]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/splice.c
Rename 'pipe_info()' to 'get_pipe_info()'
[mirror_ubuntu-artful-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 /**
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
168 * @spd: data to fill
169 *
170 * Description:
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
174 *
175 */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
181
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
185
186 pipe_lock(pipe);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < pipe->buffers) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < pipe->buffers)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 pipe_unlock(pipe);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
259
260 return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 page_cache_release(spd->pages[i]);
266 }
267
268 /*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 return 0;
276
277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279
280 if (spd->pages && spd->partial)
281 return 0;
282
283 kfree(spd->pages);
284 kfree(spd->partial);
285 return -ENOMEM;
286 }
287
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 struct splice_pipe_desc *spd)
290 {
291 if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 return;
293
294 kfree(spd->pages);
295 kfree(spd->partial);
296 }
297
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302 {
303 struct address_space *mapping = in->f_mapping;
304 unsigned int loff, nr_pages, req_pages;
305 struct page *pages[PIPE_DEF_BUFFERS];
306 struct partial_page partial[PIPE_DEF_BUFFERS];
307 struct page *page;
308 pgoff_t index, end_index;
309 loff_t isize;
310 int error, page_nr;
311 struct splice_pipe_desc spd = {
312 .pages = pages,
313 .partial = partial,
314 .flags = flags,
315 .ops = &page_cache_pipe_buf_ops,
316 .spd_release = spd_release_page,
317 };
318
319 if (splice_grow_spd(pipe, &spd))
320 return -ENOMEM;
321
322 index = *ppos >> PAGE_CACHE_SHIFT;
323 loff = *ppos & ~PAGE_CACHE_MASK;
324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 nr_pages = min(req_pages, pipe->buffers);
326
327 /*
328 * Lookup the (hopefully) full range of pages we need.
329 */
330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 index += spd.nr_pages;
332
333 /*
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
336 */
337 if (spd.nr_pages < nr_pages)
338 page_cache_sync_readahead(mapping, &in->f_ra, in,
339 index, req_pages - spd.nr_pages);
340
341 error = 0;
342 while (spd.nr_pages < nr_pages) {
343 /*
344 * Page could be there, find_get_pages_contig() breaks on
345 * the first hole.
346 */
347 page = find_get_page(mapping, index);
348 if (!page) {
349 /*
350 * page didn't exist, allocate one.
351 */
352 page = page_cache_alloc_cold(mapping);
353 if (!page)
354 break;
355
356 error = add_to_page_cache_lru(page, mapping, index,
357 GFP_KERNEL);
358 if (unlikely(error)) {
359 page_cache_release(page);
360 if (error == -EEXIST)
361 continue;
362 break;
363 }
364 /*
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
367 */
368 unlock_page(page);
369 }
370
371 spd.pages[spd.nr_pages++] = page;
372 index++;
373 }
374
375 /*
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
378 */
379 index = *ppos >> PAGE_CACHE_SHIFT;
380 nr_pages = spd.nr_pages;
381 spd.nr_pages = 0;
382 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 unsigned int this_len;
384
385 if (!len)
386 break;
387
388 /*
389 * this_len is the max we'll use from this page
390 */
391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 page = spd.pages[page_nr];
393
394 if (PageReadahead(page))
395 page_cache_async_readahead(mapping, &in->f_ra, in,
396 page, index, req_pages - page_nr);
397
398 /*
399 * If the page isn't uptodate, we may need to start io on it
400 */
401 if (!PageUptodate(page)) {
402 lock_page(page);
403
404 /*
405 * Page was truncated, or invalidated by the
406 * filesystem. Redo the find/create, but this time the
407 * page is kept locked, so there's no chance of another
408 * race with truncate/invalidate.
409 */
410 if (!page->mapping) {
411 unlock_page(page);
412 page = find_or_create_page(mapping, index,
413 mapping_gfp_mask(mapping));
414
415 if (!page) {
416 error = -ENOMEM;
417 break;
418 }
419 page_cache_release(spd.pages[page_nr]);
420 spd.pages[page_nr] = page;
421 }
422 /*
423 * page was already under io and is now done, great
424 */
425 if (PageUptodate(page)) {
426 unlock_page(page);
427 goto fill_it;
428 }
429
430 /*
431 * need to read in the page
432 */
433 error = mapping->a_ops->readpage(in, page);
434 if (unlikely(error)) {
435 /*
436 * We really should re-lookup the page here,
437 * but it complicates things a lot. Instead
438 * lets just do what we already stored, and
439 * we'll get it the next time we are called.
440 */
441 if (error == AOP_TRUNCATED_PAGE)
442 error = 0;
443
444 break;
445 }
446 }
447 fill_it:
448 /*
449 * i_size must be checked after PageUptodate.
450 */
451 isize = i_size_read(mapping->host);
452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 if (unlikely(!isize || index > end_index))
454 break;
455
456 /*
457 * if this is the last page, see if we need to shrink
458 * the length and stop
459 */
460 if (end_index == index) {
461 unsigned int plen;
462
463 /*
464 * max good bytes in this page
465 */
466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 if (plen <= loff)
468 break;
469
470 /*
471 * force quit after adding this page
472 */
473 this_len = min(this_len, plen - loff);
474 len = this_len;
475 }
476
477 spd.partial[page_nr].offset = loff;
478 spd.partial[page_nr].len = this_len;
479 len -= this_len;
480 loff = 0;
481 spd.nr_pages++;
482 index++;
483 }
484
485 /*
486 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 * we got, 'nr_pages' is how many pages are in the map.
