]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
blackfin architecture
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
295 */
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298
299 /*
300 * Now fill in the holes:
301 */
302 error = 0;
303 total_len = 0;
304
305 /*
306 * Lookup the (hopefully) full range of pages we need.
307 */
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309
310 /*
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
313 */
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
316 /*
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
319 */
320 page = find_get_page(mapping, index);
321 if (!page) {
322 /*
323 * Make sure the read-ahead engine is notified
324 * about this failure.
325 */
326 handle_ra_miss(mapping, &in->f_ra, index);
327
328 /*
329 * page didn't exist, allocate one.
330 */
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
334
335 error = add_to_page_cache_lru(page, mapping, index,
336 GFP_KERNEL);
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
342 }
343 /*
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
346 */
347 unlock_page(page);
348 }
349
350 pages[spd.nr_pages++] = page;
351 index++;
352 }
353
354 /*
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
357 */
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
363
364 if (!len)
365 break;
366
367 /*
368 * this_len is the max we'll use from this page
369 */
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
372
373 /*
374 * If the page isn't uptodate, we may need to start io on it
375 */
376 if (!PageUptodate(page)) {
377 /*
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
380 */
381 if (flags & SPLICE_F_NONBLOCK)
382 break;
383
384 lock_page(page);
385
386 /*
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
389 * added
390 */
391 if (!page->mapping) {
392 unlock_page(page);
393 break;
394 }
395 /*
396 * page was already under io and is now done, great
397 */
398 if (PageUptodate(page)) {
399 unlock_page(page);
400 goto fill_it;
401 }
402
403 /*
404 * need to read in the page
405 */
406 error = mapping->a_ops->readpage(in, page);
407 if (unlikely(error)) {
408 /*
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
413 */
414 if (error == AOP_TRUNCATED_PAGE)
415 error = 0;
416
417 break;
418 }
419
420 /*
421 * i_size must be checked after ->readpage().
422 */
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
427
428 /*
429 * if this is the last page, see if we need to shrink
430 * the length and stop
431 */
432 if (end_index == index) {
433 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 if (total_len + loff > isize)
435 break;
436 /*
437 * force quit after adding this page
438 */
439 len = this_len;
440 this_len = min(this_len, loff);
441 loff = 0;
442 }
443 }
444 fill_it:
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 total_len += this_len;
449 loff = 0;
450 spd.nr_pages++;
451 index++;
452 }
453
454 /*
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
457 */
458 while (page_nr < nr_pages)
459 page_cache_release(pages[page_nr++]);
460
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
463
464 return error;
465 }
466
467 /**
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
473 *
474 * Will read pages from given file and fill them into a pipe.
475 */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
479 {
480 ssize_t spliced;
481 int ret;
482
483 ret = 0;
484 spliced = 0;
485
486 while (len) {
487 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488
489 if (ret < 0)
490 break;
491 else if (!ret) {
492 if (spliced)
493 break;
494 if (flags & SPLICE_F_NONBLOCK) {
495 ret = -EAGAIN;
496 break;
497 }
498 }
499
500 *ppos += ret;
501 len -= ret;
502 spliced += ret;
503 }
504
505 if (spliced)
506 return spliced;
507
508 return ret;
509 }
510
511 EXPORT_SYMBOL(generic_file_splice_read);
512
513 /*
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
516 */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 struct file *file = sd->file;
521 loff_t pos = sd->pos;
522 int ret, more;
523
524 ret = buf->ops->pin(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
530 }
531
532 return ret;
533 }
534
535 /*
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
538 *
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
547 *
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
554 */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
557 {
558 struct file *file = sd->file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 pgoff_t index;
563 int ret;
564
565 /*
566 * make sure the data in this buffer is uptodate
567 */
568 ret = buf->ops->pin(pipe, buf);
569 if (unlikely(ret))
570 return ret;
571
572 index = sd->pos >> PAGE_CACHE_SHIFT;
573 offset = sd->pos & ~PAGE_CACHE_MASK;
574
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
578
579 find_page:
580 page = find_lock_page(mapping, index);
581 if (!page) {
582 ret = -ENOMEM;
583 page = page_cache_alloc_cold(mapping);
584 if (unlikely(!page))
585 goto out_ret;
586
587 /*
588 * This will also lock the page
589 */
590 ret = add_to_page_cache_lru(page, mapping, index,
591 GFP_KERNEL);
592 if (unlikely(ret))
593 goto out;
594 }
595
596 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
597 if (unlikely(ret)) {
598 loff_t isize = i_size_read(mapping->host);
599
600 if (ret != AOP_TRUNCATED_PAGE)
601 unlock_page(page);
602 page_cache_release(page);
603 if (ret == AOP_TRUNCATED_PAGE)
604 goto find_page;
605
606 /*
607 * prepare_write() may have instantiated a few blocks
608 * outside i_size. Trim these off again.
609 */
610 if (sd->pos + this_len > isize)
611 vmtruncate(mapping->host, isize);
612
613 goto out_ret;
614 }
615
616 if (buf->page != page) {
617 /*
618 * Careful, ->map() uses KM_USER0!
619 */
620 char *src = buf->ops->map(pipe, buf, 1);
621 char *dst = kmap_atomic(page, KM_USER1);
622
623 memcpy(dst + offset, src + buf->offset, this_len);
624 flush_dcache_page(page);
625 kunmap_atomic(dst, KM_USER1);
626 buf->ops->unmap(pipe, buf, src);
627 }
628
629 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
630 if (ret) {
631 if (ret == AOP_TRUNCATED_PAGE) {
632 page_cache_release(page);
633 goto find_page;
634 }
635 if (ret < 0)
636 goto out;
637 /*
638 * Partial write has happened, so 'ret' already initialized by
639 * number of bytes written, Where is nothing we have to do here.
640 */
641 } else
642 ret = this_len;
643 /*
644 * Return the number of bytes written and mark page as
645 * accessed, we are now done!
646 */
647 mark_page_accessed(page);
648 balance_dirty_pages_ratelimited(mapping);
649 out:
650 page_cache_release(page);
651 unlock_page(page);
652 out_ret:
653 return ret;
654 }
655
656 /*
657 * Pipe input worker. Most of this logic works like a regular pipe, the
658 * key here is the 'actor' worker passed in that actually moves the data
659 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
660 */
661 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
662 struct file *out, loff_t *ppos, size_t len,
663 unsigned int flags, splice_actor *actor)
664 {
665 int ret, do_wakeup, err;
666 struct splice_desc sd;
667
668 ret = 0;
669 do_wakeup = 0;
670
671 sd.total_len = len;
672 sd.flags = flags;
673 sd.file = out;
674 sd.pos = *ppos;
675
676 for (;;) {
677 if (pipe->nrbufs) {
678 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
679 const struct pipe_buf_operations *ops = buf->ops;
680
681 sd.len = buf->len;
682 if (sd.len > sd.total_len)
683 sd.len = sd.total_len;
684
685 err = actor(pipe, buf, &sd);
686 if (err <= 0) {
687 if (!ret && err != -ENODATA)
688 ret = err;
689
690 break;
691 }
692
693 ret += err;
694 buf->offset += err;
695 buf->len -= err;
696
697 sd.len -= err;
698 sd.pos += err;
699 sd.total_len -= err;
700 if (sd.len)
701 continue;
702
703 if (!buf->len) {
704 buf->ops = NULL;
705 ops->release(pipe, buf);
706 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
707 pipe->nrbufs--;
708 if (pipe->inode)
709 do_wakeup = 1;
710 }
711
712 if (!sd.total_len)
713 break;
714 }
715
716 if (pipe->nrbufs)
717 continue;
718 if (!pipe->writers)
719 break;
720 if (!pipe->waiting_writers) {
721 if (ret)
722 break;
723 }
724
725 if (flags & SPLICE_F_NONBLOCK) {
726 if (!ret)
727 ret = -EAGAIN;
728 break;
729 }
730
731 if (signal_pending(current)) {
732 if (!ret)
733 ret = -ERESTARTSYS;
734 break;
735 }
736
737 if (do_wakeup) {
738 smp_mb();
739 if (waitqueue_active(&pipe->wait))
740 wake_up_interruptible_sync(&pipe->wait);
741 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
742 do_wakeup = 0;
743 }
744
745 pipe_wait(pipe);
746 }
747
748 if (do_wakeup) {
749 smp_mb();
750 if (waitqueue_active(&pipe->wait))
751 wake_up_interruptible(&pipe->wait);
752 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
753 }
754
755 return ret;
756 }
757 EXPORT_SYMBOL(__splice_from_pipe);
758
759 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
760 loff_t *ppos, size_t len, unsigned int flags,
761 splice_actor *actor)
762 {
763 ssize_t ret;
764 struct inode *inode = out->f_mapping->host;
765
766 /*
767 * The actor worker might be calling ->prepare_write and
768 * ->commit_write. Most of the time, these expect i_mutex to
769 * be held. Since this may result in an ABBA deadlock with
770 * pipe->inode, we have to order lock acquiry here.
771 */
772 inode_double_lock(inode, pipe->inode);
773 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
774 inode_double_unlock(inode, pipe->inode);
775
776 return ret;
777 }
778
779 /**
780 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
781 * @pipe: pipe info
782 * @out: file to write to
783 * @len: number of bytes to splice
784 * @flags: splice modifier flags
785 *
786 * Will either move or copy pages (determined by @flags options) from
787 * the given pipe inode to the given file. The caller is responsible
788 * for acquiring i_mutex on both inodes.
789 *
790 */
791 ssize_t
792 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
793 loff_t *ppos, size_t len, unsigned int flags)
794 {
795 struct address_space *mapping = out->f_mapping;
796 struct inode *inode = mapping->host;
797 ssize_t ret;
798 int err;
799
800 err = remove_suid(out->f_path.dentry);
801 if (unlikely(err))
802 return err;
803
804 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
805 if (ret > 0) {
806 *ppos += ret;
807
808 /*
809 * If file or inode is SYNC and we actually wrote some data,
810 * sync it.
811 */
812 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
813 err = generic_osync_inode(inode, mapping,
814 OSYNC_METADATA|OSYNC_DATA);
815
816 if (err)
817 ret = err;
818 }
819 }
820
821 return ret;
822 }
823
824 EXPORT_SYMBOL(generic_file_splice_write_nolock);
825
826 /**
827 * generic_file_splice_write - splice data from a pipe to a file
828 * @pipe: pipe info
829 * @out: file to write to
830 * @len: number of bytes to splice
831 * @flags: splice modifier flags
832 *
833 * Will either move or copy pages (determined by @flags options) from
834 * the given pipe inode to the given file.
835 *
836 */
837 ssize_t
838 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
839 loff_t *ppos, size_t len, unsigned int flags)
840 {
841 struct address_space *mapping = out->f_mapping;
842 struct inode *inode = mapping->host;
843 ssize_t ret;
844 int err;
845
846 err = should_remove_suid(out->f_path.dentry);
847 if (unlikely(err)) {
848 mutex_lock(&inode->i_mutex);
849 err = __remove_suid(out->f_path.dentry, err);
850 mutex_unlock(&inode->i_mutex);
851 if (err)
852 return err;
853 }
854
855 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
856 if (ret > 0) {
857 *ppos += ret;
858
859 /*
860 * If file or inode is SYNC and we actually wrote some data,
861 * sync it.
862 */
863 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
864 mutex_lock(&inode->i_mutex);
865 err = generic_osync_inode(inode, mapping,
866 OSYNC_METADATA|OSYNC_DATA);
867 mutex_unlock(&inode->i_mutex);
868
869 if (err)
870 ret = err;
871 }
872 }
873
874 return ret;
875 }
876
877 EXPORT_SYMBOL(generic_file_splice_write);
878
879 /**
880 * generic_splice_sendpage - splice data from a pipe to a socket
881 * @inode: pipe inode
882 * @out: socket to write to
883 * @len: number of bytes to splice
884 * @flags: splice modifier flags
885 *
886 * Will send @len bytes from the pipe to a network socket. No data copying
887 * is involved.
888 *
889 */
890 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
891 loff_t *ppos, size_t len, unsigned int flags)
892 {
893 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
894 }
895
896 EXPORT_SYMBOL(generic_splice_sendpage);
897
898 /*
899 * Attempt to initiate a splice from pipe to file.
900 */
901 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
902 loff_t *ppos, size_t len, unsigned int flags)
903 {
904 int ret;
905
906 if (unlikely(!out->f_op || !out->f_op->splice_write))
907 return -EINVAL;
908
909 if (unlikely(!(out->f_mode & FMODE_WRITE)))
910 return -EBADF;
911
912 ret = rw_verify_area(WRITE, out, ppos, len);
913 if (unlikely(ret < 0))
914 return ret;
915
916 return out->f_op->splice_write(pipe, out, ppos, len, flags);
917 }
918
919 /*
920 * Attempt to initiate a splice from a file to a pipe.
921 */
922 static long do_splice_to(struct file *in, loff_t *ppos,
923 struct pipe_inode_info *pipe, size_t len,
924 unsigned int flags)
925 {
926 loff_t isize, left;
927 int ret;
928
929 if (unlikely(!in->f_op || !in->f_op->splice_read))
930 return -EINVAL;
931
932 if (unlikely(!(in->f_mode & FMODE_READ)))
933 return -EBADF;
934
935 ret = rw_verify_area(READ, in, ppos, len);
936 if (unlikely(ret < 0))
937 return ret;
938
939 isize = i_size_read(in->f_mapping->host);
940 if (unlikely(*ppos >= isize))
941 return 0;
942
943 left = isize - *ppos;
944 if (unlikely(left < len))
945 len = left;
946
947 return in->f_op->splice_read(in, ppos, pipe, len, flags);
948 }
949
950 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
951 size_t len, unsigned int flags)
952 {
953 struct pipe_inode_info *pipe;
954 long ret, bytes;
955 loff_t out_off;
956 umode_t i_mode;
957 int i;
958
959 /*
960 * We require the input being a regular file, as we don't want to
961 * randomly drop data for eg socket -> socket splicing. Use the
962 * piped splicing for that!
963 */
964 i_mode = in->f_path.dentry->d_inode->i_mode;
965 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
966 return -EINVAL;
967
968 /*
969 * neither in nor out is a pipe, setup an internal pipe attached to
970 * 'out' and transfer the wanted data from 'in' to 'out' through that
971 */
972 pipe = current->splice_pipe;
973 if (unlikely(!pipe)) {
974 pipe = alloc_pipe_info(NULL);
975 if (!pipe)
976 return -ENOMEM;
977
978 /*
979 * We don't have an immediate reader, but we'll read the stuff
980 * out of the pipe right after the splice_to_pipe(). So set
981 * PIPE_READERS appropriately.
982 */
983 pipe->readers = 1;
984
985 current->splice_pipe = pipe;
986 }
987
988 /*
989 * Do the splice.
990 */
991 ret = 0;
992 bytes = 0;
993 out_off = 0;
994
995 while (len) {
996 size_t read_len, max_read_len;
997
998 /*
999 * Do at most PIPE_BUFFERS pages worth of transfer:
1000 */
1001 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1002
1003 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1004 if (unlikely(ret < 0))
1005 goto out_release;
1006
1007 read_len = ret;
1008
1009 /*
1010 * NOTE: nonblocking mode only applies to the input. We
1011 * must not do the output in nonblocking mode as then we
1012 * could get stuck data in the internal pipe:
1013 */
1014 ret = do_splice_from(pipe, out, &out_off, read_len,
1015 flags & ~SPLICE_F_NONBLOCK);
1016 if (unlikely(ret < 0))
1017 goto out_release;
1018
1019 bytes += ret;
1020 len -= ret;
1021
1022 /*
1023 * In nonblocking mode, if we got back a short read then
1024 * that was due to either an IO error or due to the
1025 * pagecache entry not being there. In the IO error case
1026 * the _next_ splice attempt will produce a clean IO error
1027 * return value (not a short read), so in both cases it's
1028 * correct to break out of the loop here:
1029 */
1030 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1031 break;
1032 }
1033
1034 pipe->nrbufs = pipe->curbuf = 0;
1035
1036 return bytes;
1037
1038 out_release:
1039 /*
1040 * If we did an incomplete transfer we must release
1041 * the pipe buffers in question:
1042 */
1043 for (i = 0; i < PIPE_BUFFERS; i++) {
1044 struct pipe_buffer *buf = pipe->bufs + i;
1045
1046 if (buf->ops) {
1047 buf->ops->release(pipe, buf);
1048 buf->ops = NULL;
1049 }
1050 }
1051 pipe->nrbufs = pipe->curbuf = 0;
1052
1053 /*
1054 * If we transferred some data, return the number of bytes:
1055 */
1056 if (bytes > 0)
1057 return bytes;
1058
1059 return ret;
1060 }
1061
1062 EXPORT_SYMBOL(do_splice_direct);
1063
1064 /*
1065 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1066 * location, so checking ->i_pipe is not enough to verify that this is a
1067 * pipe.
1068 */
1069 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1070 {
1071 if (S_ISFIFO(inode->i_mode))
1072 return inode->i_pipe;
1073
1074 return NULL;
1075 }
1076
1077 /*
1078 * Determine where to splice to/from.
1079 */
1080 static long do_splice(struct file *in, loff_t __user *off_in,
1081 struct file *out, loff_t __user *off_out,
1082 size_t len, unsigned int flags)
1083 {
1084 struct pipe_inode_info *pipe;
1085 loff_t offset, *off;
1086 long ret;
1087
1088 pipe = pipe_info(in->f_path.dentry->d_inode);
1089 if (pipe) {
1090 if (off_in)
1091 return -ESPIPE;
1092 if (off_out) {
1093 if (out->f_op->llseek == no_llseek)
1094 return -EINVAL;
1095 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1096 return -EFAULT;
1097 off = &offset;
1098 } else
1099 off = &out->f_pos;
1100
1101 ret = do_splice_from(pipe, out, off, len, flags);
1102
1103 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1104 ret = -EFAULT;
1105
1106 return ret;
1107 }
1108
1109 pipe = pipe_info(out->f_path.dentry->d_inode);
1110 if (pipe) {
1111 if (off_out)
1112 return -ESPIPE;
1113 if (off_in) {
1114 if (in->f_op->llseek == no_llseek)
1115 return -EINVAL;
1116 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1117 return -EFAULT;
1118 off = &offset;
1119 } else
1120 off = &in->f_pos;
1121
1122 ret = do_splice_to(in, off, pipe, len, flags);
1123
1124 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1125 ret = -EFAULT;
1126
1127 return ret;
1128 }
1129
1130 return -EINVAL;
1131 }
1132
1133 /*
1134 * Map an iov into an array of pages and offset/length tupples. With the
1135 * partial_page structure, we can map several non-contiguous ranges into
1136 * our ones pages[] map instead of splitting that operation into pieces.
1137 * Could easily be exported as a generic helper for other users, in which
1138 * case one would probably want to add a 'max_nr_pages' parameter as well.
1139 */
1140 static int get_iovec_page_array(const struct iovec __user *iov,
1141 unsigned int nr_vecs, struct page **pages,
1142 struct partial_page *partial, int aligned)
1143 {
1144 int buffers = 0, error = 0;
1145
1146 /*
1147 * It's ok to take the mmap_sem for reading, even
1148 * across a "get_user()".
1149 */
1150 down_read(&current->mm->mmap_sem);
1151
1152 while (nr_vecs) {
1153 unsigned long off, npages;
1154 void __user *base;
1155 size_t len;
1156 int i;
1157
1158 /*
1159 * Get user address base and length for this iovec.
1160 */
1161 error = get_user(base, &iov->iov_base);
1162 if (unlikely(error))
1163 break;
1164 error = get_user(len, &iov->iov_len);
1165 if (unlikely(error))
1166 break;
1167
1168 /*
1169 * Sanity check this iovec. 0 read succeeds.
1170 */
1171 if (unlikely(!len))
1172 break;
1173 error = -EFAULT;
1174 if (unlikely(!base))
1175 break;
1176
1177 /*
1178 * Get this base offset and number of pages, then map
1179 * in the user pages.
1180 */
1181 off = (unsigned long) base & ~PAGE_MASK;
1182
1183 /*
1184 * If asked for alignment, the offset must be zero and the
1185 * length a multiple of the PAGE_SIZE.
1186 */
1187 error = -EINVAL;
1188 if (aligned && (off || len & ~PAGE_MASK))
1189 break;
1190
1191 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 if (npages > PIPE_BUFFERS - buffers)
1193 npages = PIPE_BUFFERS - buffers;
1194
1195 error = get_user_pages(current, current->mm,
1196 (unsigned long) base, npages, 0, 0,
1197 &pages[buffers], NULL);
1198
1199 if (unlikely(error <= 0))
1200 break;
1201
1202 /*
1203 * Fill this contