]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/reiserfs/stree.c
reiserfs: cleanup, remove nblocks argument from journal_end
[mirror_ubuntu-bionic-kernel.git] / fs / reiserfs / stree.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include "reiserfs.h"
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
17
18 /* Does the buffer contain a disk block which is in the tree. */
19 inline int B_IS_IN_TREE(const struct buffer_head *bh)
20 {
21
22 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
23 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
24
25 return (B_LEVEL(bh) != FREE_LEVEL);
26 }
27
28 /* to get item head in le form */
29 inline void copy_item_head(struct item_head *to,
30 const struct item_head *from)
31 {
32 memcpy(to, from, IH_SIZE);
33 }
34
35 /*
36 * k1 is pointer to on-disk structure which is stored in little-endian
37 * form. k2 is pointer to cpu variable. For key of items of the same
38 * object this returns 0.
39 * Returns: -1 if key1 < key2
40 * 0 if key1 == key2
41 * 1 if key1 > key2
42 */
43 inline int comp_short_keys(const struct reiserfs_key *le_key,
44 const struct cpu_key *cpu_key)
45 {
46 __u32 n;
47 n = le32_to_cpu(le_key->k_dir_id);
48 if (n < cpu_key->on_disk_key.k_dir_id)
49 return -1;
50 if (n > cpu_key->on_disk_key.k_dir_id)
51 return 1;
52 n = le32_to_cpu(le_key->k_objectid);
53 if (n < cpu_key->on_disk_key.k_objectid)
54 return -1;
55 if (n > cpu_key->on_disk_key.k_objectid)
56 return 1;
57 return 0;
58 }
59
60 /*
61 * k1 is pointer to on-disk structure which is stored in little-endian
62 * form. k2 is pointer to cpu variable.
63 * Compare keys using all 4 key fields.
64 * Returns: -1 if key1 < key2 0
65 * if key1 = key2 1 if key1 > key2
66 */
67 static inline int comp_keys(const struct reiserfs_key *le_key,
68 const struct cpu_key *cpu_key)
69 {
70 int retval;
71
72 retval = comp_short_keys(le_key, cpu_key);
73 if (retval)
74 return retval;
75 if (le_key_k_offset(le_key_version(le_key), le_key) <
76 cpu_key_k_offset(cpu_key))
77 return -1;
78 if (le_key_k_offset(le_key_version(le_key), le_key) >
79 cpu_key_k_offset(cpu_key))
80 return 1;
81
82 if (cpu_key->key_length == 3)
83 return 0;
84
85 /* this part is needed only when tail conversion is in progress */
86 if (le_key_k_type(le_key_version(le_key), le_key) <
87 cpu_key_k_type(cpu_key))
88 return -1;
89
90 if (le_key_k_type(le_key_version(le_key), le_key) >
91 cpu_key_k_type(cpu_key))
92 return 1;
93
94 return 0;
95 }
96
97 inline int comp_short_le_keys(const struct reiserfs_key *key1,
98 const struct reiserfs_key *key2)
99 {
100 __u32 *k1_u32, *k2_u32;
101 int key_length = REISERFS_SHORT_KEY_LEN;
102
103 k1_u32 = (__u32 *) key1;
104 k2_u32 = (__u32 *) key2;
105 for (; key_length--; ++k1_u32, ++k2_u32) {
106 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
107 return -1;
108 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
109 return 1;
110 }
111 return 0;
112 }
113
114 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
115 {
116 int version;
117 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
118 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
119
120 /* find out version of the key */
121 version = le_key_version(from);
122 to->version = version;
123 to->on_disk_key.k_offset = le_key_k_offset(version, from);
124 to->on_disk_key.k_type = le_key_k_type(version, from);
125 }
126
127 /*
128 * this does not say which one is bigger, it only returns 1 if keys
129 * are not equal, 0 otherwise
130 */
131 inline int comp_le_keys(const struct reiserfs_key *k1,
132 const struct reiserfs_key *k2)
133 {
134 return memcmp(k1, k2, sizeof(struct reiserfs_key));
135 }
136
137 /**************************************************************************
138 * Binary search toolkit function *
139 * Search for an item in the array by the item key *
140 * Returns: 1 if found, 0 if not found; *
141 * *pos = number of the searched element if found, else the *
142 * number of the first element that is larger than key. *
143 **************************************************************************/
144 /*
145 * For those not familiar with binary search: lbound is the leftmost item
146 * that it could be, rbound the rightmost item that it could be. We examine
147 * the item halfway between lbound and rbound, and that tells us either
148 * that we can increase lbound, or decrease rbound, or that we have found it,
149 * or if lbound <= rbound that there are no possible items, and we have not
150 * found it. With each examination we cut the number of possible items it
151 * could be by one more than half rounded down, or we find it.
152 */
153 static inline int bin_search(const void *key, /* Key to search for. */
154 const void *base, /* First item in the array. */
155 int num, /* Number of items in the array. */
156 /*
157 * Item size in the array. searched. Lest the
158 * reader be confused, note that this is crafted
159 * as a general function, and when it is applied
160 * specifically to the array of item headers in a
161 * node, width is actually the item header size
162 * not the item size.
163 */
164 int width,
165 int *pos /* Number of the searched for element. */
166 )
167 {
168 int rbound, lbound, j;
169
170 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
171 lbound <= rbound; j = (rbound + lbound) / 2)
172 switch (comp_keys
173 ((struct reiserfs_key *)((char *)base + j * width),
174 (struct cpu_key *)key)) {
175 case -1:
176 lbound = j + 1;
177 continue;
178 case 1:
179 rbound = j - 1;
180 continue;
181 case 0:
182 *pos = j;
183 return ITEM_FOUND; /* Key found in the array. */
184 }
185
186 /*
187 * bin_search did not find given key, it returns position of key,
188 * that is minimal and greater than the given one.
189 */
190 *pos = lbound;
191 return ITEM_NOT_FOUND;
192 }
193
194
195 /* Minimal possible key. It is never in the tree. */
196 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
197
198 /* Maximal possible key. It is never in the tree. */
199 static const struct reiserfs_key MAX_KEY = {
200 __constant_cpu_to_le32(0xffffffff),
201 __constant_cpu_to_le32(0xffffffff),
202 {{__constant_cpu_to_le32(0xffffffff),
203 __constant_cpu_to_le32(0xffffffff)},}
204 };
205
206 /*
207 * Get delimiting key of the buffer by looking for it in the buffers in the
208 * path, starting from the bottom of the path, and going upwards. We must
209 * check the path's validity at each step. If the key is not in the path,
210 * there is no delimiting key in the tree (buffer is first or last buffer
211 * in tree), and in this case we return a special key, either MIN_KEY or
212 * MAX_KEY.
213 */
214 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
215 const struct super_block *sb)
216 {
217 int position, path_offset = chk_path->path_length;
218 struct buffer_head *parent;
219
220 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
221 "PAP-5010: invalid offset in the path");
222
223 /* While not higher in path than first element. */
224 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
225
226 RFALSE(!buffer_uptodate
227 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
228 "PAP-5020: parent is not uptodate");
229
230 /* Parent at the path is not in the tree now. */
231 if (!B_IS_IN_TREE
232 (parent =
233 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
234 return &MAX_KEY;
235 /* Check whether position in the parent is correct. */
236 if ((position =
237 PATH_OFFSET_POSITION(chk_path,
238 path_offset)) >
239 B_NR_ITEMS(parent))
240 return &MAX_KEY;
241 /* Check whether parent at the path really points to the child. */
242 if (B_N_CHILD_NUM(parent, position) !=
243 PATH_OFFSET_PBUFFER(chk_path,
244 path_offset + 1)->b_blocknr)
245 return &MAX_KEY;
246 /*
247 * Return delimiting key if position in the parent
248 * is not equal to zero.
249 */
250 if (position)
251 return internal_key(parent, position - 1);
252 }
253 /* Return MIN_KEY if we are in the root of the buffer tree. */
254 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
255 b_blocknr == SB_ROOT_BLOCK(sb))
256 return &MIN_KEY;
257 return &MAX_KEY;
258 }
259
260 /* Get delimiting key of the buffer at the path and its right neighbor. */
261 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
262 const struct super_block *sb)
263 {
264 int position, path_offset = chk_path->path_length;
265 struct buffer_head *parent;
266
267 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
268 "PAP-5030: invalid offset in the path");
269
270 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
271
272 RFALSE(!buffer_uptodate
273 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
274 "PAP-5040: parent is not uptodate");
275
276 /* Parent at the path is not in the tree now. */
277 if (!B_IS_IN_TREE
278 (parent =
279 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
280 return &MIN_KEY;
281 /* Check whether position in the parent is correct. */
282 if ((position =
283 PATH_OFFSET_POSITION(chk_path,
284 path_offset)) >
285 B_NR_ITEMS(parent))
286 return &MIN_KEY;
287 /*
288 * Check whether parent at the path really points
289 * to the child.
290 */
291 if (B_N_CHILD_NUM(parent, position) !=
292 PATH_OFFSET_PBUFFER(chk_path,
293 path_offset + 1)->b_blocknr)
294 return &MIN_KEY;
295
296 /*
297 * Return delimiting key if position in the parent
298 * is not the last one.
299 */
300 if (position != B_NR_ITEMS(parent))
301 return internal_key(parent, position);
302 }
303
304 /* Return MAX_KEY if we are in the root of the buffer tree. */
305 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
306 b_blocknr == SB_ROOT_BLOCK(sb))
307 return &MAX_KEY;
308 return &MIN_KEY;
309 }
310
311 /*
312 * Check whether a key is contained in the tree rooted from a buffer at a path.
313 * This works by looking at the left and right delimiting keys for the buffer
314 * in the last path_element in the path. These delimiting keys are stored
315 * at least one level above that buffer in the tree. If the buffer is the
316 * first or last node in the tree order then one of the delimiting keys may
317 * be absent, and in this case get_lkey and get_rkey return a special key
318 * which is MIN_KEY or MAX_KEY.
319 */
320 static inline int key_in_buffer(
321 /* Path which should be checked. */
322 struct treepath *chk_path,
323 /* Key which should be checked. */
324 const struct cpu_key *key,
325 struct super_block *sb
326 )
327 {
328
329 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
330 || chk_path->path_length > MAX_HEIGHT,
331 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
332 key, chk_path->path_length);
333 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
334 "PAP-5060: device must not be NODEV");
335
336 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
337 /* left delimiting key is bigger, that the key we look for */
338 return 0;
339 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
340 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
341 /* key must be less than right delimitiing key */
342 return 0;
343 return 1;
344 }
345
346 int reiserfs_check_path(struct treepath *p)
347 {
348 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
349 "path not properly relsed");
350 return 0;
351 }
352
353 /*
354 * Drop the reference to each buffer in a path and restore
355 * dirty bits clean when preparing the buffer for the log.
356 * This version should only be called from fix_nodes()
357 */
358 void pathrelse_and_restore(struct super_block *sb,
359 struct treepath *search_path)
360 {
361 int path_offset = search_path->path_length;
362
363 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
364 "clm-4000: invalid path offset");
365
366 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
367 struct buffer_head *bh;
368 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
369 reiserfs_restore_prepared_buffer(sb, bh);
370 brelse(bh);
371 }
372 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
373 }
374
375 /* Drop the reference to each buffer in a path */
376 void pathrelse(struct treepath *search_path)
377 {
378 int path_offset = search_path->path_length;
379
380 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
381 "PAP-5090: invalid path offset");
382
383 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
384 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
385
386 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
387 }
388
389 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
390 {
391 struct block_head *blkh;
392 struct item_head *ih;
393 int used_space;
394 int prev_location;
395 int i;
396 int nr;
397
398 blkh = (struct block_head *)buf;
399 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
400 reiserfs_warning(NULL, "reiserfs-5080",
401 "this should be caught earlier");
402 return 0;
403 }
404
405 nr = blkh_nr_item(blkh);
406 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
407 /* item number is too big or too small */
408 reiserfs_warning(NULL, "reiserfs-5081",
409 "nr_item seems wrong: %z", bh);
410 return 0;
411 }
412 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
413 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
414
415 /* free space does not match to calculated amount of use space */
416 if (used_space != blocksize - blkh_free_space(blkh)) {
417 reiserfs_warning(NULL, "reiserfs-5082",
418 "free space seems wrong: %z", bh);
419 return 0;
420 }
421 /*
422 * FIXME: it is_leaf will hit performance too much - we may have
423 * return 1 here
424 */
425
426 /* check tables of item heads */
427 ih = (struct item_head *)(buf + BLKH_SIZE);
428 prev_location = blocksize;
429 for (i = 0; i < nr; i++, ih++) {
430 if (le_ih_k_type(ih) == TYPE_ANY) {
431 reiserfs_warning(NULL, "reiserfs-5083",
432 "wrong item type for item %h",
433 ih);
434 return 0;
435 }
436 if (ih_location(ih) >= blocksize
437 || ih_location(ih) < IH_SIZE * nr) {
438 reiserfs_warning(NULL, "reiserfs-5084",
439 "item location seems wrong: %h",
440 ih);
441 return 0;
442 }
443 if (ih_item_len(ih) < 1
444 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
445 reiserfs_warning(NULL, "reiserfs-5085",
446 "item length seems wrong: %h",
447 ih);
448 return 0;
449 }
450 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
451 reiserfs_warning(NULL, "reiserfs-5086",
452 "item location seems wrong "
453 "(second one): %h", ih);
454 return 0;
455 }
456 prev_location = ih_location(ih);
457 }
458
459 /* one may imagine many more checks */
460 return 1;
461 }
462
463 /* returns 1 if buf looks like an internal node, 0 otherwise */
464 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
465 {
466 struct block_head *blkh;
467 int nr;
468 int used_space;
469
470 blkh = (struct block_head *)buf;
471 nr = blkh_level(blkh);
472 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
473 /* this level is not possible for internal nodes */
474 reiserfs_warning(NULL, "reiserfs-5087",
475 "this should be caught earlier");
476 return 0;
477 }
478
479 nr = blkh_nr_item(blkh);
480 /* for internal which is not root we might check min number of keys */
481 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
482 reiserfs_warning(NULL, "reiserfs-5088",
483 "number of key seems wrong: %z", bh);
484 return 0;
485 }
486
487 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
488 if (used_space != blocksize - blkh_free_space(blkh)) {
489 reiserfs_warning(NULL, "reiserfs-5089",
490 "free space seems wrong: %z", bh);
491 return 0;
492 }
493
494 /* one may imagine many more checks */
495 return 1;
496 }
497
498 /*
499 * make sure that bh contains formatted node of reiserfs tree of
500 * 'level'-th level
501 */
502 static int is_tree_node(struct buffer_head *bh, int level)
503 {
504 if (B_LEVEL(bh) != level) {
505 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
506 "not match to the expected one %d",
507 B_LEVEL(bh), level);
508 return 0;
509 }
510 if (level == DISK_LEAF_NODE_LEVEL)
511 return is_leaf(bh->b_data, bh->b_size, bh);
512
513 return is_internal(bh->b_data, bh->b_size, bh);
514 }
515
516 #define SEARCH_BY_KEY_READA 16
517
518 /*
519 * The function is NOT SCHEDULE-SAFE!
520 * It might unlock the write lock if we needed to wait for a block
521 * to be read. Note that in this case it won't recover the lock to avoid
522 * high contention resulting from too much lock requests, especially
523 * the caller (search_by_key) will perform other schedule-unsafe
524 * operations just after calling this function.
525 *
526 * @return depth of lock to be restored after read completes
527 */
528 static int search_by_key_reada(struct super_block *s,
529 struct buffer_head **bh,
530 b_blocknr_t *b, int num)
531 {
532 int i, j;
533 int depth = -1;
534
535 for (i = 0; i < num; i++) {
536 bh[i] = sb_getblk(s, b[i]);
537 }
538 /*
539 * We are going to read some blocks on which we
540 * have a reference. It's safe, though we might be
541 * reading blocks concurrently changed if we release
542 * the lock. But it's still fine because we check later
543 * if the tree changed
544 */
545 for (j = 0; j < i; j++) {
546 /*
547 * note, this needs attention if we are getting rid of the BKL
548 * you have to make sure the prepared bit isn't set on this
549 * buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (depth == -1)
553 depth = reiserfs_write_unlock_nested(s);
554 ll_rw_block(READA, 1, bh + j);
555 }
556 brelse(bh[j]);
557 }
558 return depth;
559 }
560
561 /*
562 * This function fills up the path from the root to the leaf as it
563 * descends the tree looking for the key. It uses reiserfs_bread to
564 * try to find buffers in the cache given their block number. If it
565 * does not find them in the cache it reads them from disk. For each
566 * node search_by_key finds using reiserfs_bread it then uses
567 * bin_search to look through that node. bin_search will find the
568 * position of the block_number of the next node if it is looking
569 * through an internal node. If it is looking through a leaf node
570 * bin_search will find the position of the item which has key either
571 * equal to given key, or which is the maximal key less than the given
572 * key. search_by_key returns a path that must be checked for the
573 * correctness of the top of the path but need not be checked for the
574 * correctness of the bottom of the path
575 */
576 /*
577 * search_by_key - search for key (and item) in stree
578 * @sb: superblock
579 * @key: pointer to key to search for
580 * @search_path: Allocated and initialized struct treepath; Returned filled
581 * on success.