488 */
489 while (page_nr < nr_pages)
490 page_cache_release(spd.pages[page_nr++]);
491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492
493 if (spd.nr_pages)
494 error = splice_to_pipe(pipe, &spd);
495
496 splice_shrink_spd(pipe, &spd);
497 return error;
498 }
499
500 /**
501 * generic_file_splice_read - splice data from file to a pipe
502 * @in: file to splice from
503 * @ppos: position in @in
504 * @pipe: pipe to splice to
505 * @len: number of bytes to splice
506 * @flags: splice modifier flags
507 *
508 * Description:
509 * Will read pages from given file and fill them into a pipe. Can be
510 * used as long as the address_space operations for the source implements
511 * a readpage() hook.
512 *
513 */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 struct pipe_inode_info *pipe, size_t len,
516 unsigned int flags)
517 {
518 loff_t isize, left;
519 int ret;
520
521 isize = i_size_read(in->f_mapping->host);
522 if (unlikely(*ppos >= isize))
523 return 0;
524
525 left = isize - *ppos;
526 if (unlikely(left < len))
527 len = left;
528
529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 if (ret > 0) {
531 *ppos += ret;
532 file_accessed(in);
533 }
534
535 return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 .can_merge = 0,
541 .map = generic_pipe_buf_map,
542 .unmap = generic_pipe_buf_unmap,
543 .confirm = generic_pipe_buf_confirm,
544 .release = generic_pipe_buf_release,
545 .steal = generic_pipe_buf_steal,
546 .get = generic_pipe_buf_get,
547 };
548
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 unsigned long vlen, loff_t offset)
551 {
552 mm_segment_t old_fs;
553 loff_t pos = offset;
554 ssize_t res;
555
556 old_fs = get_fs();
557 set_fs(get_ds());
558 /* The cast to a user pointer is valid due to the set_fs() */
559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 set_fs(old_fs);
561
562 return res;
563 }
564
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 loff_t pos)
567 {
568 mm_segment_t old_fs;
569 ssize_t res;
570
571 old_fs = get_fs();
572 set_fs(get_ds());
573 /* The cast to a user pointer is valid due to the set_fs() */
574 res = vfs_write(file, (const char __user *)buf, count, &pos);
575 set_fs(old_fs);
576
577 return res;
578 }
579
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 struct pipe_inode_info *pipe, size_t len,
582 unsigned int flags)
583 {
584 unsigned int nr_pages;
585 unsigned int nr_freed;
586 size_t offset;
587 struct page *pages[PIPE_DEF_BUFFERS];
588 struct partial_page partial[PIPE_DEF_BUFFERS];
589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 ssize_t res;
591 size_t this_len;
592 int error;
593 int i;
594 struct splice_pipe_desc spd = {
595 .pages = pages,
596 .partial = partial,
597 .flags = flags,
598 .ops = &default_pipe_buf_ops,
599 .spd_release = spd_release_page,
600 };
601
602 if (splice_grow_spd(pipe, &spd))
603 return -ENOMEM;
604
605 res = -ENOMEM;
606 vec = __vec;
607 if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 if (!vec)
610 goto shrink_ret;
611 }
612
613 offset = *ppos & ~PAGE_CACHE_MASK;
614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615
616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 struct page *page;
618
619 page = alloc_page(GFP_USER);
620 error = -ENOMEM;
621 if (!page)
622 goto err;
623
624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 vec[i].iov_base = (void __user *) page_address(page);
626 vec[i].iov_len = this_len;
627 spd.pages[i] = page;
628 spd.nr_pages++;
629 len -= this_len;
630 offset = 0;
631 }
632
633 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 if (res < 0) {
635 error = res;
636 goto err;
637 }
638
639 error = 0;
640 if (!res)
641 goto err;
642
643 nr_freed = 0;
644 for (i = 0; i < spd.nr_pages; i++) {
645 this_len = min_t(size_t, vec[i].iov_len, res);
646 spd.partial[i].offset = 0;
647 spd.partial[i].len = this_len;
648 if (!this_len) {
649 __free_page(spd.pages[i]);
650 spd.pages[i] = NULL;
651 nr_freed++;
652 }
653 res -= this_len;
654 }
655 spd.nr_pages -= nr_freed;
656
657 res = splice_to_pipe(pipe, &spd);
658 if (res > 0)
659 *ppos += res;
660
661 shrink_ret:
662 if (vec != __vec)
663 kfree(vec);
664 splice_shrink_spd(pipe, &spd);
665 return res;
666
667 err:
668 for (i = 0; i < spd.nr_pages; i++)
669 __free_page(spd.pages[i]);
670
671 res = error;
672 goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675
676 /*
677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678 * using sendpage(). Return the number of bytes sent.
679 */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 struct file *file = sd->u.file;
684 loff_t pos = sd->pos;
685 int ret, more;
686
687 ret = buf->ops->confirm(pipe, buf);
688 if (!ret) {
689 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
690 if (file->f_op && file->f_op->sendpage)
691 ret = file->f_op->sendpage(file, buf->page, buf->offset,
692 sd->len, &pos, more);
693 else
694 ret = -EINVAL;
695 }
696
697 return ret;
698 }
699
700 /*
701 * This is a little more tricky than the file -> pipe splicing. There are
702 * basically three cases:
703 *
704 * - Destination page already exists in the address space and there
705 * are users of it. For that case we have no other option that
706 * copying the data. Tough luck.
707 * - Destination page already exists in the address space, but there
708 * are no users of it. Make sure it's uptodate, then drop it. Fall
709 * through to last case.
710 * - Destination page does not exist, we can add the pipe page to
711 * the page cache and avoid the copy.
712 *
713 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
714 * sd->flags), we attempt to migrate pages from the pipe to the output
715 * file address space page cache. This is possible if no one else has
716 * the pipe page referenced outside of the pipe and page cache. If
717 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
718 * a new page in the output file page cache and fill/dirty that.
719 */
720 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
721 struct splice_desc *sd)
722 {
723 struct file *file = sd->u.file;
724 struct address_space *mapping = file->f_mapping;
725 unsigned int offset, this_len;
726 struct page *page;
727 void *fsdata;
728 int ret;
729
730 /*
731 * make sure the data in this buffer is uptodate
732 */
733 ret = buf->ops->confirm(pipe, buf);
734 if (unlikely(ret))
735 return ret;
736
737 offset = sd->pos & ~PAGE_CACHE_MASK;
738
739 this_len = sd->len;
740 if (this_len + offset > PAGE_CACHE_SIZE)
741 this_len = PAGE_CACHE_SIZE - offset;
742
743 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745 if (unlikely(ret))
746 goto out;
747
748 if (buf->page != page) {
749 /*
750 * Careful, ->map() uses KM_USER0!
751 */
752 char *src = buf->ops->map(pipe, buf, 1);
753 char *dst = kmap_atomic(page, KM_USER1);
754
755 memcpy(dst + offset, src + buf->offset, this_len);
756 flush_dcache_page(page);
757 kunmap_atomic(dst, KM_USER1);
758 buf->ops->unmap(pipe, buf, src);
759 }
760 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761 page, fsdata);
762 out:
763 return ret;
764 }
765 EXPORT_SYMBOL(pipe_to_file);
766
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
768 {
769 smp_mb();
770 if (waitqueue_active(&pipe->wait))
771 wake_up_interruptible(&pipe->wait);
772 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
773 }
774
775 /**
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
780 *
781 * Description:
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
789 *
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
793 * destination.
794 */
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796 splice_actor *actor)
797 {
798 int ret;
799
800 while (pipe->nrbufs) {
801 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 const struct pipe_buf_operations *ops = buf->ops;
803
804 sd->len = buf->len;
805 if (sd->len > sd->total_len)
806 sd->len = sd->total_len;
807
808 ret = actor(pipe, buf, sd);
809 if (ret <= 0) {
810 if (ret == -ENODATA)
811 ret = 0;
812 return ret;
813 }
814 buf->offset += ret;
815 buf->len -= ret;
816
817 sd->num_spliced += ret;
818 sd->len -= ret;
819 sd->pos += ret;
820 sd->total_len -= ret;
821
822 if (!buf->len) {
823 buf->ops = NULL;
824 ops->release(pipe, buf);
825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 pipe->nrbufs--;
827 if (pipe->inode)
828 sd->need_wakeup = true;
829 }
830
831 if (!sd->total_len)
832 return 0;
833 }
834
835 return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838
839 /**
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
843 *
844 * Description:
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
848 */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851 while (!pipe->nrbufs) {
852 if (!pipe->writers)
853 return 0;
854
855 if (!pipe->waiting_writers && sd->num_spliced)
856 return 0;
857
858 if (sd->flags & SPLICE_F_NONBLOCK)
859 return -EAGAIN;
860
861 if (signal_pending(current))
862 return -ERESTARTSYS;
863
864 if (sd->need_wakeup) {
865 wakeup_pipe_writers(pipe);
866 sd->need_wakeup = false;
867 }
868
869 pipe_wait(pipe);
870 }
871
872 return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875
876 /**
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
879 *
880 * Description:
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
884 */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887 sd->num_spliced = 0;
888 sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891
892 /**
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
896 *
897 * Description:
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
901 */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904 if (sd->need_wakeup)
905 wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908
909 /**
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
919 * pipe_to_user.
920 *
921 */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 splice_actor *actor)
924 {
925 int ret;
926
927 splice_from_pipe_begin(sd);
928 do {
929 ret = splice_from_pipe_next(pipe, sd);
930 if (ret > 0)
931 ret = splice_from_pipe_feed(pipe, sd, actor);
932 } while (ret > 0);
933 splice_from_pipe_end(pipe, sd);
934
935 return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938
939 /**
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
947 *
948 * Description:
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
951 *
952 */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 loff_t *ppos, size_t len, unsigned int flags,
955 splice_actor *actor)
956 {
957 ssize_t ret;
958 struct splice_desc sd = {
959 .total_len = len,
960 .flags = flags,
961 .pos = *ppos,
962 .u.file = out,
963 };
964
965 pipe_lock(pipe);
966 ret = __splice_from_pipe(pipe, &sd, actor);
967 pipe_unlock(pipe);
968
969 return ret;
970 }
971
972 /**
973 * generic_file_splice_write - splice data from a pipe to a file
974 * @pipe: pipe info
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
979 *
980 * Description:
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
983 *
984 */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 loff_t *ppos, size_t len, unsigned int flags)
988 {
989 struct address_space *mapping = out->f_mapping;
990 struct inode *inode = mapping->host;
991 struct splice_desc sd = {
992 .total_len = len,
993 .flags = flags,
994 .pos = *ppos,
995 .u.file = out,
996 };
997 ssize_t ret;
998
999 pipe_lock(pipe);
1000
1001 splice_from_pipe_begin(&sd);
1002 do {
1003 ret = splice_from_pipe_next(pipe, &sd);
1004 if (ret <= 0)
1005 break;
1006
1007 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008 ret = file_remove_suid(out);
1009 if (!ret) {
1010 file_update_time(out);
1011 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012 }
1013 mutex_unlock(&inode->i_mutex);
1014 } while (ret > 0);
1015 splice_from_pipe_end(pipe, &sd);
1016
1017 pipe_unlock(pipe);
1018
1019 if (sd.num_spliced)
1020 ret = sd.num_spliced;
1021
1022 if (ret > 0) {
1023 unsigned long nr_pages;
1024 int err;
1025
1026 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027
1028 err = generic_write_sync(out, *ppos, ret);
1029 if (err)
1030 ret = err;
1031 else
1032 *ppos += ret;
1033 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034 }
1035
1036 return ret;
1037 }
1038
1039 EXPORT_SYMBOL(generic_file_splice_write);
1040
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042 struct splice_desc *sd)
1043 {
1044 int ret;
1045 void *data;
1046
1047 ret = buf->ops->confirm(pipe, buf);
1048 if (ret)
1049 return ret;
1050
1051 data = buf->ops->map(pipe, buf, 0);
1052 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053 buf->ops->unmap(pipe, buf, data);
1054
1055 return ret;
1056 }
1057
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059 struct file *out, loff_t *ppos,
1060 size_t len, unsigned int flags)
1061 {
1062 ssize_t ret;
1063
1064 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065 if (ret > 0)
1066 *ppos += ret;
1067
1068 return ret;
1069 }
1070
1071 /**
1072 * generic_splice_sendpage - splice data from a pipe to a socket
1073 * @pipe: pipe to splice from
1074 * @out: socket to write to
1075 * @ppos: position in @out
1076 * @len: number of bytes to splice
1077 * @flags: splice modifier flags
1078 *
1079 * Description:
1080 * Will send @len bytes from the pipe to a network socket. No data copying
1081 * is involved.
1082 *
1083 */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091
1092 /*
1093 * Attempt to initiate a splice from pipe to file.
1094 */
1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096 loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099 loff_t *, size_t, unsigned int);
1100 int ret;
1101
1102 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103 return -EBADF;
1104
1105 if (unlikely(out->f_flags & O_APPEND))
1106 return -EINVAL;
1107
1108 ret = rw_verify_area(WRITE, out, ppos, len);
1109 if (unlikely(ret < 0))
1110 return ret;
1111
1112 if (out->f_op && out->f_op->splice_write)
1113 splice_write = out->f_op->splice_write;
1114 else
1115 splice_write = default_file_splice_write;
1116
1117 return splice_write(pipe, out, ppos, len, flags);
1118 }
1119
1120 /*
1121 * Attempt to initiate a splice from a file to a pipe.
1122 */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 struct pipe_inode_info *pipe, size_t len,
1125 unsigned int flags)
1126 {
1127 ssize_t (*splice_read)(struct file *, loff_t *,
1128 struct pipe_inode_info *, size_t, unsigned int);
1129 int ret;
1130
1131 if (unlikely(!(in->f_mode & FMODE_READ)))
1132 return -EBADF;
1133
1134 ret = rw_verify_area(READ, in, ppos, len);
1135 if (unlikely(ret < 0))
1136 return ret;
1137
1138 if (in->f_op && in->f_op->splice_read)
1139 splice_read = in->f_op->splice_read;
1140 else
1141 splice_read = default_file_splice_read;
1142
1143 return splice_read(in, ppos, pipe, len, flags);
1144 }
1145
1146 /**
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in: file to splice from
1149 * @sd: actor information on where to splice to
1150 * @actor: handles the data splicing
1151 *
1152 * Description:
1153 * This is a special case helper to splice directly between two
1154 * points, without requiring an explicit pipe. Internally an allocated
1155 * pipe is cached in the process, and reused during the lifetime of
1156 * that process.
1157 *
1158 */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 splice_direct_actor *actor)
1161 {
1162 struct pipe_inode_info *pipe;
1163 long ret, bytes;
1164 umode_t i_mode;
1165 size_t len;
1166 int i, flags;
1167
1168 /*
1169 * We require the input being a regular file, as we don't want to
1170 * randomly drop data for eg socket -> socket splicing. Use the
1171 * piped splicing for that!
1172 */
1173 i_mode = in->f_path.dentry->d_inode->i_mode;
1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 return -EINVAL;
1176
1177 /*
1178 * neither in nor out is a pipe, setup an internal pipe attached to
1179 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 */
1181 pipe = current->splice_pipe;
1182 if (unlikely(!pipe)) {
1183 pipe = alloc_pipe_info(NULL);
1184 if (!pipe)
1185 return -ENOMEM;
1186
1187 /*
1188 * We don't have an immediate reader, but we'll read the stuff
1189 * out of the pipe right after the splice_to_pipe(). So set
1190 * PIPE_READERS appropriately.
1191 */
1192 pipe->readers = 1;
1193
1194 current->splice_pipe = pipe;
1195 }
1196
1197 /*
1198 * Do the splice.
1199 */
1200 ret = 0;
1201 bytes = 0;
1202 len = sd->total_len;
1203 flags = sd->flags;
1204
1205 /*
1206 * Don't block on output, we have to drain the direct pipe.
1207 */
1208 sd->flags &= ~SPLICE_F_NONBLOCK;
1209
1210 while (len) {
1211 size_t read_len;
1212 loff_t pos = sd->pos, prev_pos = pos;
1213
1214 ret = do_splice_to(in, &pos, pipe, len, flags);
1215 if (unlikely(ret <= 0))
1216 goto out_release;
1217
1218 read_len = ret;
1219 sd->total_len = read_len;
1220
1221 /*
1222 * NOTE: nonblocking mode only applies to the input. We
1223 * must not do the output in nonblocking mode as then we
1224 * could get stuck data in the internal pipe:
1225 */
1226 ret = actor(pipe, sd);
1227 if (unlikely(ret <= 0)) {
1228 sd->pos = prev_pos;
1229 goto out_release;
1230 }
1231
1232 bytes += ret;
1233 len -= ret;
1234 sd->pos = pos;
1235
1236 if (ret < read_len) {
1237 sd->pos = prev_pos + ret;
1238 goto out_release;
1239 }
1240 }
1241
1242 done:
1243 pipe->nrbufs = pipe->curbuf = 0;
1244 file_accessed(in);
1245 return bytes;
1246
1247 out_release:
1248 /*
1249 * If we did an incomplete transfer we must release
1250 * the pipe buffers in question:
1251 */
1252 for (i = 0; i < pipe->buffers; i++) {
1253 struct pipe_buffer *buf = pipe->bufs + i;
1254
1255 if (buf->ops) {
1256 buf->ops->release(pipe, buf);
1257 buf->ops = NULL;
1258 }
1259 }
1260
1261 if (!bytes)
1262 bytes = ret;
1263
1264 goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 struct splice_desc *sd)
1270 {
1271 struct file *file = sd->u.file;
1272
1273 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1274 sd->flags);
1275 }
1276
1277 /**
1278 * do_splice_direct - splices data directly between two files
1279 * @in: file to splice from
1280 * @ppos: input file offset
1281 * @out: file to splice to
1282 * @len: number of bytes to splice
1283 * @flags: splice modifier flags
1284 *
1285 * Description:
1286 * For use by do_sendfile(). splice can easily emulate sendfile, but
1287 * doing it in the application would incur an extra system call
1288 * (splice in + splice out, as compared to just sendfile()). So this helper
1289 * can splice directly through a process-private pipe.
1290 *
1291 */
1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1293 size_t len, unsigned int flags)
1294 {
1295 struct splice_desc sd = {
1296 .len = len,
1297 .total_len = len,
1298 .flags = flags,
1299 .pos = *ppos,
1300 .u.file = out,
1301 };
1302 long ret;
1303
1304 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1305 if (ret > 0)
1306 *ppos = sd.pos;
1307
1308 return ret;
1309 }
1310
1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1312 struct pipe_inode_info *opipe,
1313 size_t len, unsigned int flags);
1314 /*
1315 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1316 * location, so checking ->i_pipe is not enough to verify that this is a
1317 * pipe.
1318 */
1319 static inline struct pipe_inode_info *get_pipe_info(struct file *file)
1320 {
1321 struct inode *i = file->f_path.dentry->d_inode;
1322
1323 return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1324 }
1325
1326 /*
1327 * Determine where to splice to/from.
1328 */
1329 static long do_splice(struct file *in, loff_t __user *off_in,
1330 struct file *out, loff_t __user *off_out,
1331 size_t len, unsigned int flags)
1332 {
1333 struct pipe_inode_info *ipipe;
1334 struct pipe_inode_info *opipe;
1335 loff_t offset, *off;
1336 long ret;
1337
1338 ipipe = get_pipe_info(in);
1339 opipe = get_pipe_info(out);
1340
1341 if (ipipe && opipe) {
1342 if (off_in || off_out)
1343 return -ESPIPE;
1344
1345 if (!(in->f_mode & FMODE_READ))
1346 return -EBADF;
1347
1348 if (!(out->f_mode & FMODE_WRITE))
1349 return -EBADF;
1350
1351 /* Splicing to self would be fun, but... */
1352 if (ipipe == opipe)
1353 return -EINVAL;
1354
1355 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1356 }
1357
1358 if (ipipe) {
1359 if (off_in)
1360 return -ESPIPE;
1361 if (off_out) {
1362 if (!(out->f_mode & FMODE_PWRITE))
1363 return -EINVAL;
1364 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1365 return -EFAULT;
1366 off = &offset;
1367 } else
1368 off = &out->f_pos;
1369
1370 ret = do_splice_from(ipipe, out, off, len, flags);
1371
1372 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1373 ret = -EFAULT;
1374
1375 return ret;
1376 }
1377
1378 if (opipe) {
1379 if (off_out)
1380 return -ESPIPE;
1381 if (off_in) {
1382 if (!(in->f_mode & FMODE_PREAD))
1383 return -EINVAL;
1384 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1385 return -EFAULT;
1386 off = &offset;
1387 } else
1388 off = &in->f_pos;
1389
1390 ret = do_splice_to(in, off, opipe, len, flags);
1391
1392 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1393 ret = -EFAULT;
1394
1395 return ret;
1396 }
1397
1398 return -EINVAL;
1399 }
1400
1401 /*
1402 * Map an iov into an array of pages and offset/length tupples. With the
1403 * partial_page structure, we can map several non-contiguous ranges into
1404 * our ones pages[] map instead of splitting that operation into pieces.
1405 * Could easily be exported as a generic helper for other users, in which
1406 * case one would probably want to add a 'max_nr_pages' parameter as well.
1407 */
1408 static int get_iovec_page_array(const struct iovec __user *iov,
1409 unsigned int nr_vecs, struct page **pages,
1410 struct partial_page *partial, int aligned,
1411 unsigned int pipe_buffers)
1412 {
1413 int buffers = 0, error = 0;
1414
1415 while (nr_vecs) {
1416 unsigned long off, npages;
1417 struct iovec entry;
1418 void __user *base;
1419 size_t len;
1420 int i;
1421
1422 error = -EFAULT;
1423 if (copy_from_user(&entry, iov, sizeof(entry)))
1424 break;
1425
1426 base = entry.iov_base;
1427 len = entry.iov_len;
1428
1429 /*
1430 * Sanity check this iovec. 0 read succeeds.
1431 */
1432 error = 0;
1433 if (unlikely(!len))
1434 break;
1435 error = -EFAULT;
1436 if (!access_ok(VERIFY_READ, base, len))
1437 break;
1438
1439 /*
1440 * Get this base offset and number of pages, then map
1441 * in the user pages.
1442 */
1443 off = (unsigned long) base & ~PAGE_MASK;
1444
1445 /*
1446 * If asked for alignment, the offset must be zero and the
1447 * length a multiple of the PAGE_SIZE.
1448 */
1449 error = -EINVAL;
1450 if (aligned && (off || len & ~PAGE_MASK))
1451 break;
1452
1453 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1454 if (npages > pipe_buffers - buffers)
1455 npages = pipe_buffers - buffers;
1456
1457 error = get_user_pages_fast((unsigned long)base, npages,
1458 0, &pages[buffers]);
1459
1460 if (unlikely(error <= 0))
1461 break;
1462
1463 /*
1464 * Fill this contiguous range into the partial page map.
1465 */
1466 for (i = 0; i < error; i++) {
1467 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1468
1469 partial[buffers].offset = off;
1470 partial[buffers].len = plen;
1471
1472 off = 0;
1473 len -= plen;
1474 buffers++;
1475 }
1476
1477 /*
1478 * We didn't complete this iov, stop here since it probably
1479 * means we have to move some of this into a pipe to
1480 * be able to continue.
1481 */
1482 if (len)
1483 break;
1484
1485 /*
1486 * Don't continue if we mapped fewer pages than we asked for,
1487 * or if we mapped the max number of pages that we have
1488 * room for.
1489 */
1490 if (error < npages || buffers == pipe_buffers)
1491 break;
1492
1493 nr_vecs--;
1494 iov++;
1495 }
1496
1497 if (buffers)
1498 return buffers;
1499
1500 return error;
1501 }
1502
1503 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1504 struct splice_desc *sd)
1505 {
1506 char *src;
1507 int ret;
1508
1509 ret = buf->ops->confirm(pipe, buf);
1510 if (unlikely(ret))
1511 return ret;
1512
1513 /*
1514 * See if we can use the atomic maps, by prefaulting in the
1515 * pages and doing an atomic copy
1516 */
1517 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1518 src = buf->ops->map(pipe, buf, 1);
1519 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1520 sd->len);
1521 buf->ops->unmap(pipe, buf, src);
1522 if (!ret) {
1523 ret = sd->len;
1524 goto out;
1525 }
1526 }
1527
1528 /*
1529 * No dice, use slow non-atomic map and copy
1530 */
1531 src = buf->ops->map(pipe, buf, 0);
1532
1533 ret = sd->len;
1534 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1535 ret = -EFAULT;
1536
1537 buf->ops->unmap(pipe, buf, src);
1538 out:
1539 if (ret > 0)
1540 sd->u.userptr += ret;
1541 return ret;
1542 }
1543
1544 /*
1545 * For lack of a better implementation, implement vmsplice() to userspace
1546 * as a simple copy of the pipes pages to the user iov.
1547 */
1548 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1549 unsigned long nr_segs, unsigned int flags)
1550 {
1551 struct pipe_inode_info *pipe;
1552 struct splice_desc sd;
1553 ssize_t size;
1554 int error;
1555 long ret;
1556
1557 pipe = get_pipe_info(file);
1558 if (!pipe)
1559 return -EBADF;
1560
1561 pipe_lock(pipe);
1562
1563 error = ret = 0;
1564 while (nr_segs) {
1565 void __user *base;
1566 size_t len;
1567
1568 /*
1569 * Get user address base and length for this iovec.
1570 */
1571 error = get_user(base, &iov->iov_base);
1572 if (unlikely(error))
1573 break;
1574 error = get_user(len, &iov->iov_len);
1575 if (unlikely(error))
1576 break;
1577
1578 /*
1579 * Sanity check this iovec. 0 read succeeds.
1580 */
1581 if (unlikely(!len))
1582 break;
1583 if (unlikely(!base)) {
1584 error = -EFAULT;
1585 break;
1586 }
1587
1588 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1589 error = -EFAULT;
1590 break;
1591 }
1592
1593 sd.len = 0;
1594 sd.total_len = len;
1595 sd.flags = flags;
1596 sd.u.userptr = base;
1597 sd.pos = 0;
1598
1599 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1600 if (size < 0) {
1601 if (!ret)
1602 ret = size;
1603
1604 break;
1605 }
1606
1607 ret += size;
1608
1609 if (size < len)
1610 break;
1611
1612 nr_segs--;
1613 iov++;
1614 }
1615
1616 pipe_unlock(pipe);
1617
1618 if (!ret)
1619 ret = error;
1620
1621 return ret;
1622 }
1623
1624 /*
1625 * vmsplice splices a user address range into a pipe. It can be thought of
1626 * as splice-from-memory, where the regular splice is splice-from-file (or
1627 * to file). In both cases the output is a pipe, naturally.
1628 */
1629 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1630 unsigned long nr_segs, unsigned int flags)
1631 {
1632 struct pipe_inode_info *pipe;
1633 struct page *pages[PIPE_DEF_BUFFERS];
1634 struct partial_page partial[PIPE_DEF_BUFFERS];
1635 struct splice_pipe_desc spd = {
1636 .pages = pages,
1637 .partial = partial,
1638 .flags = flags,
1639 .ops = &user_page_pipe_buf_ops,
1640 .spd_release = spd_release_page,
1641 };
1642 long ret;
1643
1644 pipe = get_pipe_info(file);
1645 if (!pipe)
1646 return -EBADF;
1647
1648 if (splice_grow_spd(pipe, &spd))
1649 return -ENOMEM;
1650
1651 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1652 spd.partial, flags & SPLICE_F_GIFT,
1653 pipe->buffers);
1654 if (spd.nr_pages <= 0)
1655 ret = spd.nr_pages;
1656 else
1657 ret = splice_to_pipe(pipe, &spd);
1658
1659 splice_shrink_spd(pipe, &spd);
1660 return ret;
1661 }
1662
1663 /*
1664 * Note that vmsplice only really supports true splicing _from_ user memory
1665 * to a pipe, not the other way around. Splicing from user memory is a simple
1666 * operation that can be supported without any funky alignment restrictions
1667 * or nasty vm tricks. We simply map in the user memory and fill them into
1668 * a pipe. The reverse isn't quite as easy, though. There are two possible
1669 * solutions for that:
1670 *
1671 * - memcpy() the data internally, at which point we might as well just
1672 * do a regular read() on the buffer anyway.
1673 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1674 * has restriction limitations on both ends of the pipe).
1675 *
1676 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1677 *
1678 */
1679 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1680 unsigned long, nr_segs, unsigned int, flags)
1681 {
1682 struct file *file;
1683 long error;
1684 int fput;
1685
1686 if (unlikely(nr_segs > UIO_MAXIOV))
1687 return -EINVAL;
1688 else if (unlikely(!nr_segs))
1689 return 0;
1690
1691 error = -EBADF;
1692 file = fget_light(fd, &fput);
1693 if (file) {
1694 if (file->f_mode & FMODE_WRITE)
1695 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1696 else if (file->f_mode & FMODE_READ)
1697 error = vmsplice_to_user(file, iov, nr_segs, flags);
1698
1699 fput_light(file, fput);
1700 }
1701
1702 return error;
1703 }
1704
1705 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1706 int, fd_out, loff_t __user *, off_out,
1707 size_t, len, unsigned int, flags)
1708 {
1709 long error;
1710 struct file *in, *out;
1711 int fput_in, fput_out;
1712
1713 if (unlikely(!len))
1714 return 0;
1715
1716 error = -EBADF;
1717 in = fget_light(fd_in, &fput_in);
1718 if (in) {
1719 if (in->f_mode & FMODE_READ) {
1720 out = fget_light(fd_out, &fput_out);
1721 if (out) {
1722 if (out->f_mode & FMODE_WRITE)
1723 error = do_splice(in, off_in,
1724 out, off_out,
1725 len, flags);
1726 fput_light(out, fput_out);
1727 }
1728 }
1729
1730 fput_light(in, fput_in);
1731 }
1732
1733 return error;
1734 }
1735
1736 /*
1737 * Make sure there's data to read. Wait for input if we can, otherwise
1738 * return an appropriate error.
1739 */
1740 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1741 {
1742 int ret;
1743
1744 /*
1745 * Check ->nrbufs without the inode lock first. This function
1746 * is speculative anyways, so missing one is ok.
1747 */
1748 if (pipe->nrbufs)
1749 return 0;
1750
1751 ret = 0;
1752 pipe_lock(pipe);
1753
1754 while (!pipe->nrbufs) {
1755 if (signal_pending(current)) {
1756 ret = -ERESTARTSYS;
1757 break;
1758 }
1759 if (!pipe->writers)
1760 break;
1761 if (!pipe->waiting_writers) {
1762 if (flags & SPLICE_F_NONBLOCK) {
1763 ret = -EAGAIN;
1764 break;
1765 }
1766 }
1767 pipe_wait(pipe);
1768 }
1769
1770 pipe_unlock(pipe);
1771 return ret;
1772 }
1773
1774 /*
1775 * Make sure there's writeable room. Wait for room if we can, otherwise
1776 * return an appropriate error.
1777 */
1778 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1779 {
1780 int ret;
1781
1782 /*
1783 * Check ->nrbufs without the inode lock first. This function
1784 * is speculative anyways, so missing one is ok.
1785 */
1786 if (pipe->nrbufs < pipe->buffers)
1787 return 0;
1788
1789 ret = 0;
1790 pipe_lock(pipe);
1791
1792 while (pipe->nrbufs >= pipe->buffers) {
1793 if (!pipe->readers) {
1794 send_sig(SIGPIPE, current, 0);
1795 ret = -EPIPE;
1796 break;
1797 }
1798 if (flags & SPLICE_F_NONBLOCK) {
1799 ret = -EAGAIN;
1800 break;
1801 }
1802 if (signal_pending(current)) {
1803 ret = -ERESTARTSYS;
1804 break;
1805 }
1806 pipe->waiting_writers++;
1807 pipe_wait(pipe);
1808 pipe->waiting_writers--;
1809 }
1810
1811 pipe_unlock(pipe);
1812 return ret;
1813 }
1814
1815 /*
1816 * Splice contents of ipipe to opipe.
1817 */
1818 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1819 struct pipe_inode_info *opipe,
1820 size_t len, unsigned int flags)
1821 {
1822 struct pipe_buffer *ibuf, *obuf;
1823 int ret = 0, nbuf;
1824 bool input_wakeup = false;
1825
1826
1827 retry:
1828 ret = ipipe_prep(ipipe, flags);
1829 if (ret)
1830 return ret;
1831
1832 ret = opipe_prep(opipe, flags);
1833 if (ret)
1834 return ret;
1835
1836 /*
1837 * Potential ABBA deadlock, work around it by ordering lock
1838 * grabbing by pipe info address. Otherwise two different processes
1839 * could deadlock (one doing tee from A -> B, the other from B -> A).
1840 */
1841 pipe_double_lock(ipipe, opipe);
1842
1843 do {
1844 if (!opipe->readers) {
1845 send_sig(SIGPIPE, current, 0);
1846 if (!ret)
1847 ret = -EPIPE;
1848 break;
1849 }
1850
1851 if (!ipipe->nrbufs && !ipipe->writers)
1852 break;
1853
1854 /*
1855 * Cannot make any progress, because either the input
1856 * pipe is empty or the output pipe is full.
1857 */
1858 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1859 /* Already processed some buffers, break */
1860 if (ret)
1861 break;
1862
1863 if (flags & SPLICE_F_NONBLOCK) {
1864 ret = -EAGAIN;
1865 break;
1866 }
1867
1868 /*
1869 * We raced with another reader/writer and haven't
1870 * managed to process any buffers. A zero return
1871 * value means EOF, so retry instead.
1872 */
1873 pipe_unlock(ipipe);
1874 pipe_unlock(opipe);
1875 goto retry;
1876 }
1877
1878 ibuf = ipipe->bufs + ipipe->curbuf;
1879 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1880 obuf = opipe->bufs + nbuf;
1881
1882 if (len >= ibuf->len) {
1883 /*
1884 * Simply move the whole buffer from ipipe to opipe
1885 */
1886 *obuf = *ibuf;
1887 ibuf->ops = NULL;
1888 opipe->nrbufs++;
1889 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1890 ipipe->nrbufs--;
1891 input_wakeup = true;
1892 } else {
1893 /*
1894 * Get a reference to this pipe buffer,
1895 * so we can copy the contents over.
1896 */
1897 ibuf->ops->get(ipipe, ibuf);
1898 *obuf = *ibuf;
1899
1900 /*
1901 * Don't inherit the gift flag, we need to
1902 * prevent multiple steals of this page.
1903 */
1904 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1905
1906 obuf->len = len;
1907 opipe->nrbufs++;
1908 ibuf->offset += obuf->len;
1909 ibuf->len -= obuf->len;
1910 }
1911 ret += obuf->len;
1912 len -= obuf->len;
1913 } while (len);
1914
1915 pipe_unlock(ipipe);
1916 pipe_unlock(opipe);
1917
1918 /*
1919 * If we put data in the output pipe, wakeup any potential readers.
1920 */
1921 if (ret > 0) {
1922 smp_mb();
1923 if (waitqueue_active(&opipe->wait))
1924 wake_up_interruptible(&opipe->wait);
1925 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1926 }
1927 if (input_wakeup)
1928 wakeup_pipe_writers(ipipe);
1929
1930 return ret;
1931 }
1932
1933 /*
1934 * Link contents of ipipe to opipe.
1935 */
1936 static int link_pipe(struct pipe_inode_info *ipipe,
1937 struct pipe_inode_info *opipe,
1938 size_t len, unsigned int flags)
1939 {
1940 struct pipe_buffer *ibuf, *obuf;
1941 int ret = 0, i = 0, nbuf;
1942
1943 /*
1944 * Potential ABBA deadlock, work around it by ordering lock
1945 * grabbing by pipe info address. Otherwise two different processes
1946 * could deadlock (one doing tee from A -> B, the other from B -> A).
1947 */
1948 pipe_double_lock(ipipe, opipe);
1949
1950 do {
1951 if (!opipe->readers) {
1952 send_sig(SIGPIPE, current, 0);
1953 if (!ret)
1954 ret = -EPIPE;
1955 break;
1956 }
1957
1958 /*
1959 * If we have iterated all input buffers or ran out of
1960 * output room, break.
1961 */
1962 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1963 break;
1964
1965 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1966 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1967
1968 /*
1969 * Get a reference to this pipe buffer,
1970 * so we can copy the contents over.
1971 */
1972 ibuf->ops->get(ipipe, ibuf);
1973
1974 obuf = opipe->bufs + nbuf;
1975 *obuf = *ibuf;
1976
1977 /*
1978 * Don't inherit the gift flag, we need to
1979 * prevent multiple steals of this page.
1980 */
1981 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1982
1983 if (obuf->len > len)
1984 obuf->len = len;
1985
1986 opipe->nrbufs++;
1987 ret += obuf->len;
1988 len -= obuf->len;
1989 i++;
1990 } while (len);
1991
1992 /*
1993 * return EAGAIN if we have the potential of some data in the
1994 * future, otherwise just return 0
1995 */
1996 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1997 ret = -EAGAIN;
1998
1999 pipe_unlock(ipipe);
2000 pipe_unlock(opipe);
2001
2002 /*
2003 * If we put data in the output pipe, wakeup any potential readers.
2004 */
2005 if (ret > 0) {
2006 smp_mb();
2007 if (waitqueue_active(&opipe->wait))
2008 wake_up_interruptible(&opipe->wait);
2009 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
2010 }
2011
2012 return ret;
2013 }
2014
2015 /*
2016 * This is a tee(1) implementation that works on pipes. It doesn't copy
2017 * any data, it simply references the 'in' pages on the 'out' pipe.
2018 * The 'flags' used are the SPLICE_F_* variants, currently the only
2019 * applicable one is SPLICE_F_NONBLOCK.
2020 */
2021 static long do_tee(struct file *in, struct file *out, size_t len,
2022 unsigned int flags)
2023 {
2024 struct pipe_inode_info *ipipe = get_pipe_info(in);
2025 struct pipe_inode_info *opipe = get_pipe_info(out);
2026 int ret = -EINVAL;
2027
2028 /*
2029 * Duplicate the contents of ipipe to opipe without actually
2030 * copying the data.
2031 */
2032 if (ipipe && opipe && ipipe != opipe) {
2033 /*
2034 * Keep going, unless we encounter an error. The ipipe/opipe
2035 * ordering doesn't really matter.
2036 */
2037 ret = ipipe_prep(ipipe, flags);
2038 if (!ret) {
2039 ret = opipe_prep(opipe, flags);
2040 if (!ret)
2041 ret = link_pipe(ipipe, opipe, len, flags);
2042 }
2043 }
2044
2045 return ret;
2046 }
2047
2048 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2049 {
2050 struct file *in;
2051 int error, fput_in;
2052
2053 if (unlikely(!len))
2054 return 0;
2055
2056 error = -EBADF;
2057 in = fget_light(fdin, &fput_in);
2058 if (in) {
2059 if (in->f_mode & FMODE_READ) {
2060 int fput_out;
2061 struct file *out = fget_light(fdout, &fput_out);
2062
2063 if (out) {
2064 if (out->f_mode & FMODE_WRITE)
2065 error = do_tee(in, out, len, flags);
2066 fput_light(out, fput_out);
2067 }
2068 }
2069 fput_light(in, fput_in);
2070 }
2071
2072 return error;
2073 }