]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/splice.c
splice: switch get_iovec_page_array() to iov_iter
[mirror_ubuntu-zesty-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 wakeup_pipe_readers(pipe);
246 do_wakeup = 0;
247 }
248
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
252 }
253
254 pipe_unlock(pipe);
255
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
265
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 put_page(spd->pages[i]);
269 }
270
271 /*
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
274 */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
282
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285
286 if (spd->pages && spd->partial)
287 return 0;
288
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
292 }
293
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
298
299 kfree(spd->pages);
300 kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
307 {
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
323 };
324
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
327
328 index = *ppos >> PAGE_SHIFT;
329 loff = *ppos & ~PAGE_MASK;
330 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
332
333 /*
334 * Lookup the (hopefully) full range of pages we need.
335 */
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
338
339 /*
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
342 */
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
346
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
349 /*
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
352 */
353 page = find_get_page(mapping, index);
354 if (!page) {
355 /*
356 * page didn't exist, allocate one.
357 */
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
361
362 error = add_to_page_cache_lru(page, mapping, index,
363 mapping_gfp_constraint(mapping, GFP_KERNEL));
364 if (unlikely(error)) {
365 put_page(page);
366 if (error == -EEXIST)
367 continue;
368 break;
369 }
370 /*
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
373 */
374 unlock_page(page);
375 }
376
377 spd.pages[spd.nr_pages++] = page;
378 index++;
379 }
380
381 /*
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
384 */
385 index = *ppos >> PAGE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
390
391 if (!len)
392 break;
393
394 /*
395 * this_len is the max we'll use from this page
396 */
397 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
398 page = spd.pages[page_nr];
399
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
403
404 /*
405 * If the page isn't uptodate, we may need to start io on it
406 */
407 if (!PageUptodate(page)) {
408 lock_page(page);
409
410 /*
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
415 */
416 if (!page->mapping) {
417 unlock_page(page);
418 retry_lookup:
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
421
422 if (!page) {
423 error = -ENOMEM;
424 break;
425 }
426 put_page(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
428 }
429 /*
430 * page was already under io and is now done, great
431 */
432 if (PageUptodate(page)) {
433 unlock_page(page);
434 goto fill_it;
435 }
436
437 /*
438 * need to read in the page
439 */
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
442 /*
443 * Re-lookup the page
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 goto retry_lookup;
447
448 break;
449 }
450 }
451 fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 put_page(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(&spd);
501 return error;
502 }
503
504 /**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521 {
522 loff_t isize, left;
523 int ret;
524
525 if (IS_DAX(in->f_mapping->host))
526 return default_file_splice_read(in, ppos, pipe, len, flags);
527
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
530 return 0;
531
532 left = isize - *ppos;
533 if (unlikely(left < len))
534 len = left;
535
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 if (ret > 0) {
538 *ppos += ret;
539 file_accessed(in);
540 }
541
542 return ret;
543 }
544 EXPORT_SYMBOL(generic_file_splice_read);
545
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 .can_merge = 0,
548 .confirm = generic_pipe_buf_confirm,
549 .release = generic_pipe_buf_release,
550 .steal = generic_pipe_buf_steal,
551 .get = generic_pipe_buf_get,
552 };
553
554 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
555 struct pipe_buffer *buf)
556 {
557 return 1;
558 }
559
560 /* Pipe buffer operations for a socket and similar. */
561 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
562 .can_merge = 0,
563 .confirm = generic_pipe_buf_confirm,
564 .release = generic_pipe_buf_release,
565 .steal = generic_pipe_buf_nosteal,
566 .get = generic_pipe_buf_get,
567 };
568 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
569
570 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
571 unsigned long vlen, loff_t offset)
572 {
573 mm_segment_t old_fs;
574 loff_t pos = offset;
575 ssize_t res;
576
577 old_fs = get_fs();
578 set_fs(get_ds());
579 /* The cast to a user pointer is valid due to the set_fs() */
580 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
581 set_fs(old_fs);
582
583 return res;
584 }
585
586 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
587 loff_t pos)
588 {
589 mm_segment_t old_fs;
590 ssize_t res;
591
592 old_fs = get_fs();
593 set_fs(get_ds());
594 /* The cast to a user pointer is valid due to the set_fs() */
595 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
596 set_fs(old_fs);
597
598 return res;
599 }
600 EXPORT_SYMBOL(kernel_write);
601
602 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
603 struct pipe_inode_info *pipe, size_t len,
604 unsigned int flags)
605 {
606 unsigned int nr_pages;
607 unsigned int nr_freed;
608 size_t offset;
609 struct page *pages[PIPE_DEF_BUFFERS];
610 struct partial_page partial[PIPE_DEF_BUFFERS];
611 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
612 ssize_t res;
613 size_t this_len;
614 int error;
615 int i;
616 struct splice_pipe_desc spd = {
617 .pages = pages,
618 .partial = partial,
619 .nr_pages_max = PIPE_DEF_BUFFERS,
620 .flags = flags,
621 .ops = &default_pipe_buf_ops,
622 .spd_release = spd_release_page,
623 };
624
625 if (splice_grow_spd(pipe, &spd))
626 return -ENOMEM;
627
628 res = -ENOMEM;
629 vec = __vec;
630 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
631 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
632 if (!vec)
633 goto shrink_ret;
634 }
635
636 offset = *ppos & ~PAGE_MASK;
637 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
638
639 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
640 struct page *page;
641
642 page = alloc_page(GFP_USER);
643 error = -ENOMEM;
644 if (!page)
645 goto err;
646
647 this_len = min_t(size_t, len, PAGE_SIZE - offset);
648 vec[i].iov_base = (void __user *) page_address(page);
649 vec[i].iov_len = this_len;
650 spd.pages[i] = page;
651 spd.nr_pages++;
652 len -= this_len;
653 offset = 0;
654 }
655
656 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
657 if (res < 0) {
658 error = res;
659 goto err;
660 }
661
662 error = 0;
663 if (!res)
664 goto err;
665
666 nr_freed = 0;
667 for (i = 0; i < spd.nr_pages; i++) {
668 this_len = min_t(size_t, vec[i].iov_len, res);
669 spd.partial[i].offset = 0;
670 spd.partial[i].len = this_len;
671 if (!this_len) {
672 __free_page(spd.pages[i]);
673 spd.pages[i] = NULL;
674 nr_freed++;
675 }
676 res -= this_len;
677 }
678 spd.nr_pages -= nr_freed;
679
680 res = splice_to_pipe(pipe, &spd);
681 if (res > 0)
682 *ppos += res;
683
684 shrink_ret:
685 if (vec != __vec)
686 kfree(vec);
687 splice_shrink_spd(&spd);
688 return res;
689
690 err:
691 for (i = 0; i < spd.nr_pages; i++)
692 __free_page(spd.pages[i]);
693
694 res = error;
695 goto shrink_ret;
696 }
697 EXPORT_SYMBOL(default_file_splice_read);
698
699 /*
700 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
701 * using sendpage(). Return the number of bytes sent.