582 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
583 * stop at leaf level.
584 *
585 * The function is NOT SCHEDULE-SAFE!
586 */
587 int search_by_key(struct super_block *sb, const struct cpu_key *key,
588 struct treepath *search_path, int stop_level)
589 {
590 b_blocknr_t block_number;
591 int expected_level;
592 struct buffer_head *bh;
593 struct path_element *last_element;
594 int node_level, retval;
595 int right_neighbor_of_leaf_node;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
600
601 #ifdef CONFIG_REISERFS_CHECK
602 int repeat_counter = 0;
603 #endif
604
605 PROC_INFO_INC(sb, search_by_key);
606
607 /*
608 * As we add each node to a path we increase its count. This means
609 * that we must be careful to release all nodes in a path before we
610 * either discard the path struct or re-use the path struct, as we
611 * do here.
612 */
613
614 pathrelse(search_path);
615
616 right_neighbor_of_leaf_node = 0;
617
618 /*
619 * With each iteration of this loop we search through the items in the
620 * current node, and calculate the next current node(next path element)
621 * for the next iteration of this loop..
622 */
623 block_number = SB_ROOT_BLOCK(sb);
624 expected_level = -1;
625 while (1) {
626
627 #ifdef CONFIG_REISERFS_CHECK
628 if (!(++repeat_counter % 50000))
629 reiserfs_warning(sb, "PAP-5100",
630 "%s: there were %d iterations of "
631 "while loop looking for key %K",
632 current->comm, repeat_counter,
633 key);
634 #endif
635
636 /* prep path to have another element added to it. */
637 last_element =
638 PATH_OFFSET_PELEMENT(search_path,
639 ++search_path->path_length);
640 fs_gen = get_generation(sb);
641
642 /*
643 * Read the next tree node, and set the last element
644 * in the path to have a pointer to it.
645 */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648
649 /*
650 * We'll need to drop the lock if we encounter any
651 * buffers that need to be read. If all of them are
652 * already up to date, we don't need to drop the lock.
653 */
654 int depth = -1;
655
656 if (!buffer_uptodate(bh) && reada_count > 1)
657 depth = search_by_key_reada(sb, reada_bh,
658 reada_blocks, reada_count);
659
660 if (!buffer_uptodate(bh) && depth == -1)
661 depth = reiserfs_write_unlock_nested(sb);
662
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (depth != -1)
667 reiserfs_write_lock_nested(sb, depth);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671 io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /*
682 * It is possible that schedule occurred. We must check
683 * whether the key to search is still in the tree rooted
684 * from the current buffer. If not then repeat search
685 * from the root.
686 */
687 if (fs_changed(fs_gen, sb) &&
688 (!B_IS_IN_TREE(bh) ||
689 B_LEVEL(bh) != expected_level ||
690 !key_in_buffer(search_path, key, sb))) {
691 PROC_INFO_INC(sb, search_by_key_fs_changed);
692 PROC_INFO_INC(sb, search_by_key_restarted);
693 PROC_INFO_INC(sb,
694 sbk_restarted[expected_level - 1]);
695 pathrelse(search_path);
696
697 /*
698 * Get the root block number so that we can
699 * repeat the search starting from the root.
700 */
701 block_number = SB_ROOT_BLOCK(sb);
702 expected_level = -1;
703 right_neighbor_of_leaf_node = 0;
704
705 /* repeat search from the root */
706 continue;
707 }
708
709 /*
710 * only check that the key is in the buffer if key is not
711 * equal to the MAX_KEY. Latter case is only possible in
712 * "finish_unfinished()" processing during mount.
713 */
714 RFALSE(comp_keys(&MAX_KEY, key) &&
715 !key_in_buffer(search_path, key, sb),
716 "PAP-5130: key is not in the buffer");
717 #ifdef CONFIG_REISERFS_CHECK
718 if (REISERFS_SB(sb)->cur_tb) {
719 print_cur_tb("5140");
720 reiserfs_panic(sb, "PAP-5140",
721 "schedule occurred in do_balance!");
722 }
723 #endif
724
725 /*
726 * make sure, that the node contents look like a node of
727 * certain level
728 */
729 if (!is_tree_node(bh, expected_level)) {
730 reiserfs_error(sb, "vs-5150",
731 "invalid format found in block %ld. "
732 "Fsck?", bh->b_blocknr);
733 pathrelse(search_path);
734 return IO_ERROR;
735 }
736
737 /* ok, we have acquired next formatted node in the tree */
738 node_level = B_LEVEL(bh);
739
740 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
741
742 RFALSE(node_level < stop_level,
743 "vs-5152: tree level (%d) is less than stop level (%d)",
744 node_level, stop_level);
745
746 retval = bin_search(key, item_head(bh, 0),
747 B_NR_ITEMS(bh),
748 (node_level ==
749 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
750 KEY_SIZE,
751 &(last_element->pe_position));
752 if (node_level == stop_level) {
753 return retval;
754 }
755
756 /* we are not in the stop level */
757 /*
758 * item has been found, so we choose the pointer which
759 * is to the right of the found one
760 */
761 if (retval == ITEM_FOUND)
762 last_element->pe_position++;
763
764 /*
765 * if item was not found we choose the position which is to
766 * the left of the found item. This requires no code,
767 * bin_search did it already.
768 */
769
770 /*
771 * So we have chosen a position in the current node which is
772 * an internal node. Now we calculate child block number by
773 * position in the node.
774 */
775 block_number =
776 B_N_CHILD_NUM(bh, last_element->pe_position);
777
778 /*
779 * if we are going to read leaf nodes, try for read
780 * ahead as well
781 */
782 if ((search_path->reada & PATH_READA) &&
783 node_level == DISK_LEAF_NODE_LEVEL + 1) {
784 int pos = last_element->pe_position;
785 int limit = B_NR_ITEMS(bh);
786 struct reiserfs_key *le_key;
787
788 if (search_path->reada & PATH_READA_BACK)
789 limit = 0;
790 while (reada_count < SEARCH_BY_KEY_READA) {
791 if (pos == limit)
792 break;
793 reada_blocks[reada_count++] =
794 B_N_CHILD_NUM(bh, pos);
795 if (search_path->reada & PATH_READA_BACK)
796 pos--;
797 else
798 pos++;
799
800 /*
801 * check to make sure we're in the same object
802 */
803 le_key = internal_key(bh, pos);
804 if (le32_to_cpu(le_key->k_objectid) !=
805 key->on_disk_key.k_objectid) {
806 break;
807 }
808 }
809 }
810 }
811 }
812
813 /*
814 * Form the path to an item and position in this item which contains
815 * file byte defined by key. If there is no such item
816 * corresponding to the key, we point the path to the item with
817 * maximal key less than key, and *pos_in_item is set to one
818 * past the last entry/byte in the item. If searching for entry in a
819 * directory item, and it is not found, *pos_in_item is set to one
820 * entry more than the entry with maximal key which is less than the
821 * sought key.
822 *
823 * Note that if there is no entry in this same node which is one more,
824 * then we point to an imaginary entry. for direct items, the
825 * position is in units of bytes, for indirect items the position is
826 * in units of blocknr entries, for directory items the position is in
827 * units of directory entries.
828 */
829 /* The function is NOT SCHEDULE-SAFE! */
830 int search_for_position_by_key(struct super_block *sb,
831 /* Key to search (cpu variable) */
832 const struct cpu_key *p_cpu_key,
833 /* Filled up by this function. */
834 struct treepath *search_path)
835 {
836 struct item_head *p_le_ih; /* pointer to on-disk structure */
837 int blk_size;
838 loff_t item_offset, offset;
839 struct reiserfs_dir_entry de;
840 int retval;
841
842 /* If searching for directory entry. */
843 if (is_direntry_cpu_key(p_cpu_key))
844 return search_by_entry_key(sb, p_cpu_key, search_path,
845 &de);
846
847 /* If not searching for directory entry. */
848
849 /* If item is found. */
850 retval = search_item(sb, p_cpu_key, search_path);
851 if (retval == IO_ERROR)
852 return retval;
853 if (retval == ITEM_FOUND) {
854
855 RFALSE(!ih_item_len
856 (item_head
857 (PATH_PLAST_BUFFER(search_path),
858 PATH_LAST_POSITION(search_path))),
859 "PAP-5165: item length equals zero");
860
861 pos_in_item(search_path) = 0;
862 return POSITION_FOUND;
863 }
864
865 RFALSE(!PATH_LAST_POSITION(search_path),
866 "PAP-5170: position equals zero");
867
868 /* Item is not found. Set path to the previous item. */
869 p_le_ih =
870 item_head(PATH_PLAST_BUFFER(search_path),
871 --PATH_LAST_POSITION(search_path));
872 blk_size = sb->s_blocksize;
873
874 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
875 return FILE_NOT_FOUND;
876 }
877
878 /* FIXME: quite ugly this far */
879
880 item_offset = le_ih_k_offset(p_le_ih);
881 offset = cpu_key_k_offset(p_cpu_key);
882
883 /* Needed byte is contained in the item pointed to by the path. */
884 if (item_offset <= offset &&
885 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
886 pos_in_item(search_path) = offset - item_offset;
887 if (is_indirect_le_ih(p_le_ih)) {
888 pos_in_item(search_path) /= blk_size;
889 }
890 return POSITION_FOUND;
891 }
892
893 /*
894 * Needed byte is not contained in the item pointed to by the
895 * path. Set pos_in_item out of the item.
896 */
897 if (is_indirect_le_ih(p_le_ih))
898 pos_in_item(search_path) =
899 ih_item_len(p_le_ih) / UNFM_P_SIZE;
900 else
901 pos_in_item(search_path) = ih_item_len(p_le_ih);
902
903 return POSITION_NOT_FOUND;
904 }
905
906 /* Compare given item and item pointed to by the path. */
907 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
908 {
909 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
910 struct item_head *ih;
911
912 /* Last buffer at the path is not in the tree. */
913 if (!B_IS_IN_TREE(bh))
914 return 1;
915
916 /* Last path position is invalid. */
917 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
918 return 1;
919
920 /* we need only to know, whether it is the same item */
921 ih = tp_item_head(path);
922 return memcmp(stored_ih, ih, IH_SIZE);
923 }
924
925 /* unformatted nodes are not logged anymore, ever. This is safe now */
926 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
927
928 /* block can not be forgotten as it is in I/O or held by someone */
929 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
930
931 /* prepare for delete or cut of direct item */
932 static inline int prepare_for_direct_item(struct treepath *path,
933 struct item_head *le_ih,
934 struct inode *inode,
935 loff_t new_file_length, int *cut_size)
936 {
937 loff_t round_len;
938
939 if (new_file_length == max_reiserfs_offset(inode)) {
940 /* item has to be deleted */
941 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
942 return M_DELETE;
943 }
944 /* new file gets truncated */
945 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
946 round_len = ROUND_UP(new_file_length);
947 /* this was new_file_length < le_ih ... */
948 if (round_len < le_ih_k_offset(le_ih)) {
949 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
950 return M_DELETE; /* Delete this item. */
951 }
952 /* Calculate first position and size for cutting from item. */
953 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
954 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
955
956 return M_CUT; /* Cut from this item. */
957 }
958
959 /* old file: items may have any length */
960
961 if (new_file_length < le_ih_k_offset(le_ih)) {
962 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
963 return M_DELETE; /* Delete this item. */
964 }
965
966 /* Calculate first position and size for cutting from item. */
967 *cut_size = -(ih_item_len(le_ih) -
968 (pos_in_item(path) =
969 new_file_length + 1 - le_ih_k_offset(le_ih)));
970 return M_CUT; /* Cut from this item. */
971 }
972
973 static inline int prepare_for_direntry_item(struct treepath *path,
974 struct item_head *le_ih,
975 struct inode *inode,
976 loff_t new_file_length,
977 int *cut_size)
978 {
979 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
980 new_file_length == max_reiserfs_offset(inode)) {
981 RFALSE(ih_entry_count(le_ih) != 2,
982 "PAP-5220: incorrect empty directory item (%h)", le_ih);
983 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
984 /* Delete the directory item containing "." and ".." entry. */
985 return M_DELETE;
986 }
987
988 if (ih_entry_count(le_ih) == 1) {
989 /*
990 * Delete the directory item such as there is one record only
991 * in this item
992 */
993 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
994 return M_DELETE;
995 }
996
997 /* Cut one record from the directory item. */
998 *cut_size =
999 -(DEH_SIZE +
1000 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1001 return M_CUT;
1002 }
1003
1004 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1005
1006 /*
1007 * If the path points to a directory or direct item, calculate mode
1008 * and the size cut, for balance.
1009 * If the path points to an indirect item, remove some number of its
1010 * unformatted nodes.
1011 * In case of file truncate calculate whether this item must be
1012 * deleted/truncated or last unformatted node of this item will be
1013 * converted to a direct item.
1014 * This function returns a determination of what balance mode the
1015 * calling function should employ.
1016 */
1017 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1018 struct inode *inode,
1019 struct treepath *path,
1020 const struct cpu_key *item_key,
1021 /*
1022 * Number of unformatted nodes
1023 * which were removed from end
1024 * of the file.
1025 */
1026 int *removed,
1027 int *cut_size,
1028 /* MAX_KEY_OFFSET in case of delete. */
1029 unsigned long long new_file_length
1030 )
1031 {
1032 struct super_block *sb = inode->i_sb;
1033 struct item_head *p_le_ih = tp_item_head(path);
1034 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1035
1036 BUG_ON(!th->t_trans_id);
1037
1038 /* Stat_data item. */
1039 if (is_statdata_le_ih(p_le_ih)) {
1040
1041 RFALSE(new_file_length != max_reiserfs_offset(inode),
1042 "PAP-5210: mode must be M_DELETE");
1043
1044 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1045 return M_DELETE;
1046 }
1047
1048 /* Directory item. */
1049 if (is_direntry_le_ih(p_le_ih))
1050 return prepare_for_direntry_item(path, p_le_ih, inode,
1051 new_file_length,
1052 cut_size);
1053
1054 /* Direct item. */
1055 if (is_direct_le_ih(p_le_ih))
1056 return prepare_for_direct_item(path, p_le_ih, inode,
1057 new_file_length, cut_size);
1058
1059 /* Case of an indirect item. */
1060 {
1061 int blk_size = sb->s_blocksize;
1062 struct item_head s_ih;
1063 int need_re_search;
1064 int delete = 0;
1065 int result = M_CUT;
1066 int pos = 0;
1067
1068 if ( new_file_length == max_reiserfs_offset (inode) ) {
1069 /*
1070 * prepare_for_delete_or_cut() is called by
1071 * reiserfs_delete_item()
1072 */
1073 new_file_length = 0;
1074 delete = 1;
1075 }
1076
1077 do {
1078 need_re_search = 0;
1079 *cut_size = 0;
1080 bh = PATH_PLAST_BUFFER(path);
1081 copy_item_head(&s_ih, tp_item_head(path));
1082 pos = I_UNFM_NUM(&s_ih);
1083
1084 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1085 __le32 *unfm;
1086 __u32 block;
1087
1088 /*
1089 * Each unformatted block deletion may involve
1090 * one additional bitmap block into the transaction,
1091 * thereby the initial journal space reservation
1092 * might not be enough.
1093 */
1094 if (!delete && (*cut_size) != 0 &&
1095 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1096 break;
1097
1098 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1099 block = get_block_num(unfm, 0);
1100
1101 if (block != 0) {
1102 reiserfs_prepare_for_journal(sb, bh, 1);
1103 put_block_num(unfm, 0, 0);
1104 journal_mark_dirty(th, sb, bh);
1105 reiserfs_free_block(th, inode, block, 1);
1106 }
1107
1108 reiserfs_cond_resched(sb);
1109
1110 if (item_moved (&s_ih, path)) {
1111 need_re_search = 1;
1112 break;
1113 }
1114
1115 pos --;
1116 (*removed)++;
1117 (*cut_size) -= UNFM_P_SIZE;
1118
1119 if (pos == 0) {
1120 (*cut_size) -= IH_SIZE;
1121 result = M_DELETE;
1122 break;
1123 }
1124 }
1125 /*
1126 * a trick. If the buffer has been logged, this will
1127 * do nothing. If we've broken the loop without logging
1128 * it, it will restore the buffer
1129 */
1130 reiserfs_restore_prepared_buffer(sb, bh);
1131 } while (need_re_search &&
1132 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1133 pos_in_item(path) = pos * UNFM_P_SIZE;
1134
1135 if (*cut_size == 0) {
1136 /*
1137 * Nothing was cut. maybe convert last unformatted node to the
1138 * direct item?
1139 */
1140 result = M_CONVERT;
1141 }
1142 return result;
1143 }
1144 }
1145
1146 /* Calculate number of bytes which will be deleted or cut during balance */
1147 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1148 {
1149 int del_size;
1150 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1151
1152 if (is_statdata_le_ih(p_le_ih))
1153 return 0;
1154
1155 del_size =
1156 (mode ==
1157 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1158 if (is_direntry_le_ih(p_le_ih)) {
1159 /*
1160 * return EMPTY_DIR_SIZE; We delete emty directories only.
