (is_indirect_le_ih(ih)) {
327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
328
329 /*
330 * FIXME: here we could cache indirect item or part of it in
331 * the inode to avoid search_by_key in case of subsequent
332 * access to file
333 */
334 blocknr = get_block_num(ind_item, path.pos_in_item);
335 ret = 0;
336 if (blocknr) {
337 map_bh(bh_result, inode->i_sb, blocknr);
338 if (path.pos_in_item ==
339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
340 set_buffer_boundary(bh_result);
341 }
342 } else
343 /*
344 * We do not return -ENOENT if there is a hole but
345 * page is uptodate, because it means that there is
346 * some MMAPED data associated with it that is
347 * yet to be written to disk.
348 */
349 if ((args & GET_BLOCK_NO_HOLE)
350 && !PageUptodate(bh_result->b_page)) {
351 ret = -ENOENT;
352 }
353
354 pathrelse(&path);
355 if (p)
356 kunmap(bh_result->b_page);
357 return ret;
358 }
359 /* requested data are in direct item(s) */
360 if (!(args & GET_BLOCK_READ_DIRECT)) {
361 /*
362 * we are called by bmap. FIXME: we can not map block of file
363 * when it is stored in direct item(s)
364 */
365 pathrelse(&path);
366 if (p)
367 kunmap(bh_result->b_page);
368 return -ENOENT;
369 }
370
371 /*
372 * if we've got a direct item, and the buffer or page was uptodate,
373 * we don't want to pull data off disk again. skip to the
374 * end, where we map the buffer and return
375 */
376 if (buffer_uptodate(bh_result)) {
377 goto finished;
378 } else
379 /*
380 * grab_tail_page can trigger calls to reiserfs_get_block on
381 * up to date pages without any buffers. If the page is up
382 * to date, we don't want read old data off disk. Set the up
383 * to date bit on the buffer instead and jump to the end
384 */
385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
386 set_buffer_uptodate(bh_result);
387 goto finished;
388 }
389 /* read file tail into part of page */
390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
391 copy_item_head(&tmp_ih, ih);
392
393 /*
394 * we only want to kmap if we are reading the tail into the page.
395 * this is not the common case, so we don't kmap until we are
396 * sure we need to. But, this means the item might move if
397 * kmap schedules
398 */
399 if (!p)
400 p = (char *)kmap(bh_result->b_page);
401
402 p += offset;
403 memset(p, 0, inode->i_sb->s_blocksize);
404 do {
405 if (!is_direct_le_ih(ih)) {
406 BUG();
407 }
408 /*
409 * make sure we don't read more bytes than actually exist in
410 * the file. This can happen in odd cases where i_size isn't
411 * correct, and when direct item padding results in a few
412 * extra bytes at the end of the direct item
413 */
414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
415 break;
416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
417 chars =
418 inode->i_size - (le_ih_k_offset(ih) - 1) -
419 path.pos_in_item;
420 done = 1;
421 } else {
422 chars = ih_item_len(ih) - path.pos_in_item;
423 }
424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
425
426 if (done)
427 break;
428
429 p += chars;
430
431 /*
432 * we done, if read direct item is not the last item of
433 * node FIXME: we could try to check right delimiting key
434 * to see whether direct item continues in the right
435 * neighbor or rely on i_size
436 */
437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
438 break;
439
440 /* update key to look for the next piece */
441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
442 result = search_for_position_by_key(inode->i_sb, &key, &path);
443 if (result != POSITION_FOUND)
444 /* i/o error most likely */
445 break;
446 bh = get_last_bh(&path);
447 ih = tp_item_head(&path);
448 } while (1);
449
450 flush_dcache_page(bh_result->b_page);
451 kunmap(bh_result->b_page);
452
453 finished:
454 pathrelse(&path);
455
456 if (result == IO_ERROR)
457 return -EIO;
458
459 /*
460 * this buffer has valid data, but isn't valid for io. mapping it to
461 * block #0 tells the rest of reiserfs it just has a tail in it
462 */
463 map_bh(bh_result, inode->i_sb, 0);
464 set_buffer_uptodate(bh_result);
465 return 0;
466 }
467
468 /*
469 * this is called to create file map. So, _get_block_create_0 will not
470 * read direct item
471 */
472 static int reiserfs_bmap(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474 {
475 if (!file_capable(inode, block))
476 return -EFBIG;
477
478 reiserfs_write_lock(inode->i_sb);
479 /* do not read the direct item */
480 _get_block_create_0(inode, block, bh_result, 0);
481 reiserfs_write_unlock(inode->i_sb);
482 return 0;
483 }
484
485 /*
486 * special version of get_block that is only used by grab_tail_page right
487 * now. It is sent to __block_write_begin, and when you try to get a
488 * block past the end of the file (or a block from a hole) it returns
489 * -ENOENT instead of a valid buffer. __block_write_begin expects to
490 * be able to do i/o on the buffers returned, unless an error value
491 * is also returned.
492 *
493 * So, this allows __block_write_begin to be used for reading a single block
494 * in a page. Where it does not produce a valid page for holes, or past the
495 * end of the file. This turns out to be exactly what we need for reading
496 * tails for conversion.
497 *
498 * The point of the wrapper is forcing a certain value for create, even
499 * though the VFS layer is calling this function with create==1. If you
500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
501 * don't use this function.
502 */
503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
504 struct buffer_head *bh_result,
505 int create)
506 {
507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
508 }
509
510 /*
511 * This is special helper for reiserfs_get_block in case we are executing
512 * direct_IO request.
513 */
514 static int reiserfs_get_blocks_direct_io(struct inode *inode,
515 sector_t iblock,
516 struct buffer_head *bh_result,
517 int create)
518 {
519 int ret;
520
521 bh_result->b_page = NULL;
522
523 /*
524 * We set the b_size before reiserfs_get_block call since it is
525 * referenced in convert_tail_for_hole() that may be called from
526 * reiserfs_get_block()
527 */
528 bh_result->b_size = i_blocksize(inode);
529
530 ret = reiserfs_get_block(inode, iblock, bh_result,
531 create | GET_BLOCK_NO_DANGLE);
532 if (ret)
533 goto out;
534
535 /* don't allow direct io onto tail pages */
536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
537 /*
538 * make sure future calls to the direct io funcs for this
539 * offset in the file fail by unmapping the buffer
540 */
541 clear_buffer_mapped(bh_result);
542 ret = -EINVAL;
543 }
544
545 /*
546 * Possible unpacked tail. Flush the data before pages have
547 * disappeared
548 */
549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
550 int err;
551
552 reiserfs_write_lock(inode->i_sb);
553
554 err = reiserfs_commit_for_inode(inode);
555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
556
557 reiserfs_write_unlock(inode->i_sb);
558
559 if (err < 0)
560 ret = err;
561 }
562 out:
563 return ret;
564 }
565
566 /*
567 * helper function for when reiserfs_get_block is called for a hole
568 * but the file tail is still in a direct item
569 * bh_result is the buffer head for the hole
570 * tail_offset is the offset of the start of the tail in the file
571 *
572 * This calls prepare_write, which will start a new transaction
573 * you should not be in a transaction, or have any paths held when you
574 * call this.
575 */
576 static int convert_tail_for_hole(struct inode *inode,
577 struct buffer_head *bh_result,
578 loff_t tail_offset)
579 {
580 unsigned long index;
581 unsigned long tail_end;
582 unsigned long tail_start;
583 struct page *tail_page;
584 struct page *hole_page = bh_result->b_page;
585 int retval = 0;
586
587 if ((tail_offset & (bh_result->b_size - 1)) != 1)
588 return -EIO;
589
590 /* always try to read until the end of the block */
591 tail_start = tail_offset & (PAGE_SIZE - 1);
592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
593
594 index = tail_offset >> PAGE_SHIFT;
595 /*
596 * hole_page can be zero in case of direct_io, we are sure
597 * that we cannot get here if we write with O_DIRECT into tail page
598 */
599 if (!hole_page || index != hole_page->index) {
600 tail_page = grab_cache_page(inode->i_mapping, index);
601 retval = -ENOMEM;
602 if (!tail_page) {
603 goto out;
604 }
605 } else {
606 tail_page = hole_page;
607 }
608
609 /*
610 * we don't have to make sure the conversion did not happen while
611 * we were locking the page because anyone that could convert
612 * must first take i_mutex.
613 *
614 * We must fix the tail page for writing because it might have buffers
615 * that are mapped, but have a block number of 0. This indicates tail
616 * data that has been read directly into the page, and
617 * __block_write_begin won't trigger a get_block in this case.
618 */
619 fix_tail_page_for_writing(tail_page);
620 retval = __reiserfs_write_begin(tail_page, tail_start,
621 tail_end - tail_start);
622 if (retval)
623 goto unlock;
624
625 /* tail conversion might change the data in the page */
626 flush_dcache_page(tail_page);
627
628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
629
630 unlock:
631 if (tail_page != hole_page) {
632 unlock_page(tail_page);
633 put_page(tail_page);
634 }
635 out:
636 return retval;
637 }
638
639 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
640 sector_t block,
641 struct inode *inode,
642 b_blocknr_t * allocated_block_nr,
643 struct treepath *path, int flags)
644 {
645 BUG_ON(!th->t_trans_id);
646
647 #ifdef REISERFS_PREALLOCATE
648 if (!(flags & GET_BLOCK_NO_IMUX)) {
649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
650 path, block);
651 }
652 #endif
653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
654 block);
655 }
656
657 int reiserfs_get_block(struct inode *inode, sector_t block,
658 struct buffer_head *bh_result, int create)
659 {
660 int repeat, retval = 0;
661 /* b_blocknr_t is (unsigned) 32 bit int*/
662 b_blocknr_t allocated_block_nr = 0;
663 INITIALIZE_PATH(path);
664 int pos_in_item;
665 struct cpu_key key;
666 struct buffer_head *bh, *unbh = NULL;
667 struct item_head *ih, tmp_ih;
668 __le32 *item;
669 int done;
670 int fs_gen;
671 struct reiserfs_transaction_handle *th = NULL;
672 /*
673 * space reserved in transaction batch:
674 * . 3 balancings in direct->indirect conversion
675 * . 1 block involved into reiserfs_update_sd()
676 * XXX in practically impossible worst case direct2indirect()
677 * can incur (much) more than 3 balancings.
678 * quota update for user, group
679 */
680 int jbegin_count =
681 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
683 int version;
684 int dangle = 1;
685 loff_t new_offset =
686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
687
688 reiserfs_write_lock(inode->i_sb);
689 version = get_inode_item_key_version(inode);
690
691 if (!file_capable(inode, block)) {
692 reiserfs_write_unlock(inode->i_sb);
693 return -EFBIG;
694 }
695
696 /*
697 * if !create, we aren't changing the FS, so we don't need to
698 * log anything, so we don't need to start a transaction
699 */
700 if (!(create & GET_BLOCK_CREATE)) {
701 int ret;
702 /* find number of block-th logical block of the file */
703 ret = _get_block_create_0(inode, block, bh_result,
704 create | GET_BLOCK_READ_DIRECT);
705 reiserfs_write_unlock(inode->i_sb);
706 return ret;
707 }
708
709 /*
710 * if we're already in a transaction, make sure to close
711 * any new transactions we start in this func
712 */
713 if ((create & GET_BLOCK_NO_DANGLE) ||
714 reiserfs_transaction_running(inode->i_sb))
715 dangle = 0;
716
717 /*
718 * If file is of such a size, that it might have a tail and
719 * tails are enabled we should mark it as possibly needing
720 * tail packing on close
721 */
722 if ((have_large_tails(inode->i_sb)
723 && inode->i_size < i_block_size(inode) * 4)
724 || (have_small_tails(inode->i_sb)
725 && inode->i_size < i_block_size(inode)))
726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
727
728 /* set the key of the first byte in the 'block'-th block of file */
729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
731 start_trans:
732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
733 if (!th) {
734 retval = -ENOMEM;
735 goto failure;
736 }
737 reiserfs_update_inode_transaction(inode);
738 }
739 research:
740
741 retval = search_for_position_by_key(inode->i_sb, &key, &path);
742 if (retval == IO_ERROR) {
743 retval = -EIO;
744 goto failure;
745 }
746
747 bh = get_last_bh(&path);
748 ih = tp_item_head(&path);
749 item = tp_item_body(&path);
750 pos_in_item = path.pos_in_item;
751
752 fs_gen = get_generation(inode->i_sb);
753 copy_item_head(&tmp_ih, ih);
754
755 if (allocation_needed
756 (retval, allocated_block_nr, ih, item, pos_in_item)) {
757 /* we have to allocate block for the unformatted node */
758 if (!th) {
759 pathrelse(&path);
760 goto start_trans;
761 }
762
763 repeat =
764 _allocate_block(th, block, inode, &allocated_block_nr,
765 &path, create);
766
767 /*
768 * restart the transaction to give the journal a chance to free
769 * some blocks. releases the path, so we have to go back to
770 * research if we succeed on the second try
771 */
772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
774 retval = restart_transaction(th, inode, &path);
775 if (retval)
776 goto failure;
777 repeat =
778 _allocate_block(th, block, inode,
779 &allocated_block_nr, NULL, create);
780
781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
782 goto research;
783 }
784 if (repeat == QUOTA_EXCEEDED)
785 retval = -EDQUOT;
786 else
787 retval = -ENOSPC;
788 goto failure;
789 }
790
791 if (fs_changed(fs_gen, inode->i_sb)
792 && item_moved(&tmp_ih, &path)) {
793 goto research;
794 }
795 }
796
797 if (indirect_item_found(retval, ih)) {
798 b_blocknr_t unfm_ptr;
799 /*
800 * 'block'-th block is in the file already (there is
801 * corresponding cell in some indirect item). But it may be
802 * zero unformatted node pointer (hole)
803 */
804 unfm_ptr = get_block_num(item, pos_in_item);
805 if (unfm_ptr == 0) {
806 /* use allocated block to plug the hole */
807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
808 if (fs_changed(fs_gen, inode->i_sb)
809 && item_moved(&tmp_ih, &path)) {
810 reiserfs_restore_prepared_buffer(inode->i_sb,
811 bh);
812 goto research;
813 }
814 set_buffer_new(bh_result);
815 if (buffer_dirty(bh_result)
816 && reiserfs_data_ordered(inode->i_sb))
817 reiserfs_add_ordered_list(inode, bh_result);
818 put_block_num(item, pos_in_item, allocated_block_nr);
819 unfm_ptr = allocated_block_nr;
820 journal_mark_dirty(th, bh);
821 reiserfs_update_sd(th, inode);
822 }
823 set_block_dev_mapped(bh_result, unfm_ptr, inode);
824 pathrelse(&path);
825 retval = 0;
826 if (!dangle && th)
827 retval = reiserfs_end_persistent_transaction(th);
828
829 reiserfs_write_unlock(inode->i_sb);
830
831 /*
832 * the item was found, so new blocks were not added to the file
833 * there is no need to make sure the inode is updated with this
834 * transaction
835 */
836 return retval;
837 }
838
839 if (!th) {
840 pathrelse(&path);
841 goto start_trans;
842 }
843
844 /*
845 * desired position is not found or is in the direct item. We have
846 * to append file with holes up to 'block'-th block converting
847 * direct items to indirect one if necessary
848 */
849 done = 0;
850 do {
851 if (is_statdata_le_ih(ih)) {
852 __le32 unp = 0;
853 struct cpu_key tmp_key;
854
855 /* indirect item has to be inserted */
856 make_le_item_head(&tmp_ih, &key, version, 1,
857 TYPE_INDIRECT, UNFM_P_SIZE,
858 0 /* free_space */ );
859
860 /*
861 * we are going to add 'block'-th block to the file.
862 * Use allocated block for that
863 */
864 if (cpu_key_k_offset(&key) == 1) {
865 unp = cpu_to_le32(allocated_block_nr);
866 set_block_dev_mapped(bh_result,
867 allocated_block_nr, inode);
868 set_buffer_new(bh_result);
869 done = 1;
870 }
871 tmp_key = key; /* ;) */
872 set_cpu_key_k_offset(&tmp_key, 1);
873 PATH_LAST_POSITION(&path)++;
874
875 retval =
876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
877 inode, (char *)&unp);
878 if (retval) {
879 reiserfs_free_block(th, inode,
880 allocated_block_nr, 1);
881 /*
882 * retval == -ENOSPC, -EDQUOT or -EIO
883 * or -EEXIST
884 */
885 goto failure;
886 }
887 } else if (is_direct_le_ih(ih)) {
888 /* direct item has to be converted */
889 loff_t tail_offset;
890
891 tail_offset =
892 ((le_ih_k_offset(ih) -
893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
894
895 /*
896 * direct item we just found fits into block we have
897 * to map. Convert it into unformatted node: use
898 * bh_result for the conversion
899 */
900 if (tail_offset == cpu_key_k_offset(&key)) {
901 set_block_dev_mapped(bh_result,
902 allocated_block_nr, inode);
903 unbh = bh_result;
904 done = 1;
905 } else {
906 /*
907 * we have to pad file tail stored in direct
908 * item(s) up to block size and convert it
909 * to unformatted node. FIXME: this should
910 * also get into page cache
911 */
912
913 pathrelse(&path);
914 /*
915 * ugly, but we can only end the transaction if
916 * we aren't nested
917 */
918 BUG_ON(!th->t_refcount);
919 if (th->t_refcount == 1) {
920 retval =
921 reiserfs_end_persistent_transaction
922 (th);
923 th = NULL;
924 if (retval)
925 goto failure;
926 }
927
928 retval =
929 convert_tail_for_hole(inode, bh_result,
930 tail_offset);
931 if (retval) {
932 if (retval != -ENOSPC)
933 reiserfs_error(inode->i_sb,
934 "clm-6004",
935 "convert tail failed "
936 "inode %lu, error %d",
937 inode->i_ino,
938 retval);
939 if (allocated_block_nr) {
940 /*
941 * the bitmap, the super,
942 * and the stat data == 3
943 */
944 if (!th)
945 th = reiserfs_persistent_transaction(inode->i_sb, 3);
946 if (th)
947 reiserfs_free_block(th,
948 inode,
949 allocated_block_nr,
950 1);
951 }
952 goto failure;
953 }
954 goto research;
955 }
956 retval =
957 direct2indirect(th, inode, &path, unbh,
958 tail_offset);
959 if (retval) {
960 reiserfs_unmap_buffer(unbh);
961 reiserfs_free_block(th, inode,
962 allocated_block_nr, 1);
963 goto failure;
964 }
965 /*
966 * it is important the set_buffer_uptodate is done
967 * after the direct2indirect. The buffer might
968 * contain valid data newer than the data on disk
969 * (read by readpage, changed, and then sent here by
970 * writepage). direct2indirect needs to know if unbh
971 * was already up to date, so it can decide if the
972 * data in unbh needs to be replaced with data from
973 * the disk
974 */
975 set_buffer_uptodate(unbh);
976
977 /*
978 * unbh->b_page == NULL in case of DIRECT_IO request,
979 * this means buffer will disappear shortly, so it
980 * should not be added to
981 */
982 if (unbh->b_page) {
983 /*
984 * we've converted the tail, so we must
985 * flush unbh before the transaction commits
986 */
987 reiserfs_add_tail_list(inode, unbh);
988
989 /*
990 * mark it dirty now to prevent commit_write
991 * from adding this buffer to the inode's
992 * dirty buffer list
993 */
994 /*
995 * AKPM: changed __mark_buffer_dirty to
996 * mark_buffer_dirty(). It's still atomic,
997 * but it sets the page dirty too, which makes
998 * it eligible for writeback at any time by the
999 * VM (which was also the case with
1000 * __mark_buffer_dirty())
1001 */
1002 mark_buffer_dirty(unbh);
1003 }
1004 } else {
1005 /*
1006 * append indirect item with holes if needed, when
1007 * appending pointer to 'block'-th block use block,
1008 * which is already allocated
1009 */
1010 struct cpu_key tmp_key;
1011 /*
1012 * We use this in case we need to allocate
1013 * only one block which is a fastpath
1014 */
1015 unp_t unf_single = 0;
1016 unp_t *un;
1017 __u64 max_to_insert =
1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1019 UNFM_P_SIZE;
1020 __u64 blocks_needed;
1021
1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1023 "vs-804: invalid position for append");
1024 /*
1025 * indirect item has to be appended,
1026 * set up key of that position
1027 * (key type is unimportant)
1028 */
1029 make_cpu_key(&tmp_key, inode,
1030 le_key_k_offset(version,
1031 &ih->ih_key) +
1032 op_bytes_number(ih,
1033 inode->i_sb->s_blocksize),
1034 TYPE_INDIRECT, 3);
1035
1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1037 "green-805: invalid offset");
1038 blocks_needed =
1039 1 +
1040 ((cpu_key_k_offset(&key) -
1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1042 s_blocksize_bits);
1043
1044 if (blocks_needed == 1) {
1045 un = &unf_single;
1046 } else {
1047 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1048 if (!un) {
1049 un = &unf_single;
1050 blocks_needed = 1;
1051 max_to_insert = 0;
1052 }
1053 }
1054 if (blocks_needed <= max_to_insert) {
1055 /*
1056 * we are going to add target block to
1057 * the file. Use allocated block for that
1058 */
1059 un[blocks_needed - 1] =
1060 cpu_to_le32(allocated_block_nr);
1061 set_block_dev_mapped(bh_result,
1062 allocated_block_nr, inode);
1063 set_buffer_new(bh_result);
1064 done = 1;
1065 } else {
1066 /* paste hole to the indirect item */
1067 /*
1068 * If kmalloc failed, max_to_insert becomes
1069 * zero and it means we only have space for
1070 * one block
1071 */
1072 blocks_needed =
1073 max_to_insert ? max_to_insert : 1;
1074 }
1075 retval =
1076 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1077 (char *)un,
1078 UNFM_P_SIZE *
1079 blocks_needed);
1080
1081 if (blocks_needed != 1)
1082 kfree(un);
1083
1084 if (retval) {
1085 reiserfs_free_block(th, inode,
1086 allocated_block_nr, 1);
1087 goto failure;
1088 }
1089 if (!done) {
1090 /*
1091 * We need to mark new file size in case
1092 * this function will be interrupted/aborted
1093 * later on. And we may do this only for
1094 * holes.
1095 */
1096 inode->i_size +=
1097 inode->i_sb->s_blocksize * blocks_needed;
1098 }
1099 }
1100
1101 if (done == 1)
1102 break;
1103
1104 /*
1105 * this loop could log more blocks than we had originally
1106 * asked for. So, we have to allow the transaction to end
1107 * if it is too big or too full. Update the inode so things
1108 * are consistent if we crash before the function returns
1109 * release the path so that anybody waiting on the path before
1110 * ending their transaction will be able to continue.
1111 */
1112 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1113 retval = restart_transaction(th, inode, &path);
1114 if (retval)
1115 goto failure;
1116 }
1117 /*
1118 * inserting indirect pointers for a hole can take a
1119 * long time. reschedule if needed and also release the write
1120 * lock for others.