702 */
703 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
704 struct pipe_buffer *buf, struct splice_desc *sd)
705 {
706 struct file *file = sd->u.file;
707 loff_t pos = sd->pos;
708 int more;
709
710 if (!likely(file->f_op->sendpage))
711 return -EINVAL;
712
713 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
714
715 if (sd->len < sd->total_len && pipe->nrbufs > 1)
716 more |= MSG_SENDPAGE_NOTLAST;
717
718 return file->f_op->sendpage(file, buf->page, buf->offset,
719 sd->len, &pos, more);
720 }
721
722 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 {
724 smp_mb();
725 if (waitqueue_active(&pipe->wait))
726 wake_up_interruptible(&pipe->wait);
727 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
728 }
729
730 /**
731 * splice_from_pipe_feed - feed available data from a pipe to a file
732 * @pipe: pipe to splice from
733 * @sd: information to @actor
734 * @actor: handler that splices the data
735 *
736 * Description:
737 * This function loops over the pipe and calls @actor to do the
738 * actual moving of a single struct pipe_buffer to the desired
739 * destination. It returns when there's no more buffers left in
740 * the pipe or if the requested number of bytes (@sd->total_len)
741 * have been copied. It returns a positive number (one) if the
742 * pipe needs to be filled with more data, zero if the required
743 * number of bytes have been copied and -errno on error.
744 *
745 * This, together with splice_from_pipe_{begin,end,next}, may be
746 * used to implement the functionality of __splice_from_pipe() when
747 * locking is required around copying the pipe buffers to the
748 * destination.
749 */
750 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
751 splice_actor *actor)
752 {
753 int ret;
754
755 while (pipe->nrbufs) {
756 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
757 const struct pipe_buf_operations *ops = buf->ops;
758
759 sd->len = buf->len;
760 if (sd->len > sd->total_len)
761 sd->len = sd->total_len;
762
763 ret = buf->ops->confirm(pipe, buf);
764 if (unlikely(ret)) {
765 if (ret == -ENODATA)
766 ret = 0;
767 return ret;
768 }
769
770 ret = actor(pipe, buf, sd);
771 if (ret <= 0)
772 return ret;
773
774 buf->offset += ret;
775 buf->len -= ret;
776
777 sd->num_spliced += ret;
778 sd->len -= ret;
779 sd->pos += ret;
780 sd->total_len -= ret;
781
782 if (!buf->len) {
783 buf->ops = NULL;
784 ops->release(pipe, buf);
785 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
786 pipe->nrbufs--;
787 if (pipe->files)
788 sd->need_wakeup = true;
789 }
790
791 if (!sd->total_len)
792 return 0;
793 }
794
795 return 1;
796 }
797
798 /**
799 * splice_from_pipe_next - wait for some data to splice from
800 * @pipe: pipe to splice from
801 * @sd: information about the splice operation
802 *
803 * Description:
804 * This function will wait for some data and return a positive
805 * value (one) if pipe buffers are available. It will return zero
806 * or -errno if no more data needs to be spliced.
807 */
808 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 {
810 /*
811 * Check for signal early to make process killable when there are
812 * always buffers available
813 */
814 if (signal_pending(current))
815 return -ERESTARTSYS;
816
817 while (!pipe->nrbufs) {
818 if (!pipe->writers)
819 return 0;
820
821 if (!pipe->waiting_writers && sd->num_spliced)
822 return 0;
823
824 if (sd->flags & SPLICE_F_NONBLOCK)
825 return -EAGAIN;
826
827 if (signal_pending(current))
828 return -ERESTARTSYS;
829
830 if (sd->need_wakeup) {
831 wakeup_pipe_writers(pipe);
832 sd->need_wakeup = false;
833 }
834
835 pipe_wait(pipe);
836 }
837
838 return 1;
839 }
840
841 /**
842 * splice_from_pipe_begin - start splicing from pipe
843 * @sd: information about the splice operation
844 *
845 * Description:
846 * This function should be called before a loop containing
847 * splice_from_pipe_next() and splice_from_pipe_feed() to
848 * initialize the necessary fields of @sd.
