]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .map = generic_pipe_buf_map,
140 .unmap = generic_pipe_buf_unmap,
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .steal = page_cache_pipe_buf_steal,
144 .get = generic_pipe_buf_get,
145 };
146
147 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149 {
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return 1;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_steal(pipe, buf);
155 }
156
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .can_merge = 0,
159 .map = generic_pipe_buf_map,
160 .unmap = generic_pipe_buf_unmap,
161 .confirm = generic_pipe_buf_confirm,
162 .release = page_cache_pipe_buf_release,
163 .steal = user_page_pipe_buf_steal,
164 .get = generic_pipe_buf_get,
165 };
166
167 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
168 {
169 smp_mb();
170 if (waitqueue_active(&pipe->wait))
171 wake_up_interruptible(&pipe->wait);
172 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 }
174
175 /**
176 * splice_to_pipe - fill passed data into a pipe
177 * @pipe: pipe to fill
178 * @spd: data to fill
179 *
180 * Description:
181 * @spd contains a map of pages and len/offset tuples, along with
182 * the struct pipe_buf_operations associated with these pages. This
183 * function will link that data to the pipe.
184 *
185 */
186 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
187 struct splice_pipe_desc *spd)
188 {
189 unsigned int spd_pages = spd->nr_pages;
190 int ret, do_wakeup, page_nr;
191
192 ret = 0;
193 do_wakeup = 0;
194 page_nr = 0;
195
196 pipe_lock(pipe);
197
198 for (;;) {
199 if (!pipe->readers) {
200 send_sig(SIGPIPE, current, 0);
201 if (!ret)
202 ret = -EPIPE;
203 break;
204 }
205
206 if (pipe->nrbufs < pipe->buffers) {
207 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 struct pipe_buffer *buf = pipe->bufs + newbuf;
209
210 buf->page = spd->pages[page_nr];
211 buf->offset = spd->partial[page_nr].offset;
212 buf->len = spd->partial[page_nr].len;
213 buf->private = spd->partial[page_nr].private;
214 buf->ops = spd->ops;
215 if (spd->flags & SPLICE_F_GIFT)
216 buf->flags |= PIPE_BUF_FLAG_GIFT;
217
218 pipe->nrbufs++;
219 page_nr++;
220 ret += buf->len;
221
222 if (pipe->files)
223 do_wakeup = 1;
224
225 if (!--spd->nr_pages)
226 break;
227 if (pipe->nrbufs < pipe->buffers)
228 continue;
229
230 break;
231 }
232
233 if (spd->flags & SPLICE_F_NONBLOCK) {
234 if (!ret)
235 ret = -EAGAIN;
236 break;
237 }
238
239 if (signal_pending(current)) {
240 if (!ret)
241 ret = -ERESTARTSYS;
242 break;
243 }
244
245 if (do_wakeup) {
246 smp_mb();
247 if (waitqueue_active(&pipe->wait))
248 wake_up_interruptible_sync(&pipe->wait);
249 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 do_wakeup = 0;
251 }
252
253 pipe->waiting_writers++;
254 pipe_wait(pipe);
255 pipe->waiting_writers--;
256 }
257
258 pipe_unlock(pipe);
259
260 if (do_wakeup)
261 wakeup_pipe_readers(pipe);
262
263 while (page_nr < spd_pages)
264 spd->spd_release(spd, page_nr++);
265
266 return ret;
267 }
268
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270 {
271 page_cache_release(spd->pages[i]);
272 }
273
274 /*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279 {
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295 }
296
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
298 {
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304 }
305
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310 {
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_CACHE_SHIFT;
332 loff = *ppos & ~PAGE_CACHE_MASK;
333 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 GFP_KERNEL);
367 if (unlikely(error)) {
368 page_cache_release(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_CACHE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421 page = find_or_create_page(mapping, index,
422 mapping_gfp_mask(mapping));
423
424 if (!page) {
425 error = -ENOMEM;
426 break;
427 }
428 page_cache_release(spd.pages[page_nr]);
429 spd.pages[page_nr] = page;
430 }
431 /*
432 * page was already under io and is now done, great
433 */
434 if (PageUptodate(page)) {
435 unlock_page(page);
436 goto fill_it;
437 }
438
439 /*
440 * need to read in the page
441 */
442 error = mapping->a_ops->readpage(in, page);
443 if (unlikely(error)) {
444 /*
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
449 */
450 if (error == AOP_TRUNCATED_PAGE)
451 error = 0;
452
453 break;
454 }
455 }
456 fill_it:
457 /*
458 * i_size must be checked after PageUptodate.
459 */
460 isize = i_size_read(mapping->host);
461 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 if (unlikely(!isize || index > end_index))
463 break;
464
465 /*
466 * if this is the last page, see if we need to shrink
467 * the length and stop
468 */
469 if (end_index == index) {
470 unsigned int plen;
471
472 /*
473 * max good bytes in this page
474 */
475 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 if (plen <= loff)
477 break;
478
479 /*
480 * force quit after adding this page
481 */
482 this_len = min(this_len, plen - loff);
483 len = this_len;
484 }
485
486 spd.partial[page_nr].offset = loff;
487 spd.partial[page_nr].len = this_len;
488 len -= this_len;
489 loff = 0;
490 spd.nr_pages++;
491 index++;
492 }
493
494 /*
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
497 */
498 while (page_nr < nr_pages)
499 page_cache_release(spd.pages[page_nr++]);
500 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
501
502 if (spd.nr_pages)
503 error = splice_to_pipe(pipe, &spd);
504
505 splice_shrink_spd(&spd);
506 return error;
507 }
508
509 /**
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
516 *
517 * Description:
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
520 * a readpage() hook.
521 *
522 */
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 struct pipe_inode_info *pipe, size_t len,
525 unsigned int flags)
526 {
527 loff_t isize, left;
528 int ret;
529
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
532 return 0;
533
534 left = isize - *ppos;
535 if (unlikely(left < len))
536 len = left;
537
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 if (ret > 0) {
540 *ppos += ret;
541 file_accessed(in);
542 }
543
544 return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 .can_merge = 0,
550 .map = generic_pipe_buf_map,
551 .unmap = generic_pipe_buf_unmap,
552 .confirm = generic_pipe_buf_confirm,
553 .release = generic_pipe_buf_release,
554 .steal = generic_pipe_buf_steal,
555 .get = generic_pipe_buf_get,
556 };
557
558 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
559 struct pipe_buffer *buf)
560 {
561 return 1;
562 }
563
564 /* Pipe buffer operations for a socket and similar. */
565 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
566 .can_merge = 0,
567 .map = generic_pipe_buf_map,
568 .unmap = generic_pipe_buf_unmap,
569 .confirm = generic_pipe_buf_confirm,
570 .release = generic_pipe_buf_release,
571 .steal = generic_pipe_buf_nosteal,
572 .get = generic_pipe_buf_get,
573 };
574 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
575
576 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
577 unsigned long vlen, loff_t offset)
578 {
579 mm_segment_t old_fs;
580 loff_t pos = offset;
581 ssize_t res;
582
583 old_fs = get_fs();
584 set_fs(get_ds());
585 /* The cast to a user pointer is valid due to the set_fs() */
586 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
587 set_fs(old_fs);
588
589 return res;
590 }
591
592 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
593 loff_t pos)
594 {
595 mm_segment_t old_fs;
596 ssize_t res;
597
598 old_fs = get_fs();
599 set_fs(get_ds());
600 /* The cast to a user pointer is valid due to the set_fs() */
601 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
602 set_fs(old_fs);
603
604 return res;
605 }
606 EXPORT_SYMBOL(kernel_write);
607
608 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
609 struct pipe_inode_info *pipe, size_t len,
610 unsigned int flags)
611 {
612 unsigned int nr_pages;
613 unsigned int nr_freed;
614 size_t offset;
615 struct page *pages[PIPE_DEF_BUFFERS];
616 struct partial_page partial[PIPE_DEF_BUFFERS];
617 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
618 ssize_t res;
619 size_t this_len;
620 int error;
621 int i;
622 struct splice_pipe_desc spd = {
623 .pages = pages,
624 .partial = partial,
625 .nr_pages_max = PIPE_DEF_BUFFERS,
626 .flags = flags,
627 .ops = &default_pipe_buf_ops,
628 .spd_release = spd_release_page,
629 };
630
631 if (splice_grow_spd(pipe, &spd))
632 return -ENOMEM;
633
634 res = -ENOMEM;
635 vec = __vec;
636 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
637 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
638 if (!vec)
639 goto shrink_ret;
640 }
641
642 offset = *ppos & ~PAGE_CACHE_MASK;
643 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
644
645 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
646 struct page *page;
647
648 page = alloc_page(GFP_USER);
649 error = -ENOMEM;
650 if (!page)
651 goto err;
652
653 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
654 vec[i].iov_base = (void __user *) page_address(page);
655 vec[i].iov_len = this_len;
656 spd.pages[i] = page;
657 spd.nr_pages++;
658 len -= this_len;
659 offset = 0;
660 }
661
662 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
663 if (res < 0) {
664 error = res;
665 goto err;
666 }
667
668 error = 0;
669 if (!res)
670 goto err;
671
672 nr_freed = 0;
673 for (i = 0; i < spd.nr_pages; i++) {
674 this_len = min_t(size_t, vec[i].iov_len, res);
675 spd.partial[i].offset = 0;
676 spd.partial[i].len = this_len;
677 if (!this_len) {
678 __free_page(spd.pages[i]);
679 spd.pages[i] = NULL;
680 nr_freed++;
681 }
682 res -= this_len;
683 }
684 spd.nr_pages -= nr_freed;
685
686 res = splice_to_pipe(pipe, &spd);
687 if (res > 0)
688 *ppos += res;
689
690 shrink_ret:
691 if (vec != __vec)
692 kfree(vec);
693 splice_shrink_spd(&spd);
694 return res;
695
696 err:
697 for (i = 0; i < spd.nr_pages; i++)
698 __free_page(spd.pages[i]);
699
700 res = error;
701 goto shrink_ret;
702 }
703 EXPORT_SYMBOL(default_file_splice_read);
704
705 /*
706 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
707 * using sendpage(). Return the number of bytes sent.
708 */
709 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
710 struct pipe_buffer *buf, struct splice_desc *sd)
711 {
712 struct file *file = sd->u.file;
713 loff_t pos = sd->pos;
714 int more;
715
716 if (!likely(file->f_op->sendpage))
717 return -EINVAL;
718
719 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
720
721 if (sd->len < sd->total_len && pipe->nrbufs > 1)
722 more |= MSG_SENDPAGE_NOTLAST;
723
724 return file->f_op->sendpage(file, buf->page, buf->offset,
725 sd->len, &pos, more);
726 }
727
728 /*
729 * This is a little more tricky than the file -> pipe splicing. There are
730 * basically three cases:
731 *
732 * - Destination page already exists in the address space and there
733 * are users of it. For that case we have no other option that
734 * copying the data. Tough luck.
735 * - Destination page already exists in the address space, but there
736 * are no users of it. Make sure it's uptodate, then drop it. Fall
737 * through to last case.
738 * - Destination page does not exist, we can add the pipe page to
739 * the page cache and avoid the copy.
740 *
741 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
742 * sd->flags), we attempt to migrate pages from the pipe to the output
743 * file address space page cache. This is possible if no one else has
744 * the pipe page referenced outside of the pipe and page cache. If
745 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
746 * a new page in the output file page cache and fill/dirty that.
747 */
748 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
749 struct splice_desc *sd)
750 {
751 struct file *file = sd->u.file;
752 struct address_space *mapping = file->f_mapping;
753 unsigned int offset, this_len;
754 struct page *page;
755 void *fsdata;
756 int ret;
757
758 offset = sd->pos & ~PAGE_CACHE_MASK;
759
760 this_len = sd->len;
761 if (this_len + offset > PAGE_CACHE_SIZE)
762 this_len = PAGE_CACHE_SIZE - offset;
763
764 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
765 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
766 if (unlikely(ret))
767 goto out;
768
769 if (buf->page != page) {
770 char *src = buf->ops->map(pipe, buf, 1);
771 char *dst = kmap_atomic(page);
772
773 memcpy(dst + offset, src + buf->offset, this_len);
774 flush_dcache_page(page);
775 kunmap_atomic(dst);
776 buf->ops->unmap(pipe, buf, src);
777 }
778 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
779 page, fsdata);
780 out:
781 return ret;
782 }
783 EXPORT_SYMBOL(pipe_to_file);
784
785 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
786 {
787 smp_mb();
788 if (waitqueue_active(&pipe->wait))
789 wake_up_interruptible(&pipe->wait);
790 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
791 }
792
793 /**
794 * splice_from_pipe_feed - feed available data from a pipe to a file
795 * @pipe: pipe to splice from
796 * @sd: information to @actor
797 * @actor: handler that splices the data
798 *
799 * Description:
800 * This function loops over the pipe and calls @actor to do the
801 * actual moving of a single struct pipe_buffer to the desired
802 * destination. It returns when there's no more buffers left in
803 * the pipe or if the requested number of bytes (@sd->total_len)
804 * have been copied. It returns a positive number (one) if the
805 * pipe needs to be filled with more data, zero if the required
806 * number of bytes have been copied and -errno on error.
807 *
808 * This, together with splice_from_pipe_{begin,end,next}, may be
809 * used to implement the functionality of __splice_from_pipe() when
810 * locking is required around copying the pipe buffers to the
811 * destination.
812 */
813 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
814 splice_actor *actor)
815 {
816 int ret;
817
818 while (pipe->nrbufs) {
819 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
820 const struct pipe_buf_operations *ops = buf->ops;
821
822 sd->len = buf->len;
823 if (sd->len > sd->total_len)
824 sd->len = sd->total_len;
825
826 ret = buf->ops->confirm(pipe, buf);
827 if (unlikely(ret)) {
828 if (ret == -ENODATA)
829 ret = 0;
830 return ret;
831 }
832
833 ret = actor(pipe, buf, sd);
834 if (ret <= 0)
835 return ret;
836
837 buf->offset += ret;
838 buf->len -= ret;
839
840 sd->num_spliced += ret;
841 sd->len -= ret;
842 sd->pos += ret;
843 sd->total_len -= ret;
844
845 if (!buf->len) {
846 buf->ops = NULL;
847 ops->release(pipe, buf);
848 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
849 pipe->nrbufs--;
850 if (pipe->files)
851 sd->need_wakeup = true;
852 }
853
854 if (!sd->total_len)
855 return 0;
856 }
857
858 return 1;
859 }
860 EXPORT_SYMBOL(splice_from_pipe_feed);
861
862 /**
863 * splice_from_pipe_next - wait for some data to splice from
864 * @pipe: pipe to splice from
865 * @sd: information about the splice operation
866 *
867 * Description:
868 * This function will wait for some data and return a positive
869 * value (one) if pipe buffers are available. It will return zero
870 * or -errno if no more data needs to be spliced.
871 */
872 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
873 {
874 while (!pipe->nrbufs) {
875 if (!pipe->writers)
876 return 0;
877
878 if (!pipe->waiting_writers && sd->num_spliced)
879 return 0;
880
881 if (sd->flags & SPLICE_F_NONBLOCK)
882 return -EAGAIN;
883
884 if (signal_pending(current))
885 return -ERESTARTSYS;
886
887 if (sd->need_wakeup) {
888 wakeup_pipe_writers(pipe);
889 sd->need_wakeup = false;
890 }
891
892 pipe_wait(pipe);
893 }
894
895 return 1;
896 }
897 EXPORT_SYMBOL(splice_from_pipe_next);
898
899 /**
900 * splice_from_pipe_begin - start splicing from pipe
901 * @sd: information about the splice operation
902 *
903 * Description:
904 * This function should be called before a loop containing
905 * splice_from_pipe_next() and splice_from_pipe_feed() to
906 * initialize the necessary fields of @sd.
907 */
908 void splice_from_pipe_begin(struct splice_desc *sd)
909 {
910 sd->num_spliced = 0;
911 sd->need_wakeup = false;
912 }
913 EXPORT_SYMBOL(splice_from_pipe_begin);
914
915 /**
916 * splice_from_pipe_end - finish splicing from pipe
917 * @pipe: pipe to splice from
918 * @sd: information about the splice operation
919 *
920 * Description:
921 * This function will wake up pipe writers if necessary. It should
922 * be called after a loop containing splice_from_pipe_next() and
923 * splice_from_pipe_feed().
924 */
925 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
926 {
927 if (sd->need_wakeup)
928 wakeup_pipe_writers(pipe);
929 }
930 EXPORT_SYMBOL(splice_from_pipe_end);
931
932 /**
933 * __splice_from_pipe - splice data from a pipe to given actor
934 * @pipe: pipe to splice from
935 * @sd: information to @actor
936 * @actor: handler that splices the data
937 *
938 * Description:
939 * This function does little more than loop over the pipe and call
940 * @actor to do the actual moving of a single struct pipe_buffer to
941 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
942 * pipe_to_user.
943 *
944 */
945 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
946 splice_actor *actor)
947 {
948 int ret;
949
950 splice_from_pipe_begin(sd);
951 do {
952 ret = splice_from_pipe_next(pipe, sd);
953 if (ret > 0)
954 ret = splice_from_pipe_feed(pipe, sd, actor);
955 } while (ret > 0);
956 splice_from_pipe_end(pipe, sd);
957
958 return sd->num_spliced ? sd->num_spliced : ret;
959 }
960 EXPORT_SYMBOL(__splice_from_pipe);
961
962 /**
963 * splice_from_pipe - splice data from a pipe to a file
964 * @pipe: pipe to splice from
965 * @out: file to splice to
966 * @ppos: position in @out
967 * @len: how many bytes to splice
968 * @flags: splice modifier flags
969 * @actor: handler that splices the data
970 *
971 * Description:
972 * See __splice_from_pipe. This function locks the pipe inode,
973 * otherwise it's identical to __splice_from_pipe().