1121 */
1122 reiserfs_cond_resched(inode->i_sb);
1123
1124 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1125 if (retval == IO_ERROR) {
1126 retval = -EIO;
1127 goto failure;
1128 }
1129 if (retval == POSITION_FOUND) {
1130 reiserfs_warning(inode->i_sb, "vs-825",
1131 "%K should not be found", &key);
1132 retval = -EEXIST;
1133 if (allocated_block_nr)
1134 reiserfs_free_block(th, inode,
1135 allocated_block_nr, 1);
1136 pathrelse(&path);
1137 goto failure;
1138 }
1139 bh = get_last_bh(&path);
1140 ih = tp_item_head(&path);
1141 item = tp_item_body(&path);
1142 pos_in_item = path.pos_in_item;
1143 } while (1);
1144
1145 retval = 0;
1146
1147 failure:
1148 if (th && (!dangle || (retval && !th->t_trans_id))) {
1149 int err;
1150 if (th->t_trans_id)
1151 reiserfs_update_sd(th, inode);
1152 err = reiserfs_end_persistent_transaction(th);
1153 if (err)
1154 retval = err;
1155 }
1156
1157 reiserfs_write_unlock(inode->i_sb);
1158 reiserfs_check_path(&path);
1159 return retval;
1160 }
1161
1162 static int
1163 reiserfs_readpages(struct file *file, struct address_space *mapping,
1164 struct list_head *pages, unsigned nr_pages)
1165 {
1166 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1167 }
1168
1169 /*
1170 * Compute real number of used bytes by file
1171 * Following three functions can go away when we'll have enough space in
1172 * stat item
1173 */
1174 static int real_space_diff(struct inode *inode, int sd_size)
1175 {
1176 int bytes;
1177 loff_t blocksize = inode->i_sb->s_blocksize;
1178
1179 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1180 return sd_size;
1181
1182 /*
1183 * End of file is also in full block with indirect reference, so round
1184 * up to the next block.
1185 *
1186 * there is just no way to know if the tail is actually packed
1187 * on the file, so we have to assume it isn't. When we pack the
1188 * tail, we add 4 bytes to pretend there really is an unformatted
1189 * node pointer
1190 */
1191 bytes =
1192 ((inode->i_size +
1193 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1194 sd_size;
1195 return bytes;
1196 }
1197
1198 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1199 int sd_size)
1200 {
1201 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1202 return inode->i_size +
1203 (loff_t) (real_space_diff(inode, sd_size));
1204 }
1205 return ((loff_t) real_space_diff(inode, sd_size)) +
1206 (((loff_t) blocks) << 9);
1207 }
1208
1209 /* Compute number of blocks used by file in ReiserFS counting */
1210 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1211 {
1212 loff_t bytes = inode_get_bytes(inode);
1213 loff_t real_space = real_space_diff(inode, sd_size);
1214
1215 /* keeps fsck and non-quota versions of reiserfs happy */
1216 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1217 bytes += (loff_t) 511;
1218 }
1219
1220 /*
1221 * files from before the quota patch might i_blocks such that
1222 * bytes < real_space. Deal with that here to prevent it from
1223 * going negative.
1224 */
1225 if (bytes < real_space)
1226 return 0;
1227 return (bytes - real_space) >> 9;
1228 }
1229
1230 /*
1231 * BAD: new directories have stat data of new type and all other items
1232 * of old type. Version stored in the inode says about body items, so
1233 * in update_stat_data we can not rely on inode, but have to check
1234 * item version directly
1235 */
1236
1237 /* called by read_locked_inode */
1238 static void init_inode(struct inode *inode, struct treepath *path)
1239 {
1240 struct buffer_head *bh;
1241 struct item_head *ih;
1242 __u32 rdev;
1243
1244 bh = PATH_PLAST_BUFFER(path);
1245 ih = tp_item_head(path);
1246
1247 copy_key(INODE_PKEY(inode), &ih->ih_key);
1248
1249 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1250 REISERFS_I(inode)->i_flags = 0;
1251 REISERFS_I(inode)->i_prealloc_block = 0;
1252 REISERFS_I(inode)->i_prealloc_count = 0;
1253 REISERFS_I(inode)->i_trans_id = 0;
1254 REISERFS_I(inode)->i_jl = NULL;
1255 reiserfs_init_xattr_rwsem(inode);
1256
1257 if (stat_data_v1(ih)) {
1258 struct stat_data_v1 *sd =
1259 (struct stat_data_v1 *)ih_item_body(bh, ih);
1260 unsigned long blocks;
1261
1262 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1263 set_inode_sd_version(inode, STAT_DATA_V1);
1264 inode->i_mode = sd_v1_mode(sd);
1265 set_nlink(inode, sd_v1_nlink(sd));
1266 i_uid_write(inode, sd_v1_uid(sd));
1267 i_gid_write(inode, sd_v1_gid(sd));
1268 inode->i_size = sd_v1_size(sd);
1269 inode->i_atime.tv_sec = sd_v1_atime(sd);
1270 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1271 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1272 inode->i_atime.tv_nsec = 0;
1273 inode->i_ctime.tv_nsec = 0;
1274 inode->i_mtime.tv_nsec = 0;
1275
1276 inode->i_blocks = sd_v1_blocks(sd);
1277 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1278 blocks = (inode->i_size + 511) >> 9;
1279 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1280
1281 /*
1282 * there was a bug in <=3.5.23 when i_blocks could take
1283 * negative values. Starting from 3.5.17 this value could
1284 * even be stored in stat data. For such files we set
1285 * i_blocks based on file size. Just 2 notes: this can be
1286 * wrong for sparse files. On-disk value will be only
1287 * updated if file's inode will ever change
1288 */
1289 if (inode->i_blocks > blocks) {
1290 inode->i_blocks = blocks;
1291 }
1292
1293 rdev = sd_v1_rdev(sd);
1294 REISERFS_I(inode)->i_first_direct_byte =
1295 sd_v1_first_direct_byte(sd);
1296
1297 /*
1298 * an early bug in the quota code can give us an odd
1299 * number for the block count. This is incorrect, fix it here.
1300 */
1301 if (inode->i_blocks & 1) {
1302 inode->i_blocks++;
1303 }
1304 inode_set_bytes(inode,
1305 to_real_used_space(inode, inode->i_blocks,
1306 SD_V1_SIZE));
1307 /*
1308 * nopack is initially zero for v1 objects. For v2 objects,
1309 * nopack is initialised from sd_attrs
1310 */
1311 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1312 } else {
1313 /*
1314 * new stat data found, but object may have old items
1315 * (directories and symlinks)
1316 */
1317 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1318
1319 inode->i_mode = sd_v2_mode(sd);
1320 set_nlink(inode, sd_v2_nlink(sd));
1321 i_uid_write(inode, sd_v2_uid(sd));
1322 inode->i_size = sd_v2_size(sd);
1323 i_gid_write(inode, sd_v2_gid(sd));
1324 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1325 inode->i_atime.tv_sec = sd_v2_atime(sd);
1326 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1327 inode->i_ctime.tv_nsec = 0;
1328 inode->i_mtime.tv_nsec = 0;
1329 inode->i_atime.tv_nsec = 0;
1330 inode->i_blocks = sd_v2_blocks(sd);
1331 rdev = sd_v2_rdev(sd);
1332 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1333 inode->i_generation =
1334 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1335 else
1336 inode->i_generation = sd_v2_generation(sd);
1337
1338 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1339 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1340 else
1341 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1342 REISERFS_I(inode)->i_first_direct_byte = 0;
1343 set_inode_sd_version(inode, STAT_DATA_V2);
1344 inode_set_bytes(inode,
1345 to_real_used_space(inode, inode->i_blocks,
1346 SD_V2_SIZE));
1347 /*
1348 * read persistent inode attributes from sd and initialise
1349 * generic inode flags from them
1350 */
1351 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1352 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1353 }
1354
1355 pathrelse(path);
1356 if (S_ISREG(inode->i_mode)) {
1357 inode->i_op = &reiserfs_file_inode_operations;
1358 inode->i_fop = &reiserfs_file_operations;
1359 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1360 } else if (S_ISDIR(inode->i_mode)) {
1361 inode->i_op = &reiserfs_dir_inode_operations;
1362 inode->i_fop = &reiserfs_dir_operations;
1363 } else if (S_ISLNK(inode->i_mode)) {
1364 inode->i_op = &reiserfs_symlink_inode_operations;
1365 inode_nohighmem(inode);
1366 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1367 } else {
1368 inode->i_blocks = 0;
1369 inode->i_op = &reiserfs_special_inode_operations;
1370 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1371 }
1372 }
1373
1374 /* update new stat data with inode fields */
1375 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1376 {
1377 struct stat_data *sd_v2 = (struct stat_data *)sd;
1378
1379 set_sd_v2_mode(sd_v2, inode->i_mode);
1380 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1381 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1382 set_sd_v2_size(sd_v2, size);
1383 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1384 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1385 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1386 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1387 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1388 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1389 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1390 else
1391 set_sd_v2_generation(sd_v2, inode->i_generation);
1392 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1393 }
1394
1395 /* used to copy inode's fields to old stat data */
1396 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1397 {
1398 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1399
1400 set_sd_v1_mode(sd_v1, inode->i_mode);
1401 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1402 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1403 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1404 set_sd_v1_size(sd_v1, size);
1405 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1406 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1407 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1408
1409 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1410 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1411 else
1412 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1413
1414 /* Sigh. i_first_direct_byte is back */
1415 set_sd_v1_first_direct_byte(sd_v1,
1416 REISERFS_I(inode)->i_first_direct_byte);
1417 }
1418
1419 /*
1420 * NOTE, you must prepare the buffer head before sending it here,
1421 * and then log it after the call
1422 */
1423 static void update_stat_data(struct treepath *path, struct inode *inode,
1424 loff_t size)
1425 {
1426 struct buffer_head *bh;
1427 struct item_head *ih;
1428
1429 bh = PATH_PLAST_BUFFER(path);
1430 ih = tp_item_head(path);
1431
1432 if (!is_statdata_le_ih(ih))
1433 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1434 INODE_PKEY(inode), ih);
1435
1436 /* path points to old stat data */
1437 if (stat_data_v1(ih)) {
1438 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1439 } else {
1440 inode2sd(ih_item_body(bh, ih), inode, size);
1441 }
1442
1443 return;
1444 }
1445
1446 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1447 struct inode *inode, loff_t size)
1448 {
1449 struct cpu_key key;
1450 INITIALIZE_PATH(path);
1451 struct buffer_head *bh;
1452 int fs_gen;
1453 struct item_head *ih, tmp_ih;
1454 int retval;
1455
1456 BUG_ON(!th->t_trans_id);
1457
1458 /* key type is unimportant */
1459 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1460
1461 for (;;) {
1462 int pos;
1463 /* look for the object's stat data */
1464 retval = search_item(inode->i_sb, &key, &path);
1465 if (retval == IO_ERROR) {
1466 reiserfs_error(inode->i_sb, "vs-13050",
1467 "i/o failure occurred trying to "
1468 "update %K stat data", &key);
1469 return;
1470 }
1471 if (retval == ITEM_NOT_FOUND) {
1472 pos = PATH_LAST_POSITION(&path);
1473 pathrelse(&path);
1474 if (inode->i_nlink == 0) {
1475 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1476 return;
1477 }
1478 reiserfs_warning(inode->i_sb, "vs-13060",
1479 "stat data of object %k (nlink == %d) "
1480 "not found (pos %d)",
1481 INODE_PKEY(inode), inode->i_nlink,
1482 pos);
1483 reiserfs_check_path(&path);
1484 return;
1485 }
1486
1487 /*
1488 * sigh, prepare_for_journal might schedule. When it
1489 * schedules the FS might change. We have to detect that,
1490 * and loop back to the search if the stat data item has moved
1491 */
1492 bh = get_last_bh(&path);
1493 ih = tp_item_head(&path);
1494 copy_item_head(&tmp_ih, ih);
1495 fs_gen = get_generation(inode->i_sb);
1496 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1497
1498 /* Stat_data item has been moved after scheduling. */
1499 if (fs_changed(fs_gen, inode->i_sb)
1500 && item_moved(&tmp_ih, &path)) {
1501 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1502 continue;
1503 }
1504 break;
1505 }
1506 update_stat_data(&path, inode, size);
1507 journal_mark_dirty(th, bh);
1508 pathrelse(&path);
1509 return;
1510 }
1511
1512 /*
1513 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1514 * does a make_bad_inode when things go wrong. But, we need to make sure
1515 * and clear the key in the private portion of the inode, otherwise a
1516 * corresponding iput might try to delete whatever object the inode last
1517 * represented.
1518 */
1519 static void reiserfs_make_bad_inode(struct inode *inode)
1520 {
1521 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1522 make_bad_inode(inode);
1523 }
1524
1525 /*
1526 * initially this function was derived from minix or ext2's analog and
1527 * evolved as the prototype did
1528 */
1529 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1530 {
1531 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1532 inode->i_ino = args->objectid;
1533 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1534 return 0;
1535 }
1536
1537 /*
1538 * looks for stat data in the tree, and fills up the fields of in-core
1539 * inode stat data fields
1540 */
1541 void reiserfs_read_locked_inode(struct inode *inode,
1542 struct reiserfs_iget_args *args)
1543 {
1544 INITIALIZE_PATH(path_to_sd);
1545 struct cpu_key key;
1546 unsigned long dirino;
1547 int retval;
1548
1549 dirino = args->dirid;
1550
1551 /*
1552 * set version 1, version 2 could be used too, because stat data
1553 * key is the same in both versions
1554 */
1555 key.version = KEY_FORMAT_3_5;
1556 key.on_disk_key.k_dir_id = dirino;
1557 key.on_disk_key.k_objectid = inode->i_ino;
1558 key.on_disk_key.k_offset = 0;
1559 key.on_disk_key.k_type = 0;
1560
1561 /* look for the object's stat data */
1562 retval = search_item(inode->i_sb, &key, &path_to_sd);
1563 if (retval == IO_ERROR) {
1564 reiserfs_error(inode->i_sb, "vs-13070",
1565 "i/o failure occurred trying to find "
1566 "stat data of %K", &key);
1567 reiserfs_make_bad_inode(inode);
1568 return;
1569 }
1570
1571 /* a stale NFS handle can trigger this without it being an error */
1572 if (retval != ITEM_FOUND) {
1573 pathrelse(&path_to_sd);
1574 reiserfs_make_bad_inode(inode);
1575 clear_nlink(inode);
1576 return;
1577 }
1578
1579 init_inode(inode, &path_to_sd);
1580
1581 /*
1582 * It is possible that knfsd is trying to access inode of a file
1583 * that is being removed from the disk by some other thread. As we
1584 * update sd on unlink all that is required is to check for nlink
1585 * here. This bug was first found by Sizif when debugging
1586 * SquidNG/Butterfly, forgotten, and found again after Philippe
1587 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1588
1589 * More logical fix would require changes in fs/inode.c:iput() to
1590 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1591 * in iget() to return NULL if I_FREEING inode is found in
1592 * hash-table.
1593 */
1594
1595 /*
1596 * Currently there is one place where it's ok to meet inode with
1597 * nlink==0: processing of open-unlinked and half-truncated files
1598 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1599 */
1600 if ((inode->i_nlink == 0) &&
1601 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1602 reiserfs_warning(inode->i_sb, "vs-13075",
1603 "dead inode read from disk %K. "
1604 "This is likely to be race with knfsd. Ignore",
1605 &key);
1606 reiserfs_make_bad_inode(inode);
1607 }
1608
1609 /* init inode should be relsing */
1610 reiserfs_check_path(&path_to_sd);
1611
1612 /*
1613 * Stat data v1 doesn't support ACLs.
1614 */
1615 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1616 cache_no_acl(inode);
1617 }
1618
1619 /*
1620 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1621 *
1622 * @inode: inode from hash table to check
1623 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1624 *
1625 * This function is called by iget5_locked() to distinguish reiserfs inodes
1626 * having the same inode numbers. Such inodes can only exist due to some
1627 * error condition. One of them should be bad. Inodes with identical
1628 * inode numbers (objectids) are distinguished by parent directory ids.
1629 *
1630 */
1631 int reiserfs_find_actor(struct inode *inode, void *opaque)
1632 {
1633 struct reiserfs_iget_args *args;
1634
1635 args = opaque;
1636 /* args is already in CPU order */
1637 return (inode->i_ino == args->objectid) &&
1638 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1639 }
1640
1641 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1642 {
1643 struct inode *inode;
1644 struct reiserfs_iget_args args;
1645 int depth;
1646
1647 args.objectid = key->on_disk_key.k_objectid;
1648 args.dirid = key->on_disk_key.k_dir_id;
1649 depth = reiserfs_write_unlock_nested(s);
1650 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1651 reiserfs_find_actor, reiserfs_init_locked_inode,
1652 (void *)(&args));
1653 reiserfs_write_lock_nested(s, depth);
1654 if (!inode)
1655 return ERR_PTR(-ENOMEM);
1656
1657 if (inode->i_state & I_NEW) {
1658 reiserfs_read_locked_inode(inode, &args);
1659 unlock_new_inode(inode);
1660 }
1661
1662 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1663 /* either due to i/o error or a stale NFS handle */
1664 iput(inode);
1665 inode = NULL;
1666 }
1667 return inode;
1668 }
1669
1670 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1671 u32 objectid, u32 dir_id, u32 generation)
1672
1673 {
1674 struct cpu_key key;
1675 struct inode *inode;
1676
1677 key.on_disk_key.k_objectid = objectid;
1678 key.on_disk_key.k_dir_id = dir_id;
1679 reiserfs_write_lock(sb);
1680 inode = reiserfs_iget(sb, &key);
1681 if (inode && !IS_ERR(inode) && generation != 0 &&
1682 generation != inode->i_generation) {
1683 iput(inode);
1684 inode = NULL;
1685 }
1686 reiserfs_write_unlock(sb);
1687
1688 return d_obtain_alias(inode);
1689 }
1690
1691 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1692 int fh_len, int fh_type)
1693 {
1694 /*
1695 * fhtype happens to reflect the number of u32s encoded.
1696 * due to a bug in earlier code, fhtype might indicate there
1697 * are more u32s then actually fitted.
1698 * so if fhtype seems to be more than len, reduce fhtype.
1699 * Valid types are:
1700 * 2 - objectid + dir_id - legacy support
1701 * 3 - objectid + dir_id + generation
1702 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1703 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1704 * 6 - as above plus generation of directory
1705 * 6 does not fit in NFSv2 handles
1706 */
1707 if (fh_type > fh_len) {
1708 if (fh_type != 6 || fh_len != 5)
1709 reiserfs_warning(sb, "reiserfs-13077",
1710 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1711 fh_type, fh_len);
1712 fh_type = fh_len;
1713 }
1714 if (fh_len < 2)
1715 return NULL;
1716
1717 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1718 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1719 }
1720
1721 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1722 int fh_len, int fh_type)
1723 {
1724 if (fh_type > fh_len)
1725 fh_type = fh_len;
1726 if (fh_type < 4)
1727 return NULL;
1728
1729 return reiserfs_get_dentry(sb,
1730 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1731 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1732 (fh_type == 6) ? fid->raw[5] : 0);
1733 }
1734
1735 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1736 struct inode *parent)
1737 {
1738 int maxlen = *lenp;
1739
1740 if (parent && (maxlen < 5)) {
1741 *lenp = 5;
1742 return FILEID_INVALID;
1743 } else if (maxlen < 3) {
1744 *lenp = 3;
1745 return FILEID_INVALID;
1746 }
1747
1748 data[0] = inode->i_ino;
1749 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1750 data[2] = inode->i_generation;
1751 *lenp = 3;
1752 if (parent) {
1753 data[3] = parent->i_ino;
1754 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1755 *lenp = 5;
1756 if (maxlen >= 6) {
1757 data[5] = parent->i_generation;
1758 *lenp = 6;
1759 }
1760 }
1761 return *lenp;
1762 }
1763
1764 /*
1765 * looks for stat data, then copies fields to it, marks the buffer
1766 * containing stat data as dirty
1767 */
1768 /*
1769 * reiserfs inodes are never really dirty, since the dirty inode call
1770 * always logs them. This call allows the VFS inode marking routines
1771 * to properly mark inodes for datasync and such, but only actually
1772 * does something when called for a synchronous update.
1773 */
1774 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1775 {
1776 struct reiserfs_transaction_handle th;
1777 int jbegin_count = 1;
1778
1779 if (inode->i_sb->s_flags & MS_RDONLY)
1780 return -EROFS;
1781 /*
1782 * memory pressure can sometimes initiate write_inode calls with
1783 * sync == 1,
1784 * these cases are just when the system needs ram, not when the
1785 * inode needs to reach disk for safety, and they can safely be
1786 * ignored because the altered inode has already been logged.
1787 */
1788 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1789 reiserfs_write_lock(inode->i_sb);
1790 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1791 reiserfs_update_sd(&th, inode);
1792 journal_end_sync(&th);
1793 }
1794 reiserfs_write_unlock(inode->i_sb);
1795 }
1796 return 0;
1797 }
1798
1799 /*
1800 * stat data of new object is inserted already, this inserts the item
1801 * containing "." and ".." entries
1802 */
1803 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1804 struct inode *inode,
1805 struct item_head *ih, struct treepath *path,
1806 struct inode *dir)
1807 {
1808 struct super_block *sb = th->t_super;
1809 char empty_dir[EMPTY_DIR_SIZE];
1810 char *body = empty_dir;
1811 struct cpu_key key;
1812 int retval;
1813
1814 BUG_ON(!th->t_trans_id);
1815
1816 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1817 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1818 TYPE_DIRENTRY, 3 /*key length */ );
1819
1820 /*
1821 * compose item head for new item. Directories consist of items of
1822 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1823 * is done by reiserfs_new_inode
1824 */
1825 if (old_format_only(sb)) {
1826 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1827 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1828
1829 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1830 ih->ih_key.k_objectid,
1831 INODE_PKEY(dir)->k_dir_id,
1832 INODE_PKEY(dir)->k_objectid);
1833 } else {
1834 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1835 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1836
1837 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1838 ih->ih_key.k_objectid,
1839 INODE_PKEY(dir)->k_dir_id,
1840 INODE_PKEY(dir)->k_objectid);
1841 }
1842
1843 /* look for place in the tree for new item */
1844 retval = search_item(sb, &key, path);
1845 if (retval == IO_ERROR) {
1846 reiserfs_error(sb, "vs-13080",
1847 "i/o failure occurred creating new directory");
1848 return -EIO;
1849 }
1850 if (retval == ITEM_FOUND) {
1851 pathrelse(path);
1852 reiserfs_warning(sb, "vs-13070",
1853 "object with this key exists (%k)",
1854 &(ih->ih_key));
1855 return -EEXIST;
1856 }
1857
1858 /* insert item, that is empty directory item */
1859 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1860 }
1861
1862 /*
1863 * stat data of object has been inserted, this inserts the item
1864 * containing the body of symlink
1865 */
1866 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1867 struct inode *inode,
1868 struct item_head *ih,
1869 struct treepath *path, const char *symname,
1870 int item_len)
1871 {
1872 struct super_block *sb = th->t_super;
1873 struct cpu_key key;
1874 int retval;
1875
1876 BUG_ON(!th->t_trans_id);
1877
1878 _make_cpu_key(&key, KEY_FORMAT_3_5,
1879 le32_to_cpu(ih->ih_key.k_dir_id),
1880 le32_to_cpu(ih->ih_key.k_objectid),
1881 1, TYPE_DIRECT, 3 /*key length */ );
1882
1883 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1884 0 /*free_space */ );
1885
1886 /* look for place in the tree for new item */
1887 retval = search_item(sb, &key, path);
1888 if (retval == IO_ERROR) {
1889 reiserfs_error(sb, "vs-13080",
1890 "i/o failure occurred creating new symlink");
1891 return -EIO;
1892 }
1893 if (retval == ITEM_FOUND) {
1894 pathrelse(path);
1895 reiserfs_warning(sb, "vs-13080",
1896 "object with this key exists (%k)",
1897 &(ih->ih_key));
1898 return -EEXIST;
1899 }
1900
1901 /* insert item, that is body of symlink */
1902 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1903 }
1904
1905 /*
1906 * inserts the stat data into the tree, and then calls
1907 * reiserfs_new_directory (to insert ".", ".." item if new object is
1908 * directory) or reiserfs_new_symlink (to insert symlink body if new
1909 * object is symlink) or nothing (if new object is regular file)
1910
1911 * NOTE! uid and gid must already be set in the inode. If we return
1912 * non-zero due to an error, we have to drop the quota previously allocated
1913 * for the fresh inode. This can only be done outside a transaction, so
1914 * if we return non-zero, we also end the transaction.
1915 *
1916 * @th: active transaction handle
1917 * @dir: parent directory for new inode
1918 * @mode: mode of new inode
1919 * @symname: symlink contents if inode is symlink
1920 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1921 * symlinks
1922 * @inode: inode to be filled
1923 * @security: optional security context to associate with this inode
1924 */
1925 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1926 struct inode *dir, umode_t mode, const char *symname,
1927 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1928 strlen (symname) for symlinks) */
1929 loff_t i_size, struct dentry *dentry,
1930 struct inode *inode,
1931 struct reiserfs_security_handle *security)
1932 {
1933 struct super_block *sb = dir->i_sb;
1934 struct reiserfs_iget_args args;
1935 INITIALIZE_PATH(path_to_key);
1936 struct cpu_key key;
1937 struct item_head ih;
1938 struct stat_data sd;
1939 int retval;
1940 int err;
1941 int depth;
1942
1943 BUG_ON(!th->t_trans_id);
1944
1945 depth = reiserfs_write_unlock_nested(sb);
1946 err = dquot_alloc_inode(inode);
1947 reiserfs_write_lock_nested(sb, depth);
1948 if (err)
1949 goto out_end_trans;
1950 if (!dir->i_nlink) {
1951 err = -EPERM;
1952 goto out_bad_inode;
1953 }
1954
1955 /* item head of new item */
1956 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1957 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1958 if (!ih.ih_key.k_objectid) {
1959 err = -ENOMEM;
1960 goto out_bad_inode;
1961 }
1962 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1963 if (old_format_only(sb))
1964 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1965 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1966 else
1967 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1968 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1969 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1970 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1971
1972 depth = reiserfs_write_unlock_nested(inode->i_sb);
1973 err = insert_inode_locked4(inode, args.objectid,
1974 reiserfs_find_actor, &args);
1975 reiserfs_write_lock_nested(inode->i_sb, depth);
1976 if (err) {
1977 err = -EINVAL;
1978 goto out_bad_inode;
1979 }
1980
1981 if (old_format_only(sb))
1982 /*
1983 * not a perfect generation count, as object ids can be reused,
1984 * but this is as good as reiserfs can do right now.
1985 * note that the private part of inode isn't filled in yet,
1986 * we have to use the directory.
1987 */
1988 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1989 else
1990 #if defined( USE_INODE_GENERATION_COUNTER )
1991 inode->i_generation =
1992 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1993 #else
1994 inode->i_generation = ++event;
1995 #endif
1996
1997 /* fill stat data */
1998 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1999
2000 /* uid and gid must already be set by the caller for quota init */
2001
2002 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
2003 inode->i_size = i_size;
2004 inode->i_blocks = 0;
2005 inode->i_bytes = 0;
2006 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2007 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2008
2009 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2010 REISERFS_I(inode)->i_flags = 0;
2011 REISERFS_I(inode)->i_prealloc_block = 0;
2012 REISERFS_I(inode)->i_prealloc_count = 0;
2013 REISERFS_I(inode)->i_trans_id = 0;
2014 REISERFS_I(inode)->i_jl = NULL;
2015 REISERFS_I(inode)->i_attrs =
2016 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2017 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2018 reiserfs_init_xattr_rwsem(inode);
2019
2020 /* key to search for correct place for new stat data */
2021 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2022 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2023 TYPE_STAT_DATA, 3 /*key length */ );
2024
2025 /* find proper place for inserting of stat data */
2026 retval = search_item(sb, &key, &path_to_key);
2027 if (retval == IO_ERROR) {
2028 err = -EIO;
2029 goto out_bad_inode;
2030 }
2031 if (retval == ITEM_FOUND) {
2032 pathrelse(&path_to_key);
2033 err = -EEXIST;
2034 goto out_bad_inode;
2035 }
2036 if (old_format_only(sb)) {
2037 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2038 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2039 pathrelse(&path_to_key);
2040 err = -EINVAL;
2041 goto out_bad_inode;
2042 }
2043 inode2sd_v1(&sd, inode, inode->i_size);
2044 } else {
2045 inode2sd(&sd, inode, inode->i_size);
2046 }
2047 /*
2048 * store in in-core inode the key of stat data and version all
2049 * object items will have (directory items will have old offset
2050 * format, other new objects will consist of new items)
2051 */
2052 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2053 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2054 else
2055 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2056 if (old_format_only(sb))
2057 set_inode_sd_version(inode, STAT_DATA_V1);
2058 else
2059 set_inode_sd_version(inode, STAT_DATA_V2);
2060
2061 /* insert the stat data into the tree */
2062 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2063 if (REISERFS_I(dir)->new_packing_locality)
2064 th->displace_new_blocks = 1;
2065 #endif
2066 retval =
2067 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2068 (char *)(&sd));
2069 if (retval) {
2070 err = retval;
2071 reiserfs_check_path(&path_to_key);
2072 goto out_bad_inode;
2073 }
2074 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075 if (!th->displace_new_blocks)
2076 REISERFS_I(dir)->new_packing_locality = 0;
2077 #endif
2078 if (S_ISDIR(mode)) {
2079 /* insert item with "." and ".." */
2080 retval =
2081 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2082 }
2083
2084 if (S_ISLNK(mode)) {
2085 /* insert body of symlink */
2086 if (!old_format_only(sb))
2087 i_size = ROUND_UP(i_size);
2088 retval =
2089 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2090 i_size);
2091 }
2092 if (retval) {
2093 err = retval;
2094 reiserfs_check_path(&path_to_key);
2095 journal_end(th);
2096 goto out_inserted_sd;
2097 }
2098
2099 if (reiserfs_posixacl(inode->i_sb)) {
2100 reiserfs_write_unlock(inode->i_sb);
2101 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2102 reiserfs_write_lock(inode->i_sb);
2103 if (retval) {
2104 err = retval;
2105 reiserfs_check_path(&path_to_key);
2106 journal_end(th);
2107 goto out_inserted_sd;
2108 }
2109 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
2110 reiserfs_warning(inode->i_sb, "jdm-13090",
2111 "ACLs aren't enabled in the fs, "
2112 "but vfs thinks they are!");
2113 } else if (IS_PRIVATE(dir))
2114 inode->i_flags |= S_PRIVATE;
2115
2116 if (security->name) {
2117 reiserfs_write_unlock(inode->i_sb);
2118 retval = reiserfs_security_write(th, inode, security);
2119 reiserfs_write_lock(inode->i_sb);
2120 if (retval) {
2121 err = retval;
2122 reiserfs_check_path(&path_to_key);
2123 retval = journal_end(th);
2124 if (retval)
2125 err = retval;
2126 goto out_inserted_sd;
2127 }
2128 }
2129
2130 reiserfs_update_sd(th, inode);
2131 reiserfs_check_path(&path_to_key);
2132
2133 return 0;
2134
2135 out_bad_inode:
2136 /* Invalidate the object, nothing was inserted yet */
2137 INODE_PKEY(inode)->k_objectid = 0;
2138
2139 /* Quota change must be inside a transaction for journaling */
2140 depth = reiserfs_write_unlock_nested(inode->i_sb);
2141 dquot_free_inode(inode);
2142 reiserfs_write_lock_nested(inode->i_sb, depth);
2143
2144 out_end_trans:
2145 journal_end(th);
2146 /*
2147 * Drop can be outside and it needs more credits so it's better
2148 * to have it outside
2149 */
2150 depth = reiserfs_write_unlock_nested(inode->i_sb);
2151 dquot_drop(inode);
2152 reiserfs_write_lock_nested(inode->i_sb, depth);
2153 inode->i_flags |= S_NOQUOTA;
2154 make_bad_inode(inode);
2155
2156 out_inserted_sd:
2157 clear_nlink(inode);
2158 th->t_trans_id = 0; /* so the caller can't use this handle later */
2159 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2160 iput(inode);
2161 return err;
2162 }
2163
2164 /*
2165 * finds the tail page in the page cache,
2166 * reads the last block in.
2167 *
2168 * On success, page_result is set to a locked, pinned page, and bh_result
2169 * is set to an up to date buffer for the last block in the file. returns 0.
2170 *
2171 * tail conversion is not done, so bh_result might not be valid for writing
2172 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2173 * trying to write the block.
2174 *
2175 * on failure, nonzero is returned, page_result and bh_result are untouched.
2176 */
2177 static int grab_tail_page(struct inode *inode,
2178 struct page **page_result,
2179 struct buffer_head **bh_result)
2180 {
2181
2182 /*
2183 * we want the page with the last byte in the file,
2184 * not the page that will hold the next byte for appending
2185 */
2186 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2187 unsigned long pos = 0;
2188 unsigned long start = 0;
2189 unsigned long blocksize = inode->i_sb->s_blocksize;
2190 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2191 struct buffer_head *bh;
2192 struct buffer_head *head;
2193 struct page *page;
2194 int error;
2195
2196 /*
2197 * we know that we are only called with inode->i_size > 0.
2198 * we also know that a file tail can never be as big as a block
2199 * If i_size % blocksize == 0, our file is currently block aligned
2200 * and it won't need converting or zeroing after a truncate.
2201 */
2202 if ((offset & (blocksize - 1)) == 0) {
2203 return -ENOENT;
2204 }
2205 page = grab_cache_page(inode->i_mapping, index);
2206 error = -ENOMEM;
2207 if (!page) {
2208 goto out;
2209 }
2210 /* start within the page of the last block in the file */
2211 start = (offset / blocksize) * blocksize;
2212
2213 error = __block_write_begin(page, start, offset - start,
2214 reiserfs_get_block_create_0);
2215 if (error)
2216 goto unlock;
2217
2218 head = page_buffers(page);
2219 bh = head;
2220 do {
2221 if (pos >= start) {
2222 break;
2223 }
2224 bh = bh->b_this_page;
2225 pos += blocksize;
2226 } while (bh != head);
2227
2228 if (!buffer_uptodate(bh)) {
2229 /*
2230 * note, this should never happen, prepare_write should be
2231 * taking care of this for us. If the buffer isn't up to
2232 * date, I've screwed up the code to find the buffer, or the
2233 * code to call prepare_write
2234 */
2235 reiserfs_error(inode->i_sb, "clm-6000",
2236 "error reading block %lu", bh->b_blocknr);
2237 error = -EIO;
2238 goto unlock;
2239 }
2240 *bh_result = bh;
2241 *page_result = page;
2242
2243 out:
2244 return error;
2245
2246 unlock:
2247 unlock_page(page);
2248 put_page(page);
2249 return error;
2250 }
2251
2252 /*
2253 * vfs version of truncate file. Must NOT be called with
2254 * a transaction already started.
2255 *
2256 * some code taken from block_truncate_page
2257 */
2258 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2259 {
2260 struct reiserfs_transaction_handle th;
2261 /* we want the offset for the first byte after the end of the file */
2262 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2263 unsigned blocksize = inode->i_sb->s_blocksize;
2264 unsigned length;
2265 struct page *page = NULL;
2266 int error;
2267 struct buffer_head *bh = NULL;
2268 int err2;
2269
2270 reiserfs_write_lock(inode->i_sb);
2271
2272 if (inode->i_size > 0) {
2273 error = grab_tail_page(inode, &page, &bh);
2274 if (error) {
2275 /*
2276 * -ENOENT means we truncated past the end of the
2277 * file, and get_block_create_0 could not find a
2278 * block to read in, which is ok.
2279 */
2280 if (error != -ENOENT)
2281 reiserfs_error(inode->i_sb, "clm-6001",
2282 "grab_tail_page failed %d",
2283 error);
2284 page = NULL;
2285 bh = NULL;
2286 }
2287 }
2288
2289 /*
2290 * so, if page != NULL, we have a buffer head for the offset at
2291 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2292 * then we have an unformatted node. Otherwise, we have a direct item,
2293 * and no zeroing is required on disk. We zero after the truncate,
2294 * because the truncate might pack the item anyway
2295 * (it will unmap bh if it packs).
2296 *
2297 * it is enough to reserve space in transaction for 2 balancings:
2298 * one for "save" link adding and another for the first
2299 * cut_from_item. 1 is for update_sd
2300 */
2301 error = journal_begin(&th, inode->i_sb,
2302 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2303 if (error)
2304 goto out;
2305 reiserfs_update_inode_transaction(inode);
2306 if (update_timestamps)
2307 /*
2308 * we are doing real truncate: if the system crashes
2309 * before the last transaction of truncating gets committed
2310 * - on reboot the file either appears truncated properly
2311 * or not truncated at all
2312 */
2313 add_save_link(&th, inode, 1);
2314 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2315 error = journal_end(&th);
2316 if (error)
2317 goto out;
2318
2319 /* check reiserfs_do_truncate after ending the transaction */
2320 if (err2) {
2321 error = err2;
2322 goto out;
2323 }
2324
2325 if (update_timestamps) {
2326 error = remove_save_link(inode, 1 /* truncate */);
2327 if (error)
2328 goto out;
2329 }
2330
2331 if (page) {
2332 length = offset & (blocksize - 1);
2333 /* if we are not on a block boundary */
2334 if (length) {
2335 length = blocksize - length;
2336 zero_user(page, offset, length);
2337 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2338 mark_buffer_dirty(bh);
2339 }
2340 }
2341 unlock_page(page);
2342 put_page(page);
2343 }
2344
2345 reiserfs_write_unlock(inode->i_sb);
2346
2347 return 0;
2348 out:
2349 if (page) {
2350 unlock_page(page);
2351 put_page(page);
2352 }
2353
2354 reiserfs_write_unlock(inode->i_sb);
2355
2356 return error;
2357 }
2358
2359 static int map_block_for_writepage(struct inode *inode,
2360 struct buffer_head *bh_result,
2361 unsigned long block)
2362 {
2363 struct reiserfs_transaction_handle th;
2364 int fs_gen;
2365 struct item_head tmp_ih;
2366 struct item_head *ih;
2367 struct buffer_head *bh;
2368 __le32 *item;
2369 struct cpu_key key;
2370 INITIALIZE_PATH(path);
2371 int pos_in_item;
2372 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2373 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2374 int retval;
2375 int use_get_block = 0;
2376 int bytes_copied = 0;
2377 int copy_size;
2378 int trans_running = 0;
2379
2380 /*
2381 * catch places below that try to log something without
2382 * starting a trans
2383 */
2384 th.t_trans_id = 0;
2385
2386 if (!buffer_uptodate(bh_result)) {
2387 return -EIO;
2388 }
2389
2390 kmap(bh_result->b_page);
2391 start_over:
2392 reiserfs_write_lock(inode->i_sb);
2393 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2394
2395 research:
2396 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2397 if (retval != POSITION_FOUND) {
2398 use_get_block = 1;
2399 goto out;
2400 }
2401
2402 bh = get_last_bh(&path);
2403 ih = tp_item_head(&path);
2404 item = tp_item_body(&path);
2405 pos_in_item = path.pos_in_item;
2406
2407 /* we've found an unformatted node */
2408 if (indirect_item_found(retval, ih)) {
2409 if (bytes_copied > 0) {
2410 reiserfs_warning(inode->i_sb, "clm-6002",
2411 "bytes_copied %d", bytes_copied);
2412 }
2413 if (!get_block_num(item, pos_in_item)) {
2414 /* crap, we are writing to a hole */
2415 use_get_block = 1;
2416 goto out;
2417 }
2418 set_block_dev_mapped(bh_result,
2419 get_block_num(item, pos_in_item), inode);
2420 } else if (is_direct_le_ih(ih)) {
2421 char *p;
2422 p = page_address(bh_result->b_page);
2423 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2424 copy_size = ih_item_len(ih) - pos_in_item;
2425
2426 fs_gen = get_generation(inode->i_sb);
2427 copy_item_head(&tmp_ih, ih);
2428
2429 if (!trans_running) {
2430 /* vs-3050 is gone, no need to drop the path */
2431 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2432 if (retval)
2433 goto out;
2434 reiserfs_update_inode_transaction(inode);
2435 trans_running = 1;
2436 if (fs_changed(fs_gen, inode->i_sb)
2437 && item_moved(&tmp_ih, &path)) {
2438 reiserfs_restore_prepared_buffer(inode->i_sb,
2439 bh);
2440 goto research;
2441 }
2442 }
2443
2444 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2445
2446 if (fs_changed(fs_gen, inode->i_sb)
2447 && item_moved(&tmp_ih, &path)) {
2448 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2449 goto research;
2450 }
2451
2452 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2453 copy_size);
2454
2455 journal_mark_dirty(&th, bh);
2456 bytes_copied += copy_size;
2457 set_block_dev_mapped(bh_result, 0, inode);
2458
2459 /* are there still bytes left? */
2460 if (bytes_copied < bh_result->b_size &&
2461 (byte_offset + bytes_copied) < inode->i_size) {
2462 set_cpu_key_k_offset(&key,
2463 cpu_key_k_offset(&key) +
2464 copy_size);
2465 goto research;
2466 }
2467 } else {
2468 reiserfs_warning(inode->i_sb, "clm-6003",
2469 "bad item inode %lu", inode->i_ino);
2470 retval = -EIO;
2471 goto out;
2472 }
2473 retval = 0;
2474
2475 out:
2476 pathrelse(&path);
2477 if (trans_running) {
2478 int err = journal_end(&th);
2479 if (err)
2480 retval = err;
2481 trans_running = 0;
2482 }
2483 reiserfs_write_unlock(inode->i_sb);
2484
2485 /* this is where we fill in holes in the file. */
2486 if (use_get_block) {
2487 retval = reiserfs_get_block(inode, block, bh_result,
2488 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2489 | GET_BLOCK_NO_DANGLE);
2490 if (!retval) {
2491 if (!buffer_mapped(bh_result)
2492 || bh_result->b_blocknr == 0) {
2493 /* get_block failed to find a mapped unformatted node. */
2494 use_get_block = 0;
2495 goto start_over;
2496 }
2497 }
2498 }
2499 kunmap(bh_result->b_page);
2500
2501 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2502 /*
2503 * we've copied data from the page into the direct item, so the
2504 * buffer in the page is now clean, mark it to reflect that.
2505 */
2506 lock_buffer(bh_result);
2507 clear_buffer_dirty(bh_result);
2508 unlock_buffer(bh_result);
2509 }
2510 return retval;
2511 }
2512
2513 /*
2514 * mason@suse.com: updated in 2.5.54 to follow the same general io
2515 * start/recovery path as __block_write_full_page, along with special
2516 * code to handle reiserfs tails.
2517 */
2518 static int reiserfs_write_full_page(struct page *page,
2519 struct writeback_control *wbc)
2520 {
2521 struct inode *inode = page->mapping->host;
2522 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2523 int error = 0;
2524 unsigned long block;
2525 sector_t last_block;
2526 struct buffer_head *head, *bh;
2527 int partial = 0;
2528 int nr = 0;
2529 int checked = PageChecked(page);
2530 struct reiserfs_transaction_handle th;
2531 struct super_block *s = inode->i_sb;
2532 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2533 th.t_trans_id = 0;
2534
2535 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2536 if (checked && (current->flags & PF_MEMALLOC)) {
2537 redirty_page_for_writepage(wbc, page);
2538 unlock_page(page);
2539 return 0;
2540 }
2541
2542 /*
2543 * The page dirty bit is cleared before writepage is called, which
2544 * means we have to tell create_empty_buffers to make dirty buffers
2545 * The page really should be up to date at this point, so tossing
2546 * in the BH_Uptodate is just a sanity check.
2547 */
2548 if (!page_has_buffers(page)) {
2549 create_empty_buffers(page, s->s_blocksize,
2550 (1 << BH_Dirty) | (1 << BH_Uptodate));
2551 }
2552 head = page_buffers(page);
2553
2554 /*
2555 * last page in the file, zero out any contents past the
2556 * last byte in the file
2557 */
2558 if (page->index >= end_index) {
2559 unsigned last_offset;
2560
2561 last_offset = inode->i_size & (PAGE_SIZE - 1);
2562 /* no file contents in this page */
2563 if (page->index >= end_index + 1 || !last_offset) {
2564 unlock_page(page);
2565 return 0;
2566 }
2567 zero_user_segment(page, last_offset, PAGE_SIZE);
2568 }
2569 bh = head;
2570 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2571 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2572 /* first map all the buffers, logging any direct items we find */
2573 do {
2574 if (block > last_block) {
2575 /*
2576 * This can happen when the block size is less than
2577 * the page size. The corresponding bytes in the page
2578 * were zero filled above
2579 */
2580 clear_buffer_dirty(bh);
2581 set_buffer_uptodate(bh);
2582 } else if ((checked || buffer_dirty(bh)) &&
2583 (!buffer_mapped(bh) || (buffer_mapped(bh)
2584 && bh->b_blocknr ==
2585 0))) {
2586 /*
2587 * not mapped yet, or it points to a direct item, search
2588 * the btree for the mapping info, and log any direct
2589 * items found
2590 */
2591 if ((error = map_block_for_writepage(inode, bh, block))) {
2592 goto fail;
2593 }
2594 }
2595 bh = bh->b_this_page;
2596 block++;
2597 } while (bh != head);
2598
2599 /*
2600 * we start the transaction after map_block_for_writepage,
2601 * because it can create holes in the file (an unbounded operation).
2602 * starting it here, we can make a reliable estimate for how many
2603 * blocks we're going to log
2604 */
2605 if (checked) {
2606 ClearPageChecked(page);
2607 reiserfs_write_lock(s);
2608 error = journal_begin(&th, s, bh_per_page + 1);
2609 if (error) {
2610 reiserfs_write_unlock(s);
2611 goto fail;
2612 }
2613 reiserfs_update_inode_transaction(inode);
2614 }
2615 /* now go through and lock any dirty buffers on the page */
2616 do {
2617 get_bh(bh);
2618 if (!buffer_mapped(bh))
2619 continue;
2620 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2621 continue;
2622
2623 if (checked) {
2624 reiserfs_prepare_for_journal(s, bh, 1);
2625 journal_mark_dirty(&th, bh);
2626 continue;
2627 }
2628 /*
2629 * from this point on, we know the buffer is mapped to a
2630 * real block and not a direct item
2631 */
2632 if (wbc->sync_mode != WB_SYNC_NONE) {
2633 lock_buffer(bh);
2634 } else {
2635 if (!trylock_buffer(bh)) {
2636 redirty_page_for_writepage(wbc, page);
2637 continue;
2638 }
2639 }
2640 if (test_clear_buffer_dirty(bh)) {
2641 mark_buffer_async_write(bh);
2642 } else {
2643 unlock_buffer(bh);
2644 }
2645 } while ((bh = bh->b_this_page) != head);
2646
2647 if (checked) {
2648 error = journal_end(&th);
2649 reiserfs_write_unlock(s);
2650 if (error)
2651 goto fail;
2652 }
2653 BUG_ON(PageWriteback(page));
2654 set_page_writeback(page);
2655 unlock_page(page);
2656
2657 /*
2658 * since any buffer might be the only dirty buffer on the page,
2659 * the first submit_bh can bring the page out of writeback.
2660 * be careful with the buffers.
2661 */
2662 do {
2663 struct buffer_head *next = bh->b_this_page;
2664 if (buffer_async_write(bh)) {
2665 submit_bh(REQ_OP_WRITE, 0, bh);
2666 nr++;
2667 }
2668 put_bh(bh);
2669 bh = next;
2670 } while (bh != head);
2671
2672 error = 0;
2673 done:
2674 if (nr == 0) {
2675 /*
2676 * if this page only had a direct item, it is very possible for
2677 * no io to be required without there being an error. Or,
2678 * someone else could have locked them and sent them down the
2679 * pipe without locking the page
2680 */
2681 bh = head;
2682 do {
2683 if (!buffer_uptodate(bh)) {
2684 partial = 1;
2685 break;
2686 }
2687 bh = bh->b_this_page;
2688 } while (bh != head);
2689 if (!partial)
2690 SetPageUptodate(page);
2691 end_page_writeback(page);
2692 }
2693 return error;
2694
2695 fail:
2696 /*
2697 * catches various errors, we need to make sure any valid dirty blocks
2698 * get to the media. The page is currently locked and not marked for
2699 * writeback
2700 */
2701 ClearPageUptodate(page);
2702 bh = head;
2703 do {
2704 get_bh(bh);
2705 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2706 lock_buffer(bh);
2707 mark_buffer_async_write(bh);
2708 } else {
2709 /*
2710 * clear any dirty bits that might have come from
2711 * getting attached to a dirty page
2712 */
2713 clear_buffer_dirty(bh);
2714 }
2715 bh = bh->b_this_page;
2716 } while (bh != head);
2717 SetPageError(page);
2718 BUG_ON(PageWriteback(page));
2719 set_page_writeback(page);
2720 unlock_page(page);
2721 do {
2722 struct buffer_head *next = bh->b_this_page;
2723 if (buffer_async_write(bh)) {
2724 clear_buffer_dirty(bh);
2725 submit_bh(REQ_OP_WRITE, 0, bh);
2726 nr++;
2727 }
2728 put_bh(bh);
2729 bh = next;
2730 } while (bh != head);
2731 goto done;
2732 }
2733
2734 static int reiserfs_readpage(struct file *f, struct page *page)
2735 {
2736 return block_read_full_page(page, reiserfs_get_block);
2737 }
2738
2739 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2740 {
2741 struct inode *inode = page->mapping->host;
2742 reiserfs_wait_on_write_block(inode->i_sb);
2743 return reiserfs_write_full_page(page, wbc);
2744 }
2745
2746 static void reiserfs_truncate_failed_write(struct inode *inode)
2747 {
2748 truncate_inode_pages(inode->i_mapping, inode->i_size);
2749 reiserfs_truncate_file(inode, 0);
2750 }
2751
2752 static int reiserfs_write_begin(struct file *file,
2753 struct address_space *mapping,
2754 loff_t pos, unsigned len, unsigned flags,
2755 struct page **pagep, void **fsdata)
2756 {
2757 struct inode *inode;
2758 struct page *page;
2759 pgoff_t index;
2760 int ret;
2761 int old_ref = 0;
2762
2763 inode = mapping->host;
2764 *fsdata = NULL;
2765 if (flags & AOP_FLAG_CONT_EXPAND &&
2766 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2767 pos ++;
2768 *fsdata = (void *)(unsigned long)flags;
2769 }
2770
2771 index = pos >> PAGE_SHIFT;
2772 page = grab_cache_page_write_begin(mapping, index, flags);
2773 if (!page)
2774 return -ENOMEM;
2775 *pagep = page;
2776
2777 reiserfs_wait_on_write_block(inode->i_sb);
2778 fix_tail_page_for_writing(page);
2779 if (reiserfs_transaction_running(inode->i_sb)) {
2780 struct reiserfs_transaction_handle *th;
2781 th = (struct reiserfs_transaction_handle *)current->
2782 journal_info;
2783 BUG_ON(!th->t_refcount);
2784 BUG_ON(!th->t_trans_id);
2785 old_ref = th->t_refcount;
2786 th->t_refcount++;
2787 }
2788 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2789 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2790 struct reiserfs_transaction_handle *th = current->journal_info;
2791 /*
2792 * this gets a little ugly. If reiserfs_get_block returned an
2793 * error and left a transacstion running, we've got to close
2794 * it, and we've got to free handle if it was a persistent
2795 * transaction.
2796 *
2797 * But, if we had nested into an existing transaction, we need
2798 * to just drop the ref count on the handle.
2799 *
2800 * If old_ref == 0, the transaction is from reiserfs_get_block,
2801 * and it was a persistent trans. Otherwise, it was nested
2802 * above.
2803 */
2804 if (th->t_refcount > old_ref) {
2805 if (old_ref)
2806 th->t_refcount--;
2807 else {
2808 int err;
2809 reiserfs_write_lock(inode->i_sb);
2810 err = reiserfs_end_persistent_transaction(th);
2811 reiserfs_write_unlock(inode->i_sb);
2812 if (err)
2813 ret = err;
2814 }
2815 }
2816 }
2817 if (ret) {
2818 unlock_page(page);
2819 put_page(page);
2820 /* Truncate allocated blocks */
2821 reiserfs_truncate_failed_write(inode);
2822 }
2823 return ret;
2824 }
2825
2826 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2827 {
2828 struct inode *inode = page->mapping->host;
2829 int ret;
2830 int old_ref = 0;
2831 int depth;
2832
2833 depth = reiserfs_write_unlock_nested(inode->i_sb);
2834 reiserfs_wait_on_write_block(inode->i_sb);
2835 reiserfs_write_lock_nested(inode->i_sb, depth);
2836
2837 fix_tail_page_for_writing(page);
2838 if (reiserfs_transaction_running(inode->i_sb)) {
2839 struct reiserfs_transaction_handle *th;
2840 th = (struct reiserfs_transaction_handle *)current->
2841 journal_info;
2842 BUG_ON(!th->t_refcount);
2843 BUG_ON(!th->t_trans_id);
2844 old_ref = th->t_refcount;
2845 th->t_refcount++;
2846 }
2847
2848 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2849 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2850 struct reiserfs_transaction_handle *th = current->journal_info;
2851 /*
2852 * this gets a little ugly. If reiserfs_get_block returned an
2853 * error and left a transacstion running, we've got to close
2854 * it, and we've got to free handle if it was a persistent
2855 * transaction.
2856 *
2857 * But, if we had nested into an existing transaction, we need
2858 * to just drop the ref count on the handle.
2859 *
2860 * If old_ref == 0, the transaction is from reiserfs_get_block,
2861 * and it was a persistent trans. Otherwise, it was nested
2862 * above.
2863 */
2864 if (th->t_refcount > old_ref) {
2865 if (old_ref)
2866 th->t_refcount--;
2867 else {
2868 int err;
2869 reiserfs_write_lock(inode->i_sb);
2870 err = reiserfs_end_persistent_transaction(th);
2871 reiserfs_write_unlock(inode->i_sb);
2872 if (err)
2873 ret = err;
2874 }
2875 }
2876 }
2877 return ret;
2878
2879 }
2880
2881 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2882 {
2883 return generic_block_bmap(as, block, reiserfs_bmap);
2884 }
2885
2886 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2887 loff_t pos, unsigned len, unsigned copied,
2888 struct page *page, void *fsdata)
2889 {
2890 struct inode *inode = page->mapping->host;
2891 int ret = 0;
2892 int update_sd = 0;
2893 struct reiserfs_transaction_handle *th;
2894 unsigned start;
2895 bool locked = false;
2896
2897 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2898 pos ++;
2899
2900 reiserfs_wait_on_write_block(inode->i_sb);
2901 if (reiserfs_transaction_running(inode->i_sb))
2902 th = current->journal_info;
2903 else
2904 th = NULL;
2905
2906 start = pos & (PAGE_SIZE - 1);
2907 if (unlikely(copied < len)) {
2908 if (!PageUptodate(page))
2909 copied = 0;
2910
2911 page_zero_new_buffers(page, start + copied, start + len);
2912 }
2913 flush_dcache_page(page);
2914
2915 reiserfs_commit_page(inode, page, start, start + copied);
2916
2917 /*
2918 * generic_commit_write does this for us, but does not update the
2919 * transaction tracking stuff when the size changes. So, we have
2920 * to do the i_size updates here.
2921 */
2922 if (pos + copied > inode->i_size) {
2923 struct reiserfs_transaction_handle myth;
2924 reiserfs_write_lock(inode->i_sb);
2925 locked = true;
2926 /*
2927 * If the file have grown beyond the border where it
2928 * can have a tail, unmark it as needing a tail
2929 * packing
2930 */
2931 if ((have_large_tails(inode->i_sb)
2932 && inode->i_size > i_block_size(inode) * 4)
2933 || (have_small_tails(inode->i_sb)
2934 && inode->i_size > i_block_size(inode)))
2935 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2936
2937 ret = journal_begin(&myth, inode->i_sb, 1);
2938 if (ret)
2939 goto journal_error;
2940
2941 reiserfs_update_inode_transaction(inode);
2942 inode->i_size = pos + copied;
2943 /*
2944 * this will just nest into our transaction. It's important
2945 * to use mark_inode_dirty so the inode gets pushed around on
2946 * the dirty lists, and so that O_SYNC works as expected
2947 */
2948 mark_inode_dirty(inode);
2949 reiserfs_update_sd(&myth, inode);
2950 update_sd = 1;
2951 ret = journal_end(&myth);
2952 if (ret)
2953 goto journal_error;
2954 }
2955 if (th) {
2956 if (!locked) {
2957 reiserfs_write_lock(inode->i_sb);
2958 locked = true;
2959 }
2960 if (!update_sd)
2961 mark_inode_dirty(inode);
2962 ret = reiserfs_end_persistent_transaction(th);
2963 if (ret)
2964 goto out;
2965 }
2966
2967 out:
2968 if (locked)
2969 reiserfs_write_unlock(inode->i_sb);
2970 unlock_page(page);
2971 put_page(page);
2972
2973 if (pos + len > inode->i_size)
2974 reiserfs_truncate_failed_write(inode);
2975
2976 return ret == 0 ? copied : ret;
2977
2978 journal_error:
2979 reiserfs_write_unlock(inode->i_sb);
2980 locked = false;
2981 if (th) {
2982 if (!update_sd)
2983 reiserfs_update_sd(th, inode);
2984 ret = reiserfs_end_persistent_transaction(th);
2985 }
2986 goto out;
2987 }
2988
2989 int reiserfs_commit_write(struct file *f, struct page *page,
2990 unsigned from, unsigned to)
2991 {
2992 struct inode *inode = page->mapping->host;
2993 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2994 int ret = 0;
2995 int update_sd = 0;
2996 struct reiserfs_transaction_handle *th = NULL;
2997 int depth;
2998
2999 depth = reiserfs_write_unlock_nested(inode->i_sb);
3000 reiserfs_wait_on_write_block(inode->i_sb);
3001 reiserfs_write_lock_nested(inode->i_sb, depth);
3002
3003 if (reiserfs_transaction_running(inode->i_sb)) {
3004 th = current->journal_info;
3005 }
3006 reiserfs_commit_page(inode, page, from, to);
3007
3008 /*
3009 * generic_commit_write does this for us, but does not update the
3010 * transaction tracking stuff when the size changes. So, we have
3011 * to do the i_size updates here.
3012 */
3013 if (pos > inode->i_size) {
3014 struct reiserfs_transaction_handle myth;
3015 /*
3016 * If the file have grown beyond the border where it
3017 * can have a tail, unmark it as needing a tail
3018 * packing
3019 */
3020 if ((have_large_tails(inode->i_sb)
3021 && inode->i_size > i_block_size(inode) * 4)
3022 || (have_small_tails(inode->i_sb)
3023 && inode->i_size > i_block_size(inode)))
3024 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3025
3026 ret = journal_begin(&myth, inode->i_sb, 1);
3027 if (ret)
3028 goto journal_error;
3029
3030 reiserfs_update_inode_transaction(inode);
3031 inode->i_size = pos;
3032 /*
3033 * this will just nest into our transaction. It's important
3034 * to use mark_inode_dirty so the inode gets pushed around
3035 * on the dirty lists, and so that O_SYNC works as expected
3036 */
3037 mark_inode_dirty(inode);
3038 reiserfs_update_sd(&myth, inode);
3039 update_sd = 1;
3040 ret = journal_end(&myth);
3041 if (ret)
3042 goto journal_error;
3043 }
3044 if (th) {
3045 if (!update_sd)
3046 mark_inode_dirty(inode);
3047 ret = reiserfs_end_persistent_transaction(th);
3048 if (ret)
3049 goto out;
3050 }
3051
3052 out:
3053 return ret;
3054
3055 journal_error:
3056 if (th) {
3057 if (!update_sd)
3058 reiserfs_update_sd(th, inode);
3059 ret = reiserfs_end_persistent_transaction(th);
3060 }
3061
3062 return ret;
3063 }
3064
3065 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3066 {
3067 if (reiserfs_attrs(inode->i_sb)) {
3068 if (sd_attrs & REISERFS_SYNC_FL)
3069 inode->i_flags |= S_SYNC;
3070 else
3071 inode->i_flags &= ~S_SYNC;
3072 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3073 inode->i_flags |= S_IMMUTABLE;
3074 else
3075 inode->i_flags &= ~S_IMMUTABLE;
3076 if (sd_attrs & REISERFS_APPEND_FL)
3077 inode->i_flags |= S_APPEND;
3078 else
3079 inode->i_flags &= ~S_APPEND;
3080 if (sd_attrs & REISERFS_NOATIME_FL)
3081 inode->i_flags |= S_NOATIME;
3082 else
3083 inode->i_flags &= ~S_NOATIME;
3084 if (sd_attrs & REISERFS_NOTAIL_FL)
3085 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3086 else
3087 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3088 }
3089 }
3090
3091 /*
3092 * decide if this buffer needs to stay around for data logging or ordered
3093 * write purposes
3094 */
3095 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3096 {
3097 int ret = 1;
3098 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3099
3100 lock_buffer(bh);
3101 spin_lock(&j->j_dirty_buffers_lock);
3102 if (!buffer_mapped(bh)) {
3103 goto free_jh;
3104 }
3105 /*
3106 * the page is locked, and the only places that log a data buffer
3107 * also lock the page.
3108 */
3109 if (reiserfs_file_data_log(inode)) {
3110 /*
3111 * very conservative, leave the buffer pinned if
3112 * anyone might need it.
3113 */
3114 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3115 ret = 0;
3116 }
3117 } else if (buffer_dirty(bh)) {
3118 struct reiserfs_journal_list *jl;
3119 struct reiserfs_jh *jh = bh->b_private;
3120
3121 /*
3122 * why is this safe?
3123 * reiserfs_setattr updates i_size in the on disk
3124 * stat data before allowing vmtruncate to be called.
3125 *
3126 * If buffer was put onto the ordered list for this
3127 * transaction, we know for sure either this transaction
3128 * or an older one already has updated i_size on disk,
3129 * and this ordered data won't be referenced in the file
3130 * if we crash.
3131 *
3132 * if the buffer was put onto the ordered list for an older
3133 * transaction, we need to leave it around
3134 */
3135 if (jh && (jl = jh->jl)
3136 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3137 ret = 0;
3138 }
3139 free_jh:
3140 if (ret && bh->b_private) {
3141 reiserfs_free_jh(bh);
3142 }
3143 spin_unlock(&j->j_dirty_buffers_lock);
3144 unlock_buffer(bh);
3145 return ret;
3146 }
3147
3148 /* clm -- taken from fs/buffer.c:block_invalidate_page */
3149 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3150 unsigned int length)
3151 {
3152 struct buffer_head *head, *bh, *next;
3153 struct inode *inode = page->mapping->host;
3154 unsigned int curr_off = 0;
3155 unsigned int stop = offset + length;
3156 int partial_page = (offset || length < PAGE_SIZE);
3157 int ret = 1;
3158
3159 BUG_ON(!PageLocked(page));
3160
3161 if (!partial_page)
3162 ClearPageChecked(page);
3163
3164 if (!page_has_buffers(page))
3165 goto out;
3166
3167 head = page_buffers(page);
3168 bh = head;
3169 do {
3170 unsigned int next_off = curr_off + bh->b_size;
3171 next = bh->b_this_page;
3172
3173 if (next_off > stop)
3174 goto out;
3175
3176 /*
3177 * is this block fully invalidated?
3178 */
3179 if (offset <= curr_off) {
3180 if (invalidatepage_can_drop(inode, bh))
3181 reiserfs_unmap_buffer(bh);
3182 else
3183 ret = 0;
3184 }
3185 curr_off = next_off;
3186 bh = next;
3187 } while (bh != head);
3188
3189 /*
3190 * We release buffers only if the entire page is being invalidated.
3191 * The get_block cached value has been unconditionally invalidated,
3192 * so real IO is not possible anymore.
3193 */
3194 if (!partial_page && ret) {
3195 ret = try_to_release_page(page, 0);
3196 /* maybe should BUG_ON(!ret); - neilb */
3197 }
3198 out:
3199 return;
3200 }
3201
3202 static int reiserfs_set_page_dirty(struct page *page)
3203 {
3204 struct inode *inode = page->mapping->host;
3205 if (reiserfs_file_data_log(inode)) {
3206 SetPageChecked(page);
3207 return __set_page_dirty_nobuffers(page);
3208 }
3209 return __set_page_dirty_buffers(page);
3210 }
3211
3212 /*
3213 * Returns 1 if the page's buffers were dropped. The page is locked.
3214 *
3215 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3216 * in the buffers at page_buffers(page).
3217 *
3218 * even in -o notail mode, we can't be sure an old mount without -o notail
3219 * didn't create files with tails.
3220 */
3221 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3222 {
3223 struct inode *inode = page->mapping->host;
3224 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3225 struct buffer_head *head;
3226 struct buffer_head *bh;
3227 int ret = 1;
3228
3229 WARN_ON(PageChecked(page));
3230 spin_lock(&j->j_dirty_buffers_lock);
3231 head = page_buffers(page);
3232 bh = head;
3233 do {
3234 if (bh->b_private) {
3235 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3236 reiserfs_free_jh(bh);
3237 } else {
3238 ret = 0;
3239 break;
3240 }
3241 }
3242 bh = bh->b_this_page;
3243 } while (bh != head);
3244 if (ret)
3245 ret = try_to_free_buffers(page);
3246 spin_unlock(&j->j_dirty_buffers_lock);
3247 return ret;
3248 }
3249
3250 /*
3251 * We thank Mingming Cao for helping us understand in great detail what
3252 * to do in this section of the code.
3253 */
3254 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3255 {
3256 struct file *file = iocb->ki_filp;
3257 struct inode *inode = file->f_mapping->host;
3258 size_t count = iov_iter_count(iter);
3259 ssize_t ret;
3260
3261 ret = blockdev_direct_IO(iocb, inode, iter,
3262 reiserfs_get_blocks_direct_io);
3263
3264 /*
3265 * In case of error extending write may have instantiated a few
3266 * blocks outside i_size. Trim these off again.
3267 */
3268 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3269 loff_t isize = i_size_read(inode);
3270 loff_t end = iocb->ki_pos + count;
3271
3272 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3273 truncate_setsize(inode, isize);
3274 reiserfs_vfs_truncate_file(inode);
3275 }
3276 }
3277
3278 return ret;
3279 }
3280
3281 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3282 {
3283 struct inode *inode = d_inode(dentry);
3284 unsigned int ia_valid;
3285 int error;
3286
3287 error = setattr_prepare(dentry, attr);
3288 if (error)
3289 return error;
3290
3291 /* must be turned off for recursive notify_change calls */
3292 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3293
3294 if (is_quota_modification(inode, attr)) {
3295 error = dquot_initialize(inode);
3296 if (error)
3297 return error;
3298 }
3299 reiserfs_write_lock(inode->i_sb);
3300 if (attr->ia_valid & ATTR_SIZE) {
3301 /*
3302 * version 2 items will be caught by the s_maxbytes check
3303 * done for us in vmtruncate
3304 */
3305 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3306 attr->ia_size > MAX_NON_LFS) {
3307 reiserfs_write_unlock(inode->i_sb);
3308 error = -EFBIG;
3309 goto out;
3310 }
3311
3312 inode_dio_wait(inode);
3313
3314 /* fill in hole pointers in the expanding truncate case. */
3315 if (attr->ia_size > inode->i_size) {
3316 error = generic_cont_expand_simple(inode, attr->ia_size);
3317 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3318 int err;
3319 struct reiserfs_transaction_handle th;
3320 /* we're changing at most 2 bitmaps, inode + super */
3321 err = journal_begin(&th, inode->i_sb, 4);
3322 if (!err) {
3323 reiserfs_discard_prealloc(&th, inode);
3324 err = journal_end(&th);
3325 }
3326 if (err)
3327 error = err;
3328 }
3329 if (error) {
3330 reiserfs_write_unlock(inode->i_sb);
3331 goto out;
3332 }
3333 /*
3334 * file size is changed, ctime and mtime are
3335 * to be updated
3336 */
3337 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3338 }
3339 }
3340 reiserfs_write_unlock(inode->i_sb);
3341
3342 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3343 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3344 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3345 /* stat data of format v3.5 has 16 bit uid and gid */
3346 error = -EINVAL;
3347 goto out;
3348 }
3349
3350 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3351 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3352 struct reiserfs_transaction_handle th;
3353 int jbegin_count =
3354 2 *
3355 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3356 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3357 2;
3358
3359 error = reiserfs_chown_xattrs(inode, attr);
3360
3361 if (error)
3362 return error;
3363
3364 /*
3365 * (user+group)*(old+new) structure - we count quota
3366 * info and , inode write (sb, inode)
3367 */
3368 reiserfs_write_lock(inode->i_sb);
3369 error = journal_begin(&th, inode->i_sb, jbegin_count);
3370 reiserfs_write_unlock(inode->i_sb);
3371 if (error)
3372 goto out;
3373 error = dquot_transfer(inode, attr);
3374 reiserfs_write_lock(inode->i_sb);
3375 if (error) {
3376 journal_end(&th);
3377 reiserfs_write_unlock(inode->i_sb);
3378 goto out;
3379 }
3380
3381 /*
3382 * Update corresponding info in inode so that everything
3383 * is in one transaction
3384 */
3385 if (attr->ia_valid & ATTR_UID)
3386 inode->i_uid = attr->ia_uid;
3387 if (attr->ia_valid & ATTR_GID)
3388 inode->i_gid = attr->ia_gid;
3389 mark_inode_dirty(inode);
3390 error = journal_end(&th);
3391 reiserfs_write_unlock(inode->i_sb);
3392 if (error)
3393 goto out;
3394 }
3395
3396 if ((attr->ia_valid & ATTR_SIZE) &&
3397 attr->ia_size != i_size_read(inode)) {
3398 error = inode_newsize_ok(inode, attr->ia_size);
3399 if (!error) {
3400 /*
3401 * Could race against reiserfs_file_release
3402 * if called from NFS, so take tailpack mutex.
3403 */
3404 mutex_lock(&REISERFS_I(inode)->tailpack);
3405 truncate_setsize(inode, attr->ia_size);
3406 reiserfs_truncate_file(inode, 1);
3407 mutex_unlock(&REISERFS_I(inode)->tailpack);
3408 }
3409 }
3410
3411 if (!error) {
3412 setattr_copy(inode, attr);
3413 mark_inode_dirty(inode);
3414 }
3415
3416 if (!error && reiserfs_posixacl(inode->i_sb)) {
3417 if (attr->ia_valid & ATTR_MODE)
3418 error = reiserfs_acl_chmod(inode);
3419 }
3420
3421 out:
3422 return error;
3423 }
3424
3425 const struct address_space_operations reiserfs_address_space_operations = {
3426 .writepage = reiserfs_writepage,
3427 .readpage = reiserfs_readpage,
3428 .readpages = reiserfs_readpages,
3429 .releasepage = reiserfs_releasepage,
3430 .invalidatepage = reiserfs_invalidatepage,
3431 .write_begin = reiserfs_write_begin,
3432 .write_end = reiserfs_write_end,
3433 .bmap = reiserfs_aop_bmap,
3434 .direct_IO = reiserfs_direct_IO,
3435 .set_page_dirty = reiserfs_set_page_dirty,
3436 };