849 */
850 static void splice_from_pipe_begin(struct splice_desc *sd)
851 {
852 sd->num_spliced = 0;
853 sd->need_wakeup = false;
854 }
855
856 /**
857 * splice_from_pipe_end - finish splicing from pipe
858 * @pipe: pipe to splice from
859 * @sd: information about the splice operation
860 *
861 * Description:
862 * This function will wake up pipe writers if necessary. It should
863 * be called after a loop containing splice_from_pipe_next() and
864 * splice_from_pipe_feed().
865 */
866 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
867 {
868 if (sd->need_wakeup)
869 wakeup_pipe_writers(pipe);
870 }
871
872 /**
873 * __splice_from_pipe - splice data from a pipe to given actor
874 * @pipe: pipe to splice from
875 * @sd: information to @actor
876 * @actor: handler that splices the data
877 *
878 * Description:
879 * This function does little more than loop over the pipe and call
880 * @actor to do the actual moving of a single struct pipe_buffer to
881 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
882 * pipe_to_user.
883 *
884 */
885 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
886 splice_actor *actor)
887 {
888 int ret;
889
890 splice_from_pipe_begin(sd);
891 do {
892 cond_resched();
893 ret = splice_from_pipe_next(pipe, sd);
894 if (ret > 0)
895 ret = splice_from_pipe_feed(pipe, sd, actor);
896 } while (ret > 0);
897 splice_from_pipe_end(pipe, sd);
898
899 return sd->num_spliced ? sd->num_spliced : ret;
900 }
901 EXPORT_SYMBOL(__splice_from_pipe);
902
903 /**
904 * splice_from_pipe - splice data from a pipe to a file
905 * @pipe: pipe to splice from
906 * @out: file to splice to
907 * @ppos: position in @out
908 * @len: how many bytes to splice
909 * @flags: splice modifier flags
910 * @actor: handler that splices the data
911 *
912 * Description:
913 * See __splice_from_pipe. This function locks the pipe inode,
914 * otherwise it's identical to __splice_from_pipe().
915 *
916 */
917 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
918 loff_t *ppos, size_t len, unsigned int flags,
919 splice_actor *actor)
920 {
921 ssize_t ret;
922 struct splice_desc sd = {
923 .total_len = len,
924 .flags = flags,
925 .pos = *ppos,
926 .u.file = out,
927 };
928
929 pipe_lock(pipe);
930 ret = __splice_from_pipe(pipe, &sd, actor);
931 pipe_unlock(pipe);
932
933 return ret;
934 }
935
936 /**
937 * iter_file_splice_write - splice data from a pipe to a file
938 * @pipe: pipe info
939 * @out: file to write to
940 * @ppos: position in @out
941 * @len: number of bytes to splice
942 * @flags: splice modifier flags
943 *
944 * Description:
945 * Will either move or copy pages (determined by @flags options) from
946 * the given pipe inode to the given file.
947 * This one is ->write_iter-based.
948 *
949 */
950 ssize_t
951 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
952 loff_t *ppos, size_t len, unsigned int flags)
953 {
954 struct splice_desc sd = {
955 .total_len = len,
956 .flags = flags,
957 .pos = *ppos,
958 .u.file = out,
959 };
960 int nbufs = pipe->buffers;
961 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
962 GFP_KERNEL);
963 ssize_t ret;
964
965 if (unlikely(!array))
966 return -ENOMEM;
967
968 pipe_lock(pipe);
969
970 splice_from_pipe_begin(&sd);
971 while (sd.total_len) {
972 struct iov_iter from;
973 size_t left;
974 int n, idx;
975
976 ret = splice_from_pipe_next(pipe, &sd);
977 if (ret <= 0)
978 break;
979
980 if (unlikely(nbufs < pipe->buffers)) {
981 kfree(array);
982 nbufs = pipe->buffers;
983 array = kcalloc(nbufs, sizeof(struct bio_vec),
984 GFP_KERNEL);
985 if (!array) {
986 ret = -ENOMEM;
987 break;
988 }
989 }
990
991 /* build the vector */
992 left = sd.total_len;
993 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
994 struct pipe_buffer *buf = pipe->bufs + idx;
995 size_t this_len = buf->len;
996
997 if (this_len > left)
998 this_len = left;
999
1000 if (idx == pipe->buffers - 1)
1001 idx = -1;
1002
1003 ret = buf->ops->confirm(pipe, buf);
1004 if (unlikely(ret)) {
1005 if (ret == -ENODATA)
1006 ret = 0;
1007 goto done;
1008 }
1009
1010 array[n].bv_page = buf->page;
1011 array[n].bv_len = this_len;
1012 array[n].bv_offset = buf->offset;
1013 left -= this_len;
1014 }
1015
1016 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1017 sd.total_len - left);
1018 ret = vfs_iter_write(out, &from, &sd.pos);
1019 if (ret <= 0)
1020 break;
1021
1022 sd.num_spliced += ret;
1023 sd.total_len -= ret;
1024 *ppos = sd.pos;
1025
1026 /* dismiss the fully eaten buffers, adjust the partial one */
1027 while (ret) {
1028 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1029 if (ret >= buf->len) {
1030 const struct pipe_buf_operations *ops = buf->ops;
1031 ret -= buf->len;
1032 buf->len = 0;
1033 buf->ops = NULL;
1034 ops->release(pipe, buf);
1035 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1036 pipe->nrbufs--;
1037 if (pipe->files)
1038 sd.need_wakeup = true;
1039 } else {
1040 buf->offset += ret;
1041 buf->len -= ret;
1042 ret = 0;
1043 }
1044 }
1045 }
1046 done:
1047 kfree(array);
1048 splice_from_pipe_end(pipe, &sd);
1049
1050 pipe_unlock(pipe);
1051
1052 if (sd.num_spliced)
1053 ret = sd.num_spliced;
1054
1055 return ret;
1056 }
1057
1058 EXPORT_SYMBOL(iter_file_splice_write);
1059
1060 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1061 struct splice_desc *sd)
1062 {
1063 int ret;
1064 void *data;
1065 loff_t tmp = sd->pos;
1066
1067 data = kmap(buf->page);
1068 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1069 kunmap(buf->page);
1070
1071 return ret;
1072 }
1073
1074 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1075 struct file *out, loff_t *ppos,
1076 size_t len, unsigned int flags)
1077 {
1078 ssize_t ret;
1079
1080 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1081 if (ret > 0)
1082 *ppos += ret;
1083
1084 return ret;
1085 }
1086
1087 /**
1088 * generic_splice_sendpage - splice data from a pipe to a socket
1089 * @pipe: pipe to splice from
1090 * @out: socket to write to
1091 * @ppos: position in @out
1092 * @len: number of bytes to splice
1093 * @flags: splice modifier flags
1094 *
1095 * Description:
1096 * Will send @len bytes from the pipe to a network socket. No data copying
1097 * is involved.