1161 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1162 * different empty size. ick. FIXME, is this right?
1163 */
1164 return del_size;
1165 }
1166
1167 if (is_indirect_le_ih(p_le_ih))
1168 del_size = (del_size / UNFM_P_SIZE) *
1169 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1170 return del_size;
1171 }
1172
1173 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1174 struct tree_balance *tb,
1175 struct super_block *sb,
1176 struct treepath *path, int size)
1177 {
1178
1179 BUG_ON(!th->t_trans_id);
1180
1181 memset(tb, '\0', sizeof(struct tree_balance));
1182 tb->transaction_handle = th;
1183 tb->tb_sb = sb;
1184 tb->tb_path = path;
1185 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1186 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1187 tb->insert_size[0] = size;
1188 }
1189
1190 void padd_item(char *item, int total_length, int length)
1191 {
1192 int i;
1193
1194 for (i = total_length; i > length;)
1195 item[--i] = 0;
1196 }
1197
1198 #ifdef REISERQUOTA_DEBUG
1199 char key2type(struct reiserfs_key *ih)
1200 {
1201 if (is_direntry_le_key(2, ih))
1202 return 'd';
1203 if (is_direct_le_key(2, ih))
1204 return 'D';
1205 if (is_indirect_le_key(2, ih))
1206 return 'i';
1207 if (is_statdata_le_key(2, ih))
1208 return 's';
1209 return 'u';
1210 }
1211
1212 char head2type(struct item_head *ih)
1213 {
1214 if (is_direntry_le_ih(ih))
1215 return 'd';
1216 if (is_direct_le_ih(ih))
1217 return 'D';
1218 if (is_indirect_le_ih(ih))
1219 return 'i';
1220 if (is_statdata_le_ih(ih))
1221 return 's';
1222 return 'u';
1223 }
1224 #endif
1225
1226 /*
1227 * Delete object item.
1228 * th - active transaction handle
1229 * path - path to the deleted item
1230 * item_key - key to search for the deleted item
1231 * indode - used for updating i_blocks and quotas
1232 * un_bh - NULL or unformatted node pointer
1233 */
1234 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1235 struct treepath *path, const struct cpu_key *item_key,
1236 struct inode *inode, struct buffer_head *un_bh)
1237 {
1238 struct super_block *sb = inode->i_sb;
1239 struct tree_balance s_del_balance;
1240 struct item_head s_ih;
1241 struct item_head *q_ih;
1242 int quota_cut_bytes;
1243 int ret_value, del_size, removed;
1244 int depth;
1245
1246 #ifdef CONFIG_REISERFS_CHECK
1247 char mode;
1248 int iter = 0;
1249 #endif
1250
1251 BUG_ON(!th->t_trans_id);
1252
1253 init_tb_struct(th, &s_del_balance, sb, path,
1254 0 /*size is unknown */ );
1255
1256 while (1) {
1257 removed = 0;
1258
1259 #ifdef CONFIG_REISERFS_CHECK
1260 iter++;
1261 mode =
1262 #endif
1263 prepare_for_delete_or_cut(th, inode, path,
1264 item_key, &removed,
1265 &del_size,
1266 max_reiserfs_offset(inode));
1267
1268 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1269
1270 copy_item_head(&s_ih, tp_item_head(path));
1271 s_del_balance.insert_size[0] = del_size;
1272
1273 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1274 if (ret_value != REPEAT_SEARCH)
1275 break;
1276
1277 PROC_INFO_INC(sb, delete_item_restarted);
1278
1279 /* file system changed, repeat search */
1280 ret_value =
1281 search_for_position_by_key(sb, item_key, path);
1282 if (ret_value == IO_ERROR)
1283 break;
1284 if (ret_value == FILE_NOT_FOUND) {
1285 reiserfs_warning(sb, "vs-5340",
1286 "no items of the file %K found",
1287 item_key);
1288 break;
1289 }
1290 } /* while (1) */
1291
1292 if (ret_value != CARRY_ON) {
1293 unfix_nodes(&s_del_balance);
1294 return 0;
1295 }
1296
1297 /* reiserfs_delete_item returns item length when success */
1298 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1299 q_ih = tp_item_head(path);
1300 quota_cut_bytes = ih_item_len(q_ih);
1301
1302 /*
1303 * hack so the quota code doesn't have to guess if the file has a
1304 * tail. On tail insert, we allocate quota for 1 unformatted node.
1305 * We test the offset because the tail might have been
1306 * split into multiple items, and we only want to decrement for
1307 * the unfm node once
1308 */
1309 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1310 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1311 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1312 } else {
1313 quota_cut_bytes = 0;
1314 }
1315 }
1316
1317 if (un_bh) {
1318 int off;
1319 char *data;
1320
1321 /*
1322 * We are in direct2indirect conversion, so move tail contents
1323 * to the unformatted node
1324 */
1325 /*
1326 * note, we do the copy before preparing the buffer because we
1327 * don't care about the contents of the unformatted node yet.
1328 * the only thing we really care about is the direct item's
1329 * data is in the unformatted node.
1330 *
1331 * Otherwise, we would have to call
1332 * reiserfs_prepare_for_journal on the unformatted node,
1333 * which might schedule, meaning we'd have to loop all the
1334 * way back up to the start of the while loop.
1335 *
1336 * The unformatted node must be dirtied later on. We can't be
1337 * sure here if the entire tail has been deleted yet.
1338 *
1339 * un_bh is from the page cache (all unformatted nodes are
1340 * from the page cache) and might be a highmem page. So, we
1341 * can't use un_bh->b_data.
1342 * -clm
1343 */
1344
1345 data = kmap_atomic(un_bh->b_page);
1346 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1347 memcpy(data + off,
1348 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1349 ret_value);
1350 kunmap_atomic(data);
1351 }
1352
1353 /* Perform balancing after all resources have been collected at once. */
1354 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1355
1356 #ifdef REISERQUOTA_DEBUG
1357 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1358 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1359 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1360 #endif
1361 depth = reiserfs_write_unlock_nested(inode->i_sb);
1362 dquot_free_space_nodirty(inode, quota_cut_bytes);
1363 reiserfs_write_lock_nested(inode->i_sb, depth);
1364
1365 /* Return deleted body length */
1366 return ret_value;
1367 }
1368
1369 /*
1370 * Summary Of Mechanisms For Handling Collisions Between Processes:
1371 *
1372 * deletion of the body of the object is performed by iput(), with the
1373 * result that if multiple processes are operating on a file, the
1374 * deletion of the body of the file is deferred until the last process
1375 * that has an open inode performs its iput().
1376 *
1377 * writes and truncates are protected from collisions by use of
1378 * semaphores.
1379 *
1380 * creates, linking, and mknod are protected from collisions with other
1381 * processes by making the reiserfs_add_entry() the last step in the
1382 * creation, and then rolling back all changes if there was a collision.
1383 * - Hans
1384 */
1385
1386 /* this deletes item which never gets split */
1387 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1388 struct inode *inode, struct reiserfs_key *key)
1389 {
1390 struct super_block *sb = th->t_super;
1391 struct tree_balance tb;
1392 INITIALIZE_PATH(path);
1393 int item_len = 0;
1394 int tb_init = 0;
1395 struct cpu_key cpu_key;
1396 int retval;
1397 int quota_cut_bytes = 0;
1398
1399 BUG_ON(!th->t_trans_id);
1400
1401 le_key2cpu_key(&cpu_key, key);
1402
1403 while (1) {
1404 retval = search_item(th->t_super, &cpu_key, &path);
1405 if (retval == IO_ERROR) {
1406 reiserfs_error(th->t_super, "vs-5350",
1407 "i/o failure occurred trying "
1408 "to delete %K", &cpu_key);
1409 break;
1410 }
1411 if (retval != ITEM_FOUND) {
1412 pathrelse(&path);
1413 /*
1414 * No need for a warning, if there is just no free
1415 * space to insert '..' item into the
1416 * newly-created subdir
1417 */
1418 if (!
1419 ((unsigned long long)
1420 GET_HASH_VALUE(le_key_k_offset
1421 (le_key_version(key), key)) == 0
1422 && (unsigned long long)
1423 GET_GENERATION_NUMBER(le_key_k_offset
1424 (le_key_version(key),
1425 key)) == 1))
1426 reiserfs_warning(th->t_super, "vs-5355",
1427 "%k not found", key);
1428 break;
1429 }
1430 if (!tb_init) {
1431 tb_init = 1;
1432 item_len = ih_item_len(tp_item_head(&path));
1433 init_tb_struct(th, &tb, th->t_super, &path,
1434 -(IH_SIZE + item_len));
1435 }
1436 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1437
1438 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1439 if (retval == REPEAT_SEARCH) {
1440 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1441 continue;
1442 }
1443
1444 if (retval == CARRY_ON) {
1445 do_balance(&tb, NULL, NULL, M_DELETE);
1446 /*
1447 * Should we count quota for item? (we don't
1448 * count quotas for save-links)
1449 */
1450 if (inode) {
1451 int depth;
1452 #ifdef REISERQUOTA_DEBUG
1453 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1454 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1455 quota_cut_bytes, inode->i_uid,
1456 key2type(key));
1457 #endif
1458 depth = reiserfs_write_unlock_nested(sb);
1459 dquot_free_space_nodirty(inode,
1460 quota_cut_bytes);
1461 reiserfs_write_lock_nested(sb, depth);
1462 }
1463 break;
1464 }
1465
1466 /* IO_ERROR, NO_DISK_SPACE, etc */
1467 reiserfs_warning(th->t_super, "vs-5360",
1468 "could not delete %K due to fix_nodes failure",
1469 &cpu_key);
1470 unfix_nodes(&tb);
1471 break;
1472 }
1473
1474 reiserfs_check_path(&path);
1475 }
1476
1477 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1478 struct inode *inode)
1479 {
1480 int err;
1481 inode->i_size = 0;
1482 BUG_ON(!th->t_trans_id);
1483
1484 /* for directory this deletes item containing "." and ".." */
1485 err =
1486 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1487 if (err)
1488 return err;
1489
1490 #if defined( USE_INODE_GENERATION_COUNTER )
1491 if (!old_format_only(th->t_super)) {
1492 __le32 *inode_generation;
1493
1494 inode_generation =
1495 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1496 le32_add_cpu(inode_generation, 1);
1497 }
1498 /* USE_INODE_GENERATION_COUNTER */
1499 #endif
1500 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1501
1502 return err;
1503 }
1504
1505 static void unmap_buffers(struct page *page, loff_t pos)
1506 {
1507 struct buffer_head *bh;
1508 struct buffer_head *head;
1509 struct buffer_head *next;
1510 unsigned long tail_index;
1511 unsigned long cur_index;
1512
1513 if (page) {
1514 if (page_has_buffers(page)) {
1515 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1516 cur_index = 0;
1517 head = page_buffers(page);
1518 bh = head;
1519 do {
1520 next = bh->b_this_page;
1521
1522 /*
1523 * we want to unmap the buffers that contain
1524 * the tail, and all the buffers after it
1525 * (since the tail must be at the end of the
1526 * file). We don't want to unmap file data
1527 * before the tail, since it might be dirty
1528 * and waiting to reach disk
1529 */
1530 cur_index += bh->b_size;
1531 if (cur_index > tail_index) {
1532 reiserfs_unmap_buffer(bh);
1533 }
1534 bh = next;
1535 } while (bh != head);
1536 }
1537 }
1538 }
1539
1540 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1541 struct inode *inode,
1542 struct page *page,
1543 struct treepath *path,
1544 const struct cpu_key *item_key,
1545 loff_t new_file_size, char *mode)
1546 {
1547 struct super_block *sb = inode->i_sb;
1548 int block_size = sb->s_blocksize;
1549 int cut_bytes;
1550 BUG_ON(!th->t_trans_id);
1551 BUG_ON(new_file_size != inode->i_size);
1552
1553 /*
1554 * the page being sent in could be NULL if there was an i/o error
1555 * reading in the last block. The user will hit problems trying to
1556 * read the file, but for now we just skip the indirect2direct
1557 */
1558 if (atomic_read(&inode->i_count) > 1 ||
1559 !tail_has_to_be_packed(inode) ||
1560 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1561 /* leave tail in an unformatted node */
1562 *mode = M_SKIP_BALANCING;
1563 cut_bytes =
1564 block_size - (new_file_size & (block_size - 1));
1565 pathrelse(path);
1566 return cut_bytes;
1567 }
1568
1569 /* Perform the conversion to a direct_item. */
1570 return indirect2direct(th, inode, page, path, item_key,
1571 new_file_size, mode);
1572 }
1573
1574 /*
1575 * we did indirect_to_direct conversion. And we have inserted direct
1576 * item successesfully, but there were no disk space to cut unfm
1577 * pointer being converted. Therefore we have to delete inserted
1578 * direct item(s)
1579 */
1580 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1581 struct inode *inode, struct treepath *path)
1582 {
1583 struct cpu_key tail_key;
1584 int tail_len;
1585 int removed;
1586 BUG_ON(!th->t_trans_id);
1587
1588 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1589 tail_key.key_length = 4;
1590
1591 tail_len =
1592 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1593 while (tail_len) {
1594 /* look for the last byte of the tail */
1595 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1596 POSITION_NOT_FOUND)
1597 reiserfs_panic(inode->i_sb, "vs-5615",
1598 "found invalid item");
1599 RFALSE(path->pos_in_item !=
1600 ih_item_len(tp_item_head(path)) - 1,
1601 "vs-5616: appended bytes found");
1602 PATH_LAST_POSITION(path)--;
1603
1604 removed =
1605 reiserfs_delete_item(th, path, &tail_key, inode,
1606 NULL /*unbh not needed */ );
1607 RFALSE(removed <= 0
1608 || removed > tail_len,
1609 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1610 tail_len, removed);
1611 tail_len -= removed;
1612 set_cpu_key_k_offset(&tail_key,
1613 cpu_key_k_offset(&tail_key) - removed);
1614 }
1615 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1616 "conversion has been rolled back due to "
1617 "lack of disk space");
1618 mark_inode_dirty(inode);
1619 }
1620
1621 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1622 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1623 struct treepath *path,
1624 struct cpu_key *item_key,
1625 struct inode *inode,
1626 struct page *page, loff_t new_file_size)
1627 {
1628 struct super_block *sb = inode->i_sb;
1629 /*
1630 * Every function which is going to call do_balance must first
1631 * create a tree_balance structure. Then it must fill up this
1632 * structure by using the init_tb_struct and fix_nodes functions.
1633 * After that we can make tree balancing.
1634 */
1635 struct tree_balance s_cut_balance;
1636 struct item_head *p_le_ih;
1637 int cut_size = 0; /* Amount to be cut. */
1638 int ret_value = CARRY_ON;
1639 int removed = 0; /* Number of the removed unformatted nodes. */
1640 int is_inode_locked = 0;
1641 char mode; /* Mode of the balance. */
1642 int retval2 = -1;
1643 int quota_cut_bytes;
1644 loff_t tail_pos = 0;
1645 int depth;
1646
1647 BUG_ON(!th->t_trans_id);
1648
1649 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1650 cut_size);
1651
1652 /*
1653 * Repeat this loop until we either cut the item without needing
1654 * to balance, or we fix_nodes without schedule occurring
1655 */
1656 while (1) {
1657 /*
1658 * Determine the balance mode, position of the first byte to
1659 * be cut, and size to be cut. In case of the indirect item
1660 * free unformatted nodes which are pointed to by the cut
1661 * pointers.
1662 */
1663
1664 mode =
1665 prepare_for_delete_or_cut(th, inode, path,
1666 item_key, &removed,
1667 &cut_size, new_file_size);
1668 if (mode == M_CONVERT) {
1669 /*
1670 * convert last unformatted node to direct item or
1671 * leave tail in the unformatted node
1672 */
1673 RFALSE(ret_value != CARRY_ON,
1674 "PAP-5570: can not convert twice");
1675
1676 ret_value =
1677 maybe_indirect_to_direct(th, inode, page,
1678 path, item_key,
1679 new_file_size, &mode);
1680 if (mode == M_SKIP_BALANCING)
1681 /* tail has been left in the unformatted node */
1682 return ret_value;
1683
1684 is_inode_locked = 1;
1685
1686 /*
1687 * removing of last unformatted node will
1688 * change value we have to return to truncate.
1689 * Save it
1690 */
1691 retval2 = ret_value;
1692
1693 /*
1694 * So, we have performed the first part of the
1695 * conversion:
1696 * inserting the new direct item. Now we are
1697 * removing the last unformatted node pointer.
1698 * Set key to search for it.
1699 */
1700 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1701 item_key->key_length = 4;
1702 new_file_size -=
1703 (new_file_size & (sb->s_blocksize - 1));
1704 tail_pos = new_file_size;
1705 set_cpu_key_k_offset(item_key, new_file_size + 1);
1706 if (search_for_position_by_key
1707 (sb, item_key,
1708 path) == POSITION_NOT_FOUND) {
1709 print_block(PATH_PLAST_BUFFER(path), 3,
1710 PATH_LAST_POSITION(path) - 1,
1711 PATH_LAST_POSITION(path) + 1);
1712 reiserfs_panic(sb, "PAP-5580", "item to "
1713 "convert does not exist (%K)",
1714 item_key);
1715 }
1716 continue;
1717 }
1718 if (cut_size == 0) {
1719 pathrelse(path);
1720 return 0;
1721 }
1722
1723 s_cut_balance.insert_size[0] = cut_size;
1724
1725 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1726 if (ret_value != REPEAT_SEARCH)
1727 break;
1728
1729 PROC_INFO_INC(sb, cut_from_item_restarted);
1730
1731 ret_value =
1732 search_for_position_by_key(sb, item_key, path);
1733 if (ret_value == POSITION_FOUND)
1734 continue;
1735
1736 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1737 item_key);
1738 unfix_nodes(&s_cut_balance);
1739 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1740 } /* while */
1741
1742 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1743 if (ret_value != CARRY_ON) {
1744 if (is_inode_locked) {
1745 /*
1746 * FIXME: this seems to be not needed: we are always
1747 * able to cut item
1748 */
1749 indirect_to_direct_roll_back(th, inode, path);
1750 }
1751 if (ret_value == NO_DISK_SPACE)
1752 reiserfs_warning(sb, "reiserfs-5092",
1753 "NO_DISK_SPACE");
1754 unfix_nodes(&s_cut_balance);
1755 return -EIO;
1756 }
1757
1758 /* go ahead and perform balancing */
1759
1760 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1761
1762 /* Calculate number of bytes that need to be cut from the item. */
1763 quota_cut_bytes =
1764 (mode ==
1765 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1766 insert_size[0];
1767 if (retval2 == -1)
1768 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1769 else
1770 ret_value = retval2;
1771
1772 /*
1773 * For direct items, we only change the quota when deleting the last
1774 * item.
1775 */
1776 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1777 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1778 if (mode == M_DELETE &&
1779 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1780 1) {
1781 /* FIXME: this is to keep 3.5 happy */
1782 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1783 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1784 } else {
1785 quota_cut_bytes = 0;
1786 }
1787 }
1788 #ifdef CONFIG_REISERFS_CHECK
1789 if (is_inode_locked) {
1790 struct item_head *le_ih =
1791 tp_item_head(s_cut_balance.tb_path);
1792 /*
1793 * we are going to complete indirect2direct conversion. Make
1794 * sure, that we exactly remove last unformatted node pointer
1795 * of the item
1796 */
1797 if (!is_indirect_le_ih(le_ih))
1798 reiserfs_panic(sb, "vs-5652",
1799 "item must be indirect %h", le_ih);
1800
1801 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1802 reiserfs_panic(sb, "vs-5653", "completing "
1803 "indirect2direct conversion indirect "
1804 "item %h being deleted must be of "
1805 "4 byte long", le_ih);
1806
1807 if (mode == M_CUT
1808 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1809 reiserfs_panic(sb, "vs-5654", "can not complete "
1810 "indirect2direct conversion of %h "
1811 "(CUT, insert_size==%d)",
1812 le_ih, s_cut_balance.insert_size[0]);
1813 }
1814 /*
1815 * it would be useful to make sure, that right neighboring
1816 * item is direct item of this file
1817 */
1818 }
1819 #endif
1820
1821 do_balance(&s_cut_balance, NULL, NULL, mode);
1822 if (is_inode_locked) {
1823 /*
1824 * we've done an indirect->direct conversion. when the
1825 * data block was freed, it was removed from the list of
1826 * blocks that must be flushed before the transaction
1827 * commits, make sure to unmap and invalidate it
1828 */
1829 unmap_buffers(page, tail_pos);
1830 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1831 }
1832 #ifdef REISERQUOTA_DEBUG
1833 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1834 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1835 quota_cut_bytes, inode->i_uid, '?');
1836 #endif
1837 depth = reiserfs_write_unlock_nested(sb);
1838 dquot_free_space_nodirty(inode, quota_cut_bytes);
1839 reiserfs_write_lock_nested(sb, depth);
1840 return ret_value;
1841 }
1842
1843 static void truncate_directory(struct reiserfs_transaction_handle *th,
1844 struct inode *inode)
1845 {
1846 BUG_ON(!th->t_trans_id);
1847 if (inode->i_nlink)
1848 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1849
1850 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1851 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1852 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1853 reiserfs_update_sd(th, inode);
1854 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1855 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1856 }
1857
1858 /*
1859 * Truncate file to the new size. Note, this must be called with a
1860 * transaction already started
1861 */
1862 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1863 struct inode *inode, /* ->i_size contains new size */
1864 struct page *page, /* up to date for last block */
1865 /*
1866 * when it is called by file_release to convert
1867 * the tail - no timestamps should be updated
1868 */
1869 int update_timestamps
1870 )
1871 {
1872 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1873 struct item_head *p_le_ih; /* Pointer to an item header. */
1874
1875 /* Key to search for a previous file item. */
1876 struct cpu_key s_item_key;
1877 loff_t file_size, /* Old file size. */
1878 new_file_size; /* New file size. */
1879 int deleted; /* Number of deleted or truncated bytes. */
1880 int retval;
1881 int err = 0;
1882
1883 BUG_ON(!th->t_trans_id);
1884 if (!
1885 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1886 || S_ISLNK(inode->i_mode)))
1887 return 0;
1888
1889 /* deletion of directory - no need to update timestamps */
1890 if (S_ISDIR(inode->i_mode)) {
1891 truncate_directory(th, inode);
1892 return 0;
1893 }
1894
1895 /* Get new file size. */
1896 new_file_size = inode->i_size;
1897
1898 /* FIXME: note, that key type is unimportant here */
1899 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1900 TYPE_DIRECT, 3);
1901
1902 retval =
1903 search_for_position_by_key(inode->i_sb, &s_item_key,
1904 &s_search_path);
1905 if (retval == IO_ERROR) {
1906 reiserfs_error(inode->i_sb, "vs-5657",
1907 "i/o failure occurred trying to truncate %K",
1908 &s_item_key);
1909 err = -EIO;
1910 goto out;
1911 }
1912 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1913 reiserfs_error(inode->i_sb, "PAP-5660",
1914 "wrong result %d of search for %K", retval,
1915 &s_item_key);
1916
1917 err = -EIO;
1918 goto out;
1919 }
1920
1921 s_search_path.pos_in_item--;
1922
1923 /* Get real file size (total length of all file items) */
1924 p_le_ih = tp_item_head(&s_search_path);
1925 if (is_statdata_le_ih(p_le_ih))
1926 file_size = 0;
1927 else {
1928 loff_t offset = le_ih_k_offset(p_le_ih);
1929 int bytes =
1930 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1931
1932 /*
1933 * this may mismatch with real file size: if last direct item
1934 * had no padding zeros and last unformatted node had no free
1935 * space, this file would have this file size
1936 */
1937 file_size = offset + bytes - 1;
1938 }
1939 /*
1940 * are we doing a full truncate or delete, if so
1941 * kick in the reada code
1942 */
1943 if (new_file_size == 0)
1944 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1945
1946 if (file_size == 0 || file_size < new_file_size) {
1947 goto update_and_out;
1948 }
1949
1950 /* Update key to search for the last file item. */
1951 set_cpu_key_k_offset(&s_item_key, file_size);
1952
1953 do {
1954 /* Cut or delete file item. */
1955 deleted =
1956 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1957 inode, page, new_file_size);
1958 if (deleted < 0) {
1959 reiserfs_warning(inode->i_sb, "vs-5665",
1960 "reiserfs_cut_from_item failed");
1961 reiserfs_check_path(&s_search_path);
1962 return 0;
1963 }
1964
1965 RFALSE(deleted > file_size,
1966 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1967 deleted, file_size, &s_item_key);
1968
1969 /* Change key to search the last file item. */
1970 file_size -= deleted;
1971
1972 set_cpu_key_k_offset(&s_item_key, file_size);
1973
1974 /*
1975 * While there are bytes to truncate and previous
1976 * file item is presented in the tree.
1977 */
1978
1979 /*
1980 * This loop could take a really long time, and could log
1981 * many more blocks than a transaction can hold. So, we do
1982 * a polite journal end here, and if the transaction needs
1983 * ending, we make sure the file is consistent before ending
1984 * the current trans and starting a new one
1985 */
1986 if (journal_transaction_should_end(th, 0) ||
1987 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1988 pathrelse(&s_search_path);
1989
1990 if (update_timestamps) {
1991 inode->i_mtime = CURRENT_TIME_SEC;
1992 inode->i_ctime = CURRENT_TIME_SEC;
1993 }
1994 reiserfs_update_sd(th, inode);
1995
1996 err = journal_end(th, inode->i_sb);
1997 if (err)
1998 goto out;
1999 err = journal_begin(th, inode->i_sb,
2000 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2001 if (err)
2002 goto out;
2003 reiserfs_update_inode_transaction(inode);
2004 }
2005 } while (file_size > ROUND_UP(new_file_size) &&
2006 search_for_position_by_key(inode->i_sb, &s_item_key,
2007 &s_search_path) == POSITION_FOUND);
2008
2009 RFALSE(file_size > ROUND_UP(new_file_size),
2010 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
2011 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2012
2013 update_and_out:
2014 if (update_timestamps) {
2015 /* this is truncate, not file closing */
2016 inode->i_mtime = CURRENT_TIME_SEC;
2017 inode->i_ctime = CURRENT_TIME_SEC;
2018 }
2019 reiserfs_update_sd(th, inode);
2020
2021 out:
2022 pathrelse(&s_search_path);
2023 return err;
2024 }
2025
2026 #ifdef CONFIG_REISERFS_CHECK
2027 /* this makes sure, that we __append__, not overwrite or add holes */
2028 static void check_research_for_paste(struct treepath *path,
2029 const struct cpu_key *key)
2030 {
2031 struct item_head *found_ih = tp_item_head(path);
2032
2033 if (is_direct_le_ih(found_ih)) {
2034 if (le_ih_k_offset(found_ih) +
2035 op_bytes_number(found_ih,
2036 get_last_bh(path)->b_size) !=
2037 cpu_key_k_offset(key)
2038 || op_bytes_number(found_ih,
2039 get_last_bh(path)->b_size) !=
2040 pos_in_item(path))
2041 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2042 "%h or position (%d) does not match "
2043 "to key %K", found_ih,
2044 pos_in_item(path), key);
2045 }
2046 if (is_indirect_le_ih(found_ih)) {
2047 if (le_ih_k_offset(found_ih) +
2048 op_bytes_number(found_ih,
2049 get_last_bh(path)->b_size) !=
2050 cpu_key_k_offset(key)
2051 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2052 || get_ih_free_space(found_ih) != 0)
2053 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2054 "item (%h) or position (%d) does not "
2055 "match to key (%K)",
2056 found_ih, pos_in_item(path), key);
2057 }
2058 }
2059 #endif /* config reiserfs check */
2060
2061 /*
2062 * Paste bytes to the existing item.
2063 * Returns bytes number pasted into the item.
2064 */
2065 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2066 /* Path to the pasted item. */
2067 struct treepath *search_path,
2068 /* Key to search for the needed item. */
2069 const struct cpu_key *key,
2070 /* Inode item belongs to */
2071 struct inode *inode,
2072 /* Pointer to the bytes to paste. */
2073 const char *body,
2074 /* Size of pasted bytes. */
2075 int pasted_size)
2076 {
2077 struct super_block *sb = inode->i_sb;
2078 struct tree_balance s_paste_balance;
2079 int retval;
2080 int fs_gen;
2081 int depth;
2082
2083 BUG_ON(!th->t_trans_id);
2084
2085 fs_gen = get_generation(inode->i_sb);
2086
2087 #ifdef REISERQUOTA_DEBUG
2088 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2089 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2090 pasted_size, inode->i_uid,
2091 key2type(&(key->on_disk_key)));
2092 #endif
2093
2094 depth = reiserfs_write_unlock_nested(sb);
2095 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2096 reiserfs_write_lock_nested(sb, depth);
2097 if (retval) {
2098 pathrelse(search_path);
2099 return retval;
2100 }
2101 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2102 pasted_size);
2103 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2104 s_paste_balance.key = key->on_disk_key;
2105 #endif
2106
2107 /* DQUOT_* can schedule, must check before the fix_nodes */
2108 if (fs_changed(fs_gen, inode->i_sb)) {
2109 goto search_again;
2110 }
2111
2112 while ((retval =
2113 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2114 body)) == REPEAT_SEARCH) {
2115 search_again:
2116 /* file system changed while we were in the fix_nodes */
2117 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2118 retval =
2119 search_for_position_by_key(th->t_super, key,
2120 search_path);
2121 if (retval == IO_ERROR) {
2122 retval = -EIO;
2123 goto error_out;
2124 }
2125 if (retval == POSITION_FOUND) {
2126 reiserfs_warning(inode->i_sb, "PAP-5710",
2127 "entry or pasted byte (%K) exists",
2128 key);
2129 retval = -EEXIST;
2130 goto error_out;
2131 }
2132 #ifdef CONFIG_REISERFS_CHECK
2133 check_research_for_paste(search_path, key);
2134 #endif
2135 }
2136
2137 /*
2138 * Perform balancing after all resources are collected by fix_nodes,
2139 * and accessing them will not risk triggering schedule.
2140 */
2141 if (retval == CARRY_ON) {
2142 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2143 return 0;
2144 }
2145 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2146 error_out:
2147 /* this also releases the path */
2148 unfix_nodes(&s_paste_balance);
2149 #ifdef REISERQUOTA_DEBUG
2150 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2151 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2152 pasted_size, inode->i_uid,
2153 key2type(&(key->on_disk_key)));
2154 #endif
2155 depth = reiserfs_write_unlock_nested(sb);
2156 dquot_free_space_nodirty(inode, pasted_size);
2157 reiserfs_write_lock_nested(sb, depth);
2158 return retval;
2159 }
2160
2161 /*
2162 * Insert new item into the buffer at the path.
2163 * th - active transaction handle
2164 * path - path to the inserted item
2165 * ih - pointer to the item header to insert
2166 * body - pointer to the bytes to insert
2167 */
2168 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2169 struct treepath *path, const struct cpu_key *key,
2170 struct item_head *ih, struct inode *inode,
2171 const char *body)
2172 {
2173 struct tree_balance s_ins_balance;
2174 int retval;
2175 int fs_gen = 0;
2176 int quota_bytes = 0;
2177
2178 BUG_ON(!th->t_trans_id);
2179
2180 if (inode) { /* Do we count quotas for item? */
2181 int depth;
2182 fs_gen = get_generation(inode->i_sb);
2183 quota_bytes = ih_item_len(ih);
2184
2185 /*
2186 * hack so the quota code doesn't have to guess
2187 * if the file has a tail, links are always tails,
2188 * so there's no guessing needed
2189 */
2190 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2191 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2192 #ifdef REISERQUOTA_DEBUG
2193 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2194 "reiserquota insert_item(): allocating %u id=%u type=%c",
2195 quota_bytes, inode->i_uid, head2type(ih));
2196 #endif
2197 /*
2198 * We can't dirty inode here. It would be immediately
2199 * written but appropriate stat item isn't inserted yet...
2200 */
2201 depth = reiserfs_write_unlock_nested(inode->i_sb);
2202 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2203 reiserfs_write_lock_nested(inode->i_sb, depth);
2204 if (retval) {
2205 pathrelse(path);
2206 return retval;
2207 }
2208 }
2209 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2210 IH_SIZE + ih_item_len(ih));
2211 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2212 s_ins_balance.key = key->on_disk_key;
2213 #endif
2214 /*
2215 * DQUOT_* can schedule, must check to be sure calling
2216 * fix_nodes is safe
2217 */
2218 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2219 goto search_again;
2220 }
2221
2222 while ((retval =
2223 fix_nodes(M_INSERT, &s_ins_balance, ih,
2224 body)) == REPEAT_SEARCH) {
2225 search_again:
2226 /* file system changed while we were in the fix_nodes */
2227 PROC_INFO_INC(th->t_super, insert_item_restarted);
2228 retval = search_item(th->t_super, key, path);
2229 if (retval == IO_ERROR) {
2230 retval = -EIO;
2231 goto error_out;
2232 }
2233 if (retval == ITEM_FOUND) {
2234 reiserfs_warning(th->t_super, "PAP-5760",
2235 "key %K already exists in the tree",
2236 key);
2237 retval = -EEXIST;
2238 goto error_out;
2239 }
2240 }
2241
2242 /* make balancing after all resources will be collected at a time */
2243 if (retval == CARRY_ON) {
2244 do_balance(&s_ins_balance, ih, body, M_INSERT);
2245 return 0;
2246 }
2247
2248 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2249 error_out:
2250 /* also releases the path */
2251 unfix_nodes(&s_ins_balance);
2252 #ifdef REISERQUOTA_DEBUG
2253 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2254 "reiserquota insert_item(): freeing %u id=%u type=%c",
2255 quota_bytes, inode->i_uid, head2type(ih));
2256 #endif
2257 if (inode) {
2258 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2259 dquot_free_space_nodirty(inode, quota_bytes);
2260 reiserfs_write_lock_nested(inode->i_sb, depth);
2261 }
2262 return retval;
2263 }