974 *
975 */
976 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
977 loff_t *ppos, size_t len, unsigned int flags,
978 splice_actor *actor)
979 {
980 ssize_t ret;
981 struct splice_desc sd = {
982 .total_len = len,
983 .flags = flags,
984 .pos = *ppos,
985 .u.file = out,
986 };
987
988 pipe_lock(pipe);
989 ret = __splice_from_pipe(pipe, &sd, actor);
990 pipe_unlock(pipe);
991
992 return ret;
993 }
994
995 /**
996 * generic_file_splice_write - splice data from a pipe to a file
997 * @pipe: pipe info
998 * @out: file to write to
999 * @ppos: position in @out
1000 * @len: number of bytes to splice
1001 * @flags: splice modifier flags
1002 *
1003 * Description:
1004 * Will either move or copy pages (determined by @flags options) from
1005 * the given pipe inode to the given file.
1006 *
1007 */
1008 ssize_t
1009 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
1010 loff_t *ppos, size_t len, unsigned int flags)
1011 {
1012 struct address_space *mapping = out->f_mapping;
1013 struct inode *inode = mapping->host;
1014 struct splice_desc sd = {
1015 .total_len = len,
1016 .flags = flags,
1017 .pos = *ppos,
1018 .u.file = out,
1019 };
1020 ssize_t ret;
1021
1022 pipe_lock(pipe);
1023
1024 splice_from_pipe_begin(&sd);
1025 do {
1026 ret = splice_from_pipe_next(pipe, &sd);
1027 if (ret <= 0)
1028 break;
1029
1030 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1031 ret = file_remove_suid(out);
1032 if (!ret) {
1033 ret = file_update_time(out);
1034 if (!ret)
1035 ret = splice_from_pipe_feed(pipe, &sd,
1036 pipe_to_file);
1037 }
1038 mutex_unlock(&inode->i_mutex);
1039 } while (ret > 0);
1040 splice_from_pipe_end(pipe, &sd);
1041
1042 pipe_unlock(pipe);
1043
1044 if (sd.num_spliced)
1045 ret = sd.num_spliced;
1046
1047 if (ret > 0) {
1048 int err;
1049
1050 err = generic_write_sync(out, *ppos, ret);
1051 if (err)
1052 ret = err;
1053 else
1054 *ppos += ret;
1055 balance_dirty_pages_ratelimited(mapping);
1056 }
1057
1058 return ret;
1059 }
1060
1061 EXPORT_SYMBOL(generic_file_splice_write);
1062
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065 {
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = buf->ops->map(pipe, buf, 0);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 buf->ops->unmap(pipe, buf, data);
1073
1074 return ret;
1075 }
1076
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080 {
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088 }
1089
1090 /**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105 {
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107 }
1108
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111 /*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116 {
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126 }
1127
1128 /*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134 {
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (in->f_op->splice_read)
1147 splice_read = in->f_op->splice_read;
1148 else
1149 splice_read = default_file_splice_read;
1150
1151 return splice_read(in, ppos, pipe, len, flags);
1152 }
1153
1154 /**
1155 * splice_direct_to_actor - splices data directly between two non-pipes
1156 * @in: file to splice from
1157 * @sd: actor information on where to splice to
1158 * @actor: handles the data splicing
1159 *
1160 * Description:
1161 * This is a special case helper to splice directly between two
1162 * points, without requiring an explicit pipe. Internally an allocated
1163 * pipe is cached in the process, and reused during the lifetime of
1164 * that process.
1165 *
1166 */
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 splice_direct_actor *actor)
1169 {
1170 struct pipe_inode_info *pipe;
1171 long ret, bytes;
1172 umode_t i_mode;
1173 size_t len;
1174 int i, flags;
1175
1176 /*
1177 * We require the input being a regular file, as we don't want to
1178 * randomly drop data for eg socket -> socket splicing. Use the
1179 * piped splicing for that!
1180 */
1181 i_mode = file_inode(in)->i_mode;
1182 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 return -EINVAL;
1184
1185 /*
1186 * neither in nor out is a pipe, setup an internal pipe attached to
1187 * 'out' and transfer the wanted data from 'in' to 'out' through that
1188 */
1189 pipe = current->splice_pipe;
1190 if (unlikely(!pipe)) {
1191 pipe = alloc_pipe_info();
1192 if (!pipe)
1193 return -ENOMEM;
1194
1195 /*
1196 * We don't have an immediate reader, but we'll read the stuff
1197 * out of the pipe right after the splice_to_pipe(). So set
1198 * PIPE_READERS appropriately.
1199 */
1200 pipe->readers = 1;
1201
1202 current->splice_pipe = pipe;
1203 }
1204
1205 /*
1206 * Do the splice.
1207 */
1208 ret = 0;
1209 bytes = 0;
1210 len = sd->total_len;
1211 flags = sd->flags;
1212
1213 /*
1214 * Don't block on output, we have to drain the direct pipe.
1215 */
1216 sd->flags &= ~SPLICE_F_NONBLOCK;
1217
1218 while (len) {
1219 size_t read_len;
1220 loff_t pos = sd->pos, prev_pos = pos;
1221
1222 ret = do_splice_to(in, &pos, pipe, len, flags);
1223 if (unlikely(ret <= 0))
1224 goto out_release;
1225
1226 read_len = ret;
1227 sd->total_len = read_len;
1228
1229 /*
1230 * NOTE: nonblocking mode only applies to the input. We
1231 * must not do the output in nonblocking mode as then we
1232 * could get stuck data in the internal pipe:
1233 */
1234 ret = actor(pipe, sd);
1235 if (unlikely(ret <= 0)) {
1236 sd->pos = prev_pos;
1237 goto out_release;
1238 }
1239
1240 bytes += ret;
1241 len -= ret;
1242 sd->pos = pos;
1243
1244 if (ret < read_len) {
1245 sd->pos = prev_pos + ret;
1246 goto out_release;
1247 }
1248 }
1249
1250 done:
1251 pipe->nrbufs = pipe->curbuf = 0;
1252 file_accessed(in);
1253 return bytes;
1254
1255 out_release:
1256 /*
1257 * If we did an incomplete transfer we must release
1258 * the pipe buffers in question:
1259 */
1260 for (i = 0; i < pipe->buffers; i++) {
1261 struct pipe_buffer *buf = pipe->bufs + i;
1262
1263 if (buf->ops) {
1264 buf->ops->release(pipe, buf);
1265 buf->ops = NULL;
1266 }
1267 }
1268
1269 if (!bytes)
1270 bytes = ret;
1271
1272 goto done;
1273 }
1274 EXPORT_SYMBOL(splice_direct_to_actor);
1275
1276 static int direct_splice_actor(struct pipe_inode_info *pipe,
1277 struct splice_desc *sd)
1278 {
1279 struct file *file = sd->u.file;
1280
1281 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 sd->flags);
1283 }
1284
1285 /**
1286 * do_splice_direct - splices data directly between two files
1287 * @in: file to splice from
1288 * @ppos: input file offset
1289 * @out: file to splice to
1290 * @opos: output file offset
1291 * @len: number of bytes to splice
1292 * @flags: splice modifier flags
1293 *
1294 * Description:
1295 * For use by do_sendfile(). splice can easily emulate sendfile, but
1296 * doing it in the application would incur an extra system call
1297 * (splice in + splice out, as compared to just sendfile()). So this helper
1298 * can splice directly through a process-private pipe.
1299 *
1300 */
1301 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1302 loff_t *opos, size_t len, unsigned int flags)
1303 {
1304 struct splice_desc sd = {
1305 .len = len,
1306 .total_len = len,
1307 .flags = flags,
1308 .pos = *ppos,
1309 .u.file = out,
1310 .opos = opos,
1311 };
1312 long ret;
1313
1314 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1316
1317 if (unlikely(out->f_flags & O_APPEND))
1318 return -EINVAL;
1319
1320 ret = rw_verify_area(WRITE, out, opos, len);
1321 if (unlikely(ret < 0))
1322 return ret;
1323
1324 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325 if (ret > 0)
1326 *ppos = sd.pos;
1327
1328 return ret;
1329 }
1330
1331 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1332 struct pipe_inode_info *opipe,
1333 size_t len, unsigned int flags);
1334
1335 /*
1336 * Determine where to splice to/from.
1337 */
1338 static long do_splice(struct file *in, loff_t __user *off_in,
1339 struct file *out, loff_t __user *off_out,
1340 size_t len, unsigned int flags)
1341 {
1342 struct pipe_inode_info *ipipe;
1343 struct pipe_inode_info *opipe;
1344 loff_t offset;
1345 long ret;
1346
1347 ipipe = get_pipe_info(in);
1348 opipe = get_pipe_info(out);
1349
1350 if (ipipe && opipe) {
1351 if (off_in || off_out)
1352 return -ESPIPE;
1353
1354 if (!(in->f_mode & FMODE_READ))
1355 return -EBADF;
1356
1357 if (!(out->f_mode & FMODE_WRITE))
1358 return -EBADF;
1359
1360 /* Splicing to self would be fun, but... */
1361 if (ipipe == opipe)
1362 return -EINVAL;
1363
1364 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1365 }
1366
1367 if (ipipe) {
1368 if (off_in)
1369 return -ESPIPE;
1370 if (off_out) {
1371 if (!(out->f_mode & FMODE_PWRITE))
1372 return -EINVAL;
1373 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1374 return -EFAULT;
1375 } else {
1376 offset = out->f_pos;
1377 }
1378
1379 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1380 return -EBADF;
1381
1382 if (unlikely(out->f_flags & O_APPEND))
1383 return -EINVAL;
1384
1385 ret = rw_verify_area(WRITE, out, &offset, len);
1386 if (unlikely(ret < 0))
1387 return ret;
1388
1389 file_start_write(out);
1390 ret = do_splice_from(ipipe, out, &offset, len, flags);
1391 file_end_write(out);
1392
1393 if (!off_out)
1394 out->f_pos = offset;
1395 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1396 ret = -EFAULT;
1397
1398 return ret;
1399 }
1400
1401 if (opipe) {
1402 if (off_out)
1403 return -ESPIPE;
1404 if (off_in) {
1405 if (!(in->f_mode & FMODE_PREAD))
1406 return -EINVAL;
1407 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1408 return -EFAULT;
1409 } else {
1410 offset = in->f_pos;
1411 }
1412
1413 ret = do_splice_to(in, &offset, opipe, len, flags);
1414
1415 if (!off_in)
1416 in->f_pos = offset;
1417 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1418 ret = -EFAULT;
1419
1420 return ret;
1421 }
1422
1423 return -EINVAL;
1424 }
1425
1426 /*
1427 * Map an iov into an array of pages and offset/length tupples. With the
1428 * partial_page structure, we can map several non-contiguous ranges into
1429 * our ones pages[] map instead of splitting that operation into pieces.
1430 * Could easily be exported as a generic helper for other users, in which
1431 * case one would probably want to add a 'max_nr_pages' parameter as well.
1432 */
1433 static int get_iovec_page_array(const struct iovec __user *iov,
1434 unsigned int nr_vecs, struct page **pages,
1435 struct partial_page *partial, bool aligned,
1436 unsigned int pipe_buffers)
1437 {
1438 int buffers = 0, error = 0;
1439
1440 while (nr_vecs) {
1441 unsigned long off, npages;
1442 struct iovec entry;
1443 void __user *base;
1444 size_t len;
1445 int i;
1446
1447 error = -EFAULT;
1448 if (copy_from_user(&entry, iov, sizeof(entry)))
1449 break;
1450
1451 base = entry.iov_base;
1452 len = entry.iov_len;
1453
1454 /*
1455 * Sanity check this iovec. 0 read succeeds.