1098 *
1099 */
1100 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1101 loff_t *ppos, size_t len, unsigned int flags)
1102 {
1103 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1104 }
1105
1106 EXPORT_SYMBOL(generic_splice_sendpage);
1107
1108 /*
1109 * Attempt to initiate a splice from pipe to file.
1110 */
1111 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1112 loff_t *ppos, size_t len, unsigned int flags)
1113 {
1114 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1115 loff_t *, size_t, unsigned int);
1116
1117 if (out->f_op->splice_write)
1118 splice_write = out->f_op->splice_write;
1119 else
1120 splice_write = default_file_splice_write;
1121
1122 return splice_write(pipe, out, ppos, len, flags);
1123 }
1124
1125 /*
1126 * Attempt to initiate a splice from a file to a pipe.
1127 */
1128 static long do_splice_to(struct file *in, loff_t *ppos,
1129 struct pipe_inode_info *pipe, size_t len,
1130 unsigned int flags)
1131 {
1132 ssize_t (*splice_read)(struct file *, loff_t *,
1133 struct pipe_inode_info *, size_t, unsigned int);
1134 int ret;
1135
1136 if (unlikely(!(in->f_mode & FMODE_READ)))
1137 return -EBADF;
1138
1139 ret = rw_verify_area(READ, in, ppos, len);
1140 if (unlikely(ret < 0))
1141 return ret;
1142
1143 if (unlikely(len > MAX_RW_COUNT))
1144 len = MAX_RW_COUNT;
1145
1146 if (in->f_op->splice_read)
1147 splice_read = in->f_op->splice_read;
1148 else
1149 splice_read = default_file_splice_read;
1150
1151 return splice_read(in, ppos, pipe, len, flags);
1152 }
1153
1154 /**
1155 * splice_direct_to_actor - splices data directly between two non-pipes
1156 * @in: file to splice from
1157 * @sd: actor information on where to splice to
1158 * @actor: handles the data splicing
1159 *
1160 * Description:
1161 * This is a special case helper to splice directly between two
1162 * points, without requiring an explicit pipe. Internally an allocated
1163 * pipe is cached in the process, and reused during the lifetime of
1164 * that process.
1165 *
1166 */
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 splice_direct_actor *actor)
1169 {
1170 struct pipe_inode_info *pipe;
1171 long ret, bytes;
1172 umode_t i_mode;
1173 size_t len;
1174 int i, flags, more;
1175
1176 /*
1177 * We require the input being a regular file, as we don't want to
1178 * randomly drop data for eg socket -> socket splicing. Use the
1179 * piped splicing for that!
1180 */
1181 i_mode = file_inode(in)->i_mode;
1182 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 return -EINVAL;
1184
1185 /*
1186 * neither in nor out is a pipe, setup an internal pipe attached to
1187 * 'out' and transfer the wanted data from 'in' to 'out' through that
1188 */
1189 pipe = current->splice_pipe;
1190 if (unlikely(!pipe)) {
1191 pipe = alloc_pipe_info();
1192 if (!pipe)
1193 return -ENOMEM;
1194
1195 /*
1196 * We don't have an immediate reader, but we'll read the stuff
1197 * out of the pipe right after the splice_to_pipe(). So set
1198 * PIPE_READERS appropriately.
1199 */
1200 pipe->readers = 1;
1201
1202 current->splice_pipe = pipe;
1203 }
1204
1205 /*
1206 * Do the splice.
1207 */
1208 ret = 0;
1209 bytes = 0;
1210 len = sd->total_len;
1211 flags = sd->flags;
1212
1213 /*
1214 * Don't block on output, we have to drain the direct pipe.
1215 */
1216 sd->flags &= ~SPLICE_F_NONBLOCK;
1217 more = sd->flags & SPLICE_F_MORE;
1218
1219 while (len) {
1220 size_t read_len;
1221 loff_t pos = sd->pos, prev_pos = pos;
1222
1223 ret = do_splice_to(in, &pos, pipe, len, flags);
1224 if (unlikely(ret <= 0))
1225 goto out_release;
1226
1227 read_len = ret;
1228 sd->total_len = read_len;
1229
1230 /*
1231 * If more data is pending, set SPLICE_F_MORE
1232 * If this is the last data and SPLICE_F_MORE was not set
1233 * initially, clears it.
1234 */
1235 if (read_len < len)
1236 sd->flags |= SPLICE_F_MORE;
1237 else if (!more)
1238 sd->flags &= ~SPLICE_F_MORE;
1239 /*
1240 * NOTE: nonblocking mode only applies to the input. We
1241 * must not do the output in nonblocking mode as then we
1242 * could get stuck data in the internal pipe:
1243 */
1244 ret = actor(pipe, sd);
1245 if (unlikely(ret <= 0)) {
1246 sd->pos = prev_pos;
1247 goto out_release;
1248 }
1249
1250 bytes += ret;
1251 len -= ret;
1252 sd->pos = pos;
1253
1254 if (ret < read_len) {
1255 sd->pos = prev_pos + ret;
1256 goto out_release;
1257 }
1258 }
1259
1260 done:
1261 pipe->nrbufs = pipe->curbuf = 0;
1262 file_accessed(in);
1263 return bytes;
1264
1265 out_release:
1266 /*
1267 * If we did an incomplete transfer we must release
1268 * the pipe buffers in question:
1269 */
1270 for (i = 0; i < pipe->buffers; i++) {
1271 struct pipe_buffer *buf = pipe->bufs + i;
1272
1273 if (buf->ops) {
1274 buf->ops->release(pipe, buf);
1275 buf->ops = NULL;
1276 }
1277 }
1278
1279 if (!bytes)
1280 bytes = ret;
1281
1282 goto done;
1283 }
1284 EXPORT_SYMBOL(splice_direct_to_actor);
1285
1286 static int direct_splice_actor(struct pipe_inode_info *pipe,
1287 struct splice_desc *sd)
1288 {
1289 struct file *file = sd->u.file;
1290
1291 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1292 sd->flags);
1293 }
1294
1295 /**
1296 * do_splice_direct - splices data directly between two files
1297 * @in: file to splice from
1298 * @ppos: input file offset
1299 * @out: file to splice to
1300 * @opos: output file offset
1301 * @len: number of bytes to splice
1302 * @flags: splice modifier flags
1303 *
1304 * Description:
1305 * For use by do_sendfile(). splice can easily emulate sendfile, but
1306 * doing it in the application would incur an extra system call
1307 * (splice in + splice out, as compared to just sendfile()). So this helper
1308 * can splice directly through a process-private pipe.
1309 *
1310 */
1311 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1312 loff_t *opos, size_t len, unsigned int flags)
1313 {
1314 struct splice_desc sd = {
1315 .len = len,
1316 .total_len = len,
1317 .flags = flags,
1318 .pos = *ppos,
1319 .u.file = out,
1320 .opos = opos,
1321 };
1322 long ret;
1323
1324 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1325 return -EBADF;
1326
1327 if (unlikely(out->f_flags & O_APPEND))
1328 return -EINVAL;
1329
1330 ret = rw_verify_area(WRITE, out, opos, len);
1331 if (unlikely(ret < 0))
1332 return ret;
1333
1334 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1335 if (ret > 0)
1336 *ppos = sd.pos;
1337
1338 return ret;
1339 }
1340 EXPORT_SYMBOL(do_splice_direct);
1341
1342 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1343 struct pipe_inode_info *opipe,
1344 size_t len, unsigned int flags);
1345
1346 /*
1347 * Determine where to splice to/from.
1348 */
1349 static long do_splice(struct file *in, loff_t __user *off_in,
1350 struct file *out, loff_t __user *off_out,
1351 size_t len, unsigned int flags)
1352 {
1353 struct pipe_inode_info *ipipe;
1354 struct pipe_inode_info *opipe;
1355 loff_t offset;
1356 long ret;
1357
1358 ipipe = get_pipe_info(in);
1359 opipe = get_pipe_info(out);
1360
1361 if (ipipe && opipe) {
1362 if (off_in || off_out)
1363 return -ESPIPE;
1364
1365 if (!(in->f_mode & FMODE_READ))
1366 return -EBADF;
1367
1368 if (!(out->f_mode & FMODE_WRITE))
1369 return -EBADF;
1370
1371 /* Splicing to self would be fun, but... */
1372 if (ipipe == opipe)
1373 return -EINVAL;
1374
1375 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1376 }
1377
1378 if (ipipe) {
1379 if (off_in)
1380 return -ESPIPE;
1381 if (off_out) {
1382 if (!(out->f_mode & FMODE_PWRITE))
1383 return -EINVAL;
1384 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1385 return -EFAULT;
1386 } else {
1387 offset = out->f_pos;
1388 }
1389
1390 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1391 return -EBADF;
1392
1393 if (unlikely(out->f_flags & O_APPEND))
1394 return -EINVAL;
1395
1396 ret = rw_verify_area(WRITE, out, &offset, len);
1397 if (unlikely(ret < 0))
1398 return ret;
1399
1400 file_start_write(out);
1401 ret = do_splice_from(ipipe, out, &offset, len, flags);
1402 file_end_write(out);
1403
1404 if (!off_out)
1405 out->f_pos = offset;
1406 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1407 ret = -EFAULT;
1408
1409 return ret;
1410 }
1411
1412 if (opipe) {
1413 if (off_out)
1414 return -ESPIPE;
1415 if (off_in) {
1416 if (!(in->f_mode & FMODE_PREAD))
1417 return -EINVAL;
1418 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1419 return -EFAULT;
1420 } else {
1421 offset = in->f_pos;
1422 }
1423
1424 ret = do_splice_to(in, &offset, opipe, len, flags);
1425
1426 if (!off_in)
1427 in->f_pos = offset;
1428 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1429 ret = -EFAULT;
1430
1431 return ret;
1432 }
1433
1434 return -EINVAL;
1435 }
1436
1437 static int get_iovec_page_array(struct iov_iter *from,
1438 struct page **pages,
1439 struct partial_page *partial,
1440 unsigned int pipe_buffers)
1441 {
1442 int buffers = 0;
1443 while (iov_iter_count(from)) {
1444 ssize_t copied;
1445 size_t start;
1446
1447 copied = iov_iter_get_pages(from, pages + buffers, ~0UL,
1448 pipe_buffers - buffers, &start);
1449 if (copied <= 0)
1450 return buffers ? buffers : copied;
1451
1452 iov_iter_advance(from, copied);
1453 while (copied) {
1454 int size = min_t(int, copied, PAGE_SIZE - start);
1455 partial[buffers].offset = start;
1456 partial[buffers].len = size;
1457 copied -= size;
1458 start = 0;
1459 buffers++;
1460 }
1461 }
1462 return buffers;
1463 }
1464
1465 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1466 struct splice_desc *sd)
1467 {
1468 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1469 return n == sd->len ? n : -EFAULT;
1470 }
1471
1472 /*
1473 * For lack of a better implementation, implement vmsplice() to userspace
1474 * as a simple copy of the pipes pages to the user iov.
1475 */
1476 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1477 unsigned long nr_segs, unsigned int flags)
1478 {
1479 struct pipe_inode_info *pipe;
1480 struct splice_desc sd;
1481 long ret;
1482 struct iovec iovstack[UIO_FASTIOV];
1483 struct iovec *iov = iovstack;
1484 struct iov_iter iter;
1485
1486 pipe = get_pipe_info(file);
1487 if (!pipe)
1488 return -EBADF;
1489
1490 ret = import_iovec(READ, uiov, nr_segs,
1491 ARRAY_SIZE(iovstack), &iov, &iter);
1492 if (ret < 0)
1493 return ret;
1494
1495 sd.total_len = iov_iter_count(&iter);
1496 sd.len = 0;
1497 sd.flags = flags;
1498 sd.u.data = &iter;
1499 sd.pos = 0;
1500
1501 if (sd.total_len) {
1502 pipe_lock(pipe);
1503 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1504 pipe_unlock(pipe);
1505 }
1506
1507 kfree(iov);
1508 return ret;
1509 }
1510
1511 /*
1512 * vmsplice splices a user address range into a pipe. It can be thought of
1513 * as splice-from-memory, where the regular splice is splice-from-file (or
1514 * to file). In both cases the output is a pipe, naturally.
1515 */
1516 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1517 unsigned long nr_segs, unsigned int flags)
1518 {
1519 struct pipe_inode_info *pipe;
1520 struct iovec iovstack[UIO_FASTIOV];
1521 struct iovec *iov = iovstack;
1522 struct iov_iter from;
1523 struct page *pages[PIPE_DEF_BUFFERS];
1524 struct partial_page partial[PIPE_DEF_BUFFERS];
1525 struct splice_pipe_desc spd = {
1526 .pages = pages,
1527 .partial = partial,
1528 .nr_pages_max = PIPE_DEF_BUFFERS,
1529 .flags = flags,
1530 .ops = &user_page_pipe_buf_ops,
1531 .spd_release = spd_release_page,
1532 };
1533 long ret;
1534
1535 pipe = get_pipe_info(file);
1536 if (!pipe)
1537 return -EBADF;
1538
1539 ret = import_iovec(WRITE, uiov, nr_segs,
1540 ARRAY_SIZE(iovstack), &iov, &from);
1541 if (ret < 0)
1542 return ret;
1543
1544 if (splice_grow_spd(pipe, &spd)) {
1545 kfree(iov);
1546 return -ENOMEM;
1547 }
1548
1549 spd.nr_pages = get_iovec_page_array(&from, spd.pages,
1550 spd.partial,
1551 spd.nr_pages_max);
1552 if (spd.nr_pages <= 0)
1553 ret = spd.nr_pages;
1554 else
1555 ret = splice_to_pipe(pipe, &spd);
1556
1557 splice_shrink_spd(&spd);
1558 kfree(iov);
1559 return ret;
1560 }
1561
1562 /*
1563 * Note that vmsplice only really supports true splicing _from_ user memory
1564 * to a pipe, not the other way around. Splicing from user memory is a simple
1565 * operation that can be supported without any funky alignment restrictions
1566 * or nasty vm tricks. We simply map in the user memory and fill them into
1567 * a pipe. The reverse isn't quite as easy, though. There are two possible
1568 * solutions for that:
1569 *
1570 * - memcpy() the data internally, at which point we might as well just
1571 * do a regular read() on the buffer anyway.
1572 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1573 * has restriction limitations on both ends of the pipe).
1574 *
1575 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1576 *
1577 */
1578 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1579 unsigned long, nr_segs, unsigned int, flags)
1580 {
1581 struct fd f;
1582 long error;
1583
1584 if (unlikely(nr_segs > UIO_MAXIOV))
1585 return -EINVAL;
1586 else if (unlikely(!nr_segs))
1587 return 0;
1588
1589 error = -EBADF;
1590 f = fdget(fd);
1591 if (f.file) {
1592 if (f.file->f_mode & FMODE_WRITE)
1593 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1594 else if (f.file->f_mode & FMODE_READ)
1595 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1596
1597 fdput(f);
1598 }
1599
1600 return error;
1601 }
1602
1603 #ifdef CONFIG_COMPAT
1604 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1605 unsigned int, nr_segs, unsigned int, flags)
1606 {
1607 unsigned i;
1608 struct iovec __user *iov;
1609 if (nr_segs > UIO_MAXIOV)
1610 return -EINVAL;
1611 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1612 for (i = 0; i < nr_segs; i++) {
1613 struct compat_iovec v;
1614 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1615 get_user(v.iov_len, &iov32[i].iov_len) ||
1616 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1617 put_user(v.iov_len, &iov[i].iov_len))
1618 return -EFAULT;
1619 }
1620 return sys_vmsplice(fd, iov, nr_segs, flags);
1621 }
1622 #endif
1623
1624 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1625 int, fd_out, loff_t __user *, off_out,
1626 size_t, len, unsigned int, flags)
1627 {
1628 struct fd in, out;
1629 long error;
1630
1631 if (unlikely(!len))
1632 return 0;
1633
1634 error = -EBADF;
1635 in = fdget(fd_in);
1636 if (in.file) {
1637 if (in.file->f_mode & FMODE_READ) {
1638 out = fdget(fd_out);
1639 if (out.file) {
1640 if (out.file->f_mode & FMODE_WRITE)
1641 error = do_splice(in.file, off_in,
1642 out.file, off_out,
1643 len, flags);
1644 fdput(out);
1645 }
1646 }
1647 fdput(in);
1648 }
1649 return error;
1650 }
1651
1652 /*
1653 * Make sure there's data to read. Wait for input if we can, otherwise
1654 * return an appropriate error.
1655 */
1656 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1657 {
1658 int ret;
1659
1660 /*
1661 * Check ->nrbufs without the inode lock first. This function
1662 * is speculative anyways, so missing one is ok.
1663 */
1664 if (pipe->nrbufs)
1665 return 0;
1666
1667 ret = 0;
1668 pipe_lock(pipe);
1669
1670 while (!pipe->nrbufs) {
1671 if (signal_pending(current)) {
1672 ret = -ERESTARTSYS;
1673 break;
1674 }
1675 if (!pipe->writers)
1676 break;
1677 if (!pipe->waiting_writers) {
1678 if (flags & SPLICE_F_NONBLOCK) {
1679 ret = -EAGAIN;
1680 break;
1681 }
1682 }
1683 pipe_wait(pipe);
1684 }
1685
1686 pipe_unlock(pipe);
1687 return ret;
1688 }
1689
1690 /*
1691 * Make sure there's writeable room. Wait for room if we can, otherwise
1692 * return an appropriate error.
1693 */
1694 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1695 {
1696 int ret;
1697
1698 /*
1699 * Check ->nrbufs without the inode lock first. This function
1700 * is speculative anyways, so missing one is ok.
1701 */
1702 if (pipe->nrbufs < pipe->buffers)
1703 return 0;
1704
1705 ret = 0;
1706 pipe_lock(pipe);
1707
1708 while (pipe->nrbufs >= pipe->buffers) {
1709 if (!pipe->readers) {
1710 send_sig(SIGPIPE, current, 0);
1711 ret = -EPIPE;
1712 break;
1713 }
1714 if (flags & SPLICE_F_NONBLOCK) {
1715 ret = -EAGAIN;
1716 break;
1717 }
1718 if (signal_pending(current)) {
1719 ret = -ERESTARTSYS;
1720 break;
1721 }
1722 pipe->waiting_writers++;
1723 pipe_wait(pipe);
1724 pipe->waiting_writers--;
1725 }
1726
1727 pipe_unlock(pipe);
1728 return ret;
1729 }
1730
1731 /*
1732 * Splice contents of ipipe to opipe.
1733 */
1734 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1735 struct pipe_inode_info *opipe,
1736 size_t len, unsigned int flags)
1737 {
1738 struct pipe_buffer *ibuf, *obuf;
1739 int ret = 0, nbuf;
1740 bool input_wakeup = false;
1741
1742
1743 retry:
1744 ret = ipipe_prep(ipipe, flags);
1745 if (ret)
1746 return ret;
1747
1748 ret = opipe_prep(opipe, flags);
1749 if (ret)
1750 return ret;
1751
1752 /*
1753 * Potential ABBA deadlock, work around it by ordering lock
1754 * grabbing by pipe info address. Otherwise two different processes
1755 * could deadlock (one doing tee from A -> B, the other from B -> A).
1756 */
1757 pipe_double_lock(ipipe, opipe);
1758
1759 do {
1760 if (!opipe->readers) {
1761 send_sig(SIGPIPE, current, 0);
1762 if (!ret)
1763 ret = -EPIPE;
1764 break;
1765 }
1766
1767 if (!ipipe->nrbufs && !ipipe->writers)
1768 break;
1769
1770 /*
1771 * Cannot make any progress, because either the input
1772 * pipe is empty or the output pipe is full.
1773 */
1774 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1775 /* Already processed some buffers, break */
1776 if (ret)
1777 break;
1778
1779 if (flags & SPLICE_F_NONBLOCK) {
1780 ret = -EAGAIN;
1781 break;
1782 }
1783
1784 /*
1785 * We raced with another reader/writer and haven't
1786 * managed to process any buffers. A zero return
1787 * value means EOF, so retry instead.
1788 */
1789 pipe_unlock(ipipe);
1790 pipe_unlock(opipe);
1791 goto retry;
1792 }
1793
1794 ibuf = ipipe->bufs + ipipe->curbuf;
1795 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1796 obuf = opipe->bufs + nbuf;
1797
1798 if (len >= ibuf->len) {
1799 /*
1800 * Simply move the whole buffer from ipipe to opipe
1801 */
1802 *obuf = *ibuf;
1803 ibuf->ops = NULL;
1804 opipe->nrbufs++;
1805 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1806 ipipe->nrbufs--;
1807 input_wakeup = true;
1808 } else {
1809 /*
1810 * Get a reference to this pipe buffer,
1811 * so we can copy the contents over.
1812 */
1813 ibuf->ops->get(ipipe, ibuf);
1814 *obuf = *ibuf;
1815
1816 /*
1817 * Don't inherit the gift flag, we need to
1818 * prevent multiple steals of this page.
1819 */
1820 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1821
1822 obuf->len = len;
1823 opipe->nrbufs++;
1824 ibuf->offset += obuf->len;
1825 ibuf->len -= obuf->len;
1826 }
1827 ret += obuf->len;
1828 len -= obuf->len;
1829 } while (len);
1830
1831 pipe_unlock(ipipe);
1832 pipe_unlock(opipe);
1833
1834 /*
1835 * If we put data in the output pipe, wakeup any potential readers.
1836 */
1837 if (ret > 0)
1838 wakeup_pipe_readers(opipe);
1839
1840 if (input_wakeup)
1841 wakeup_pipe_writers(ipipe);
1842
1843 return ret;
1844 }
1845
1846 /*
1847 * Link contents of ipipe to opipe.
1848 */
1849 static int link_pipe(struct pipe_inode_info *ipipe,
1850 struct pipe_inode_info *opipe,
1851 size_t len, unsigned int flags)
1852 {
1853 struct pipe_buffer *ibuf, *obuf;
1854 int ret = 0, i = 0, nbuf;
1855
1856 /*
1857 * Potential ABBA deadlock, work around it by ordering lock
1858 * grabbing by pipe info address. Otherwise two different processes
1859 * could deadlock (one doing tee from A -> B, the other from B -> A).
1860 */
1861 pipe_double_lock(ipipe, opipe);
1862
1863 do {
1864 if (!opipe->readers) {
1865 send_sig(SIGPIPE, current, 0);
1866 if (!ret)
1867 ret = -EPIPE;
1868 break;
1869 }
1870
1871 /*
1872 * If we have iterated all input buffers or ran out of
1873 * output room, break.
1874 */
1875 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1876 break;
1877
1878 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1879 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1880
1881 /*
1882 * Get a reference to this pipe buffer,
1883 * so we can copy the contents over.
1884 */
1885 ibuf->ops->get(ipipe, ibuf);
1886
1887 obuf = opipe->bufs + nbuf;
1888 *obuf = *ibuf;
1889
1890 /*
1891 * Don't inherit the gift flag, we need to
1892 * prevent multiple steals of this page.
1893 */
1894 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1895
1896 if (obuf->len > len)
1897 obuf->len = len;
1898
1899 opipe->nrbufs++;
1900 ret += obuf->len;
1901 len -= obuf->len;
1902 i++;
1903 } while (len);
1904
1905 /*
1906 * return EAGAIN if we have the potential of some data in the
1907 * future, otherwise just return 0
1908 */
1909 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1910 ret = -EAGAIN;
1911
1912 pipe_unlock(ipipe);
1913 pipe_unlock(opipe);
1914
1915 /*
1916 * If we put data in the output pipe, wakeup any potential readers.
1917 */
1918 if (ret > 0)
1919 wakeup_pipe_readers(opipe);
1920
1921 return ret;
1922 }
1923
1924 /*
1925 * This is a tee(1) implementation that works on pipes. It doesn't copy
1926 * any data, it simply references the 'in' pages on the 'out' pipe.
1927 * The 'flags' used are the SPLICE_F_* variants, currently the only
1928 * applicable one is SPLICE_F_NONBLOCK.
1929 */
1930 static long do_tee(struct file *in, struct file *out, size_t len,
1931 unsigned int flags)
1932 {
1933 struct pipe_inode_info *ipipe = get_pipe_info(in);
1934 struct pipe_inode_info *opipe = get_pipe_info(out);
1935 int ret = -EINVAL;
1936
1937 /*
1938 * Duplicate the contents of ipipe to opipe without actually
1939 * copying the data.
1940 */
1941 if (ipipe && opipe && ipipe != opipe) {
1942 /*
1943 * Keep going, unless we encounter an error. The ipipe/opipe
1944 * ordering doesn't really matter.
1945 */
1946 ret = ipipe_prep(ipipe, flags);
1947 if (!ret) {
1948 ret = opipe_prep(opipe, flags);
1949 if (!ret)
1950 ret = link_pipe(ipipe, opipe, len, flags);
1951 }
1952 }
1953
1954 return ret;
1955 }
1956
1957 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1958 {
1959 struct fd in;
1960 int error;
1961
1962 if (unlikely(!len))
1963 return 0;
1964
1965 error = -EBADF;
1966 in = fdget(fdin);
1967 if (in.file) {
1968 if (in.file->f_mode & FMODE_READ) {
1969 struct fd out = fdget(fdout);
1970 if (out.file) {
1971 if (out.file->f_mode & FMODE_WRITE)
1972 error = do_tee(in.file, out.file,
1973 len, flags);
1974 fdput(out);
1975 }
1976 }
1977 fdput(in);
1978 }
1979
1980 return error;
1981 }