1456 */
1457 error = 0;
1458 if (unlikely(!len))
1459 break;
1460 error = -EFAULT;
1461 if (!access_ok(VERIFY_READ, base, len))
1462 break;
1463
1464 /*
1465 * Get this base offset and number of pages, then map
1466 * in the user pages.
1467 */
1468 off = (unsigned long) base & ~PAGE_MASK;
1469
1470 /*
1471 * If asked for alignment, the offset must be zero and the
1472 * length a multiple of the PAGE_SIZE.
1473 */
1474 error = -EINVAL;
1475 if (aligned && (off || len & ~PAGE_MASK))
1476 break;
1477
1478 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479 if (npages > pipe_buffers - buffers)
1480 npages = pipe_buffers - buffers;
1481
1482 error = get_user_pages_fast((unsigned long)base, npages,
1483 0, &pages[buffers]);
1484
1485 if (unlikely(error <= 0))
1486 break;
1487
1488 /*
1489 * Fill this contiguous range into the partial page map.
1490 */
1491 for (i = 0; i < error; i++) {
1492 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1493
1494 partial[buffers].offset = off;
1495 partial[buffers].len = plen;
1496
1497 off = 0;
1498 len -= plen;
1499 buffers++;
1500 }
1501
1502 /*
1503 * We didn't complete this iov, stop here since it probably
1504 * means we have to move some of this into a pipe to
1505 * be able to continue.
1506 */
1507 if (len)
1508 break;
1509
1510 /*
1511 * Don't continue if we mapped fewer pages than we asked for,
1512 * or if we mapped the max number of pages that we have
1513 * room for.
1514 */
1515 if (error < npages || buffers == pipe_buffers)
1516 break;
1517
1518 nr_vecs--;
1519 iov++;
1520 }
1521
1522 if (buffers)
1523 return buffers;
1524
1525 return error;
1526 }
1527
1528 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1529 struct splice_desc *sd)
1530 {
1531 char *src;
1532 int ret;
1533
1534 /*
1535 * See if we can use the atomic maps, by prefaulting in the
1536 * pages and doing an atomic copy
1537 */
1538 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1539 src = buf->ops->map(pipe, buf, 1);
1540 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1541 sd->len);
1542 buf->ops->unmap(pipe, buf, src);
1543 if (!ret) {
1544 ret = sd->len;
1545 goto out;
1546 }
1547 }
1548
1549 /*
1550 * No dice, use slow non-atomic map and copy
1551 */
1552 src = buf->ops->map(pipe, buf, 0);
1553
1554 ret = sd->len;
1555 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1556 ret = -EFAULT;
1557
1558 buf->ops->unmap(pipe, buf, src);
1559 out:
1560 if (ret > 0)
1561 sd->u.userptr += ret;
1562 return ret;
1563 }
1564
1565 /*
1566 * For lack of a better implementation, implement vmsplice() to userspace
1567 * as a simple copy of the pipes pages to the user iov.
1568 */
1569 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1570 unsigned long nr_segs, unsigned int flags)
1571 {
1572 struct pipe_inode_info *pipe;
1573 struct splice_desc sd;
1574 ssize_t size;
1575 int error;
1576 long ret;
1577
1578 pipe = get_pipe_info(file);
1579 if (!pipe)
1580 return -EBADF;
1581
1582 pipe_lock(pipe);
1583
1584 error = ret = 0;
1585 while (nr_segs) {
1586 void __user *base;
1587 size_t len;
1588
1589 /*
1590 * Get user address base and length for this iovec.
1591 */
1592 error = get_user(base, &iov->iov_base);
1593 if (unlikely(error))
1594 break;
1595 error = get_user(len, &iov->iov_len);
1596 if (unlikely(error))
1597 break;
1598
1599 /*
1600 * Sanity check this iovec. 0 read succeeds.
1601 */
1602 if (unlikely(!len))
1603 break;
1604 if (unlikely(!base)) {
1605 error = -EFAULT;
1606 break;
1607 }
1608
1609 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1610 error = -EFAULT;
1611 break;
1612 }
1613
1614 sd.len = 0;
1615 sd.total_len = len;
1616 sd.flags = flags;
1617 sd.u.userptr = base;
1618 sd.pos = 0;
1619
1620 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1621 if (size < 0) {
1622 if (!ret)
1623 ret = size;
1624
1625 break;
1626 }
1627
1628 ret += size;
1629
1630 if (size < len)
1631 break;
1632
1633 nr_segs--;
1634 iov++;
1635 }
1636
1637 pipe_unlock(pipe);
1638
1639 if (!ret)
1640 ret = error;
1641
1642 return ret;
1643 }
1644
1645 /*
1646 * vmsplice splices a user address range into a pipe. It can be thought of
1647 * as splice-from-memory, where the regular splice is splice-from-file (or
1648 * to file). In both cases the output is a pipe, naturally.
1649 */
1650 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1651 unsigned long nr_segs, unsigned int flags)
1652 {
1653 struct pipe_inode_info *pipe;
1654 struct page *pages[PIPE_DEF_BUFFERS];
1655 struct partial_page partial[PIPE_DEF_BUFFERS];
1656 struct splice_pipe_desc spd = {
1657 .pages = pages,
1658 .partial = partial,
1659 .nr_pages_max = PIPE_DEF_BUFFERS,
1660 .flags = flags,
1661 .ops = &user_page_pipe_buf_ops,
1662 .spd_release = spd_release_page,
1663 };
1664 long ret;
1665
1666 pipe = get_pipe_info(file);
1667 if (!pipe)
1668 return -EBADF;
1669
1670 if (splice_grow_spd(pipe, &spd))
1671 return -ENOMEM;
1672
1673 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1674 spd.partial, false,
1675 spd.nr_pages_max);
1676 if (spd.nr_pages <= 0)
1677 ret = spd.nr_pages;
1678 else
1679 ret = splice_to_pipe(pipe, &spd);
1680
1681 splice_shrink_spd(&spd);
1682 return ret;
1683 }
1684
1685 /*
1686 * Note that vmsplice only really supports true splicing _from_ user memory
1687 * to a pipe, not the other way around. Splicing from user memory is a simple
1688 * operation that can be supported without any funky alignment restrictions
1689 * or nasty vm tricks. We simply map in the user memory and fill them into
1690 * a pipe. The reverse isn't quite as easy, though. There are two possible
1691 * solutions for that:
1692 *
1693 * - memcpy() the data internally, at which point we might as well just
1694 * do a regular read() on the buffer anyway.
1695 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1696 * has restriction limitations on both ends of the pipe).
1697 *
1698 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1699 *
1700 */
1701 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1702 unsigned long, nr_segs, unsigned int, flags)
1703 {
1704 struct fd f;
1705 long error;
1706
1707 if (unlikely(nr_segs > UIO_MAXIOV))
1708 return -EINVAL;
1709 else if (unlikely(!nr_segs))
1710 return 0;
1711
1712 error = -EBADF;
1713 f = fdget(fd);
1714 if (f.file) {
1715 if (f.file->f_mode & FMODE_WRITE)
1716 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1717 else if (f.file->f_mode & FMODE_READ)
1718 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1719
1720 fdput(f);
1721 }
1722
1723 return error;
1724 }
1725
1726 #ifdef CONFIG_COMPAT
1727 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1728 unsigned int, nr_segs, unsigned int, flags)
1729 {
1730 unsigned i;
1731 struct iovec __user *iov;
1732 if (nr_segs > UIO_MAXIOV)
1733 return -EINVAL;
1734 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1735 for (i = 0; i < nr_segs; i++) {
1736 struct compat_iovec v;
1737 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1738 get_user(v.iov_len, &iov32[i].iov_len) ||
1739 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1740 put_user(v.iov_len, &iov[i].iov_len))
1741 return -EFAULT;
1742 }
1743 return sys_vmsplice(fd, iov, nr_segs, flags);
1744 }
1745 #endif
1746
1747 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1748 int, fd_out, loff_t __user *, off_out,
1749 size_t, len, unsigned int, flags)
1750 {
1751 struct fd in, out;
1752 long error;
1753
1754 if (unlikely(!len))
1755 return 0;
1756
1757 error = -EBADF;
1758 in = fdget(fd_in);
1759 if (in.file) {
1760 if (in.file->f_mode & FMODE_READ) {
1761 out = fdget(fd_out);
1762 if (out.file) {
1763 if (out.file->f_mode & FMODE_WRITE)
1764 error = do_splice(in.file, off_in,
1765 out.file, off_out,
1766 len, flags);
1767 fdput(out);
1768 }
1769 }
1770 fdput(in);
1771 }
1772 return error;
1773 }
1774
1775 /*
1776 * Make sure there's data to read. Wait for input if we can, otherwise
1777 * return an appropriate error.
1778 */
1779 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1780 {
1781 int ret;
1782
1783 /*
1784 * Check ->nrbufs without the inode lock first. This function
1785 * is speculative anyways, so missing one is ok.
1786 */
1787 if (pipe->nrbufs)
1788 return 0;
1789
1790 ret = 0;
1791 pipe_lock(pipe);
1792
1793 while (!pipe->nrbufs) {
1794 if (signal_pending(current)) {
1795 ret = -ERESTARTSYS;
1796 break;
1797 }
1798 if (!pipe->writers)
1799 break;
1800 if (!pipe->waiting_writers) {
1801 if (flags & SPLICE_F_NONBLOCK) {
1802 ret = -EAGAIN;
1803 break;
1804 }
1805 }
1806 pipe_wait(pipe);
1807 }
1808
1809 pipe_unlock(pipe);
1810 return ret;
1811 }
1812
1813 /*
1814 * Make sure there's writeable room. Wait for room if we can, otherwise
1815 * return an appropriate error.
1816 */
1817 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1818 {
1819 int ret;
1820
1821 /*
1822 * Check ->nrbufs without the inode lock first. This function
1823 * is speculative anyways, so missing one is ok.
1824 */
1825 if (pipe->nrbufs < pipe->buffers)
1826 return 0;
1827
1828 ret = 0;
1829 pipe_lock(pipe);
1830
1831 while (pipe->nrbufs >= pipe->buffers) {
1832 if (!pipe->readers) {
1833 send_sig(SIGPIPE, current, 0);
1834 ret = -EPIPE;
1835 break;
1836 }
1837 if (flags & SPLICE_F_NONBLOCK) {
1838 ret = -EAGAIN;
1839 break;
1840 }
1841 if (signal_pending(current)) {
1842 ret = -ERESTARTSYS;
1843 break;
1844 }
1845 pipe->waiting_writers++;
1846 pipe_wait(pipe);
1847 pipe->waiting_writers--;
1848 }
1849
1850 pipe_unlock(pipe);
1851 return ret;
1852 }
1853
1854 /*
1855 * Splice contents of ipipe to opipe.
1856 */
1857 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1858 struct pipe_inode_info *opipe,
1859 size_t len, unsigned int flags)
1860 {
1861 struct pipe_buffer *ibuf, *obuf;
1862 int ret = 0, nbuf;
1863 bool input_wakeup = false;
1864
1865
1866 retry:
1867 ret = ipipe_prep(ipipe, flags);
1868 if (ret)
1869 return ret;
1870
1871 ret = opipe_prep(opipe, flags);
1872 if (ret)
1873 return ret;
1874
1875 /*
1876 * Potential ABBA deadlock, work around it by ordering lock
1877 * grabbing by pipe info address. Otherwise two different processes
1878 * could deadlock (one doing tee from A -> B, the other from B -> A).
1879 */
1880 pipe_double_lock(ipipe, opipe);
1881
1882 do {
1883 if (!opipe->readers) {
1884 send_sig(SIGPIPE, current, 0);
1885 if (!ret)
1886 ret = -EPIPE;
1887 break;
1888 }
1889
1890 if (!ipipe->nrbufs && !ipipe->writers)
1891 break;
1892
1893 /*
1894 * Cannot make any progress, because either the input
1895 * pipe is empty or the output pipe is full.
1896 */
1897 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1898 /* Already processed some buffers, break */
1899 if (ret)
1900 break;
1901
1902 if (flags & SPLICE_F_NONBLOCK) {
1903 ret = -EAGAIN;
1904 break;
1905 }
1906
1907 /*
1908 * We raced with another reader/writer and haven't
1909 * managed to process any buffers. A zero return
1910 * value means EOF, so retry instead.
1911 */
1912 pipe_unlock(ipipe);
1913 pipe_unlock(opipe);
1914 goto retry;
1915 }
1916
1917 ibuf = ipipe->bufs + ipipe->curbuf;
1918 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1919 obuf = opipe->bufs + nbuf;
1920
1921 if (len >= ibuf->len) {
1922 /*
1923 * Simply move the whole buffer from ipipe to opipe
1924 */
1925 *obuf = *ibuf;
1926 ibuf->ops = NULL;
1927 opipe->nrbufs++;
1928 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1929 ipipe->nrbufs--;
1930 input_wakeup = true;
1931 } else {
1932 /*
1933 * Get a reference to this pipe buffer,
1934 * so we can copy the contents over.
1935 */
1936 ibuf->ops->get(ipipe, ibuf);
1937 *obuf = *ibuf;
1938
1939 /*
1940 * Don't inherit the gift flag, we need to
1941 * prevent multiple steals of this page.
1942 */
1943 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1944
1945 obuf->len = len;
1946 opipe->nrbufs++;
1947 ibuf->offset += obuf->len;
1948 ibuf->len -= obuf->len;
1949 }
1950 ret += obuf->len;
1951 len -= obuf->len;
1952 } while (len);
1953
1954 pipe_unlock(ipipe);
1955 pipe_unlock(opipe);
1956
1957 /*
1958 * If we put data in the output pipe, wakeup any potential readers.
1959 */
1960 if (ret > 0)
1961 wakeup_pipe_readers(opipe);
1962
1963 if (input_wakeup)
1964 wakeup_pipe_writers(ipipe);
1965
1966 return ret;
1967 }
1968
1969 /*
1970 * Link contents of ipipe to opipe.
1971 */
1972 static int link_pipe(struct pipe_inode_info *ipipe,
1973 struct pipe_inode_info *opipe,
1974 size_t len, unsigned int flags)
1975 {
1976 struct pipe_buffer *ibuf, *obuf;
1977 int ret = 0, i = 0, nbuf;
1978
1979 /*
1980 * Potential ABBA deadlock, work around it by ordering lock
1981 * grabbing by pipe info address. Otherwise two different processes
1982 * could deadlock (one doing tee from A -> B, the other from B -> A).
1983 */
1984 pipe_double_lock(ipipe, opipe);
1985
1986 do {
1987 if (!opipe->readers) {
1988 send_sig(SIGPIPE, current, 0);
1989 if (!ret)
1990 ret = -EPIPE;
1991 break;
1992 }
1993
1994 /*
1995 * If we have iterated all input buffers or ran out of
1996 * output room, break.
1997 */
1998 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1999 break;
2000
2001 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
2002 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
2003
2004 /*
2005 * Get a reference to this pipe buffer,
2006 * so we can copy the contents over.
2007 */
2008 ibuf->ops->get(ipipe, ibuf);
2009
2010 obuf = opipe->bufs + nbuf;
2011 *obuf = *ibuf;
2012
2013 /*
2014 * Don't inherit the gift flag, we need to
2015 * prevent multiple steals of this page.
2016 */
2017 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2018
2019 if (obuf->len > len)
2020 obuf->len = len;
2021
2022 opipe->nrbufs++;
2023 ret += obuf->len;
2024 len -= obuf->len;
2025 i++;
2026 } while (len);
2027
2028 /*
2029 * return EAGAIN if we have the potential of some data in the
2030 * future, otherwise just return 0
2031 */
2032 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2033 ret = -EAGAIN;
2034
2035 pipe_unlock(ipipe);
2036 pipe_unlock(opipe);
2037
2038 /*
2039 * If we put data in the output pipe, wakeup any potential readers.
2040 */
2041 if (ret > 0)
2042 wakeup_pipe_readers(opipe);
2043
2044 return ret;
2045 }
2046
2047 /*
2048 * This is a tee(1) implementation that works on pipes. It doesn't copy
2049 * any data, it simply references the 'in' pages on the 'out' pipe.
2050 * The 'flags' used are the SPLICE_F_* variants, currently the only
2051 * applicable one is SPLICE_F_NONBLOCK.
2052 */
2053 static long do_tee(struct file *in, struct file *out, size_t len,
2054 unsigned int flags)
2055 {
2056 struct pipe_inode_info *ipipe = get_pipe_info(in);
2057 struct pipe_inode_info *opipe = get_pipe_info(out);
2058 int ret = -EINVAL;
2059
2060 /*
2061 * Duplicate the contents of ipipe to opipe without actually
2062 * copying the data.
2063 */
2064 if (ipipe && opipe && ipipe != opipe) {
2065 /*
2066 * Keep going, unless we encounter an error. The ipipe/opipe
2067 * ordering doesn't really matter.
2068 */
2069 ret = ipipe_prep(ipipe, flags);
2070 if (!ret) {
2071 ret = opipe_prep(opipe, flags);
2072 if (!ret)
2073 ret = link_pipe(ipipe, opipe, len, flags);
2074 }
2075 }
2076
2077 return ret;
2078 }
2079
2080 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2081 {
2082 struct fd in;
2083 int error;
2084
2085 if (unlikely(!len))
2086 return 0;
2087
2088 error = -EBADF;
2089 in = fdget(fdin);
2090 if (in.file) {
2091 if (in.file->f_mode & FMODE_READ) {
2092 struct fd out = fdget(fdout);
2093 if (out.file) {
2094 if (out.file->f_mode & FMODE_WRITE)
2095 error = do_tee(in.file, out.file,
2096 len, flags);
2097 fdput(out);
2098 }
2099 }
2100 fdput(in);
2101 }
2102
2103 return error;
2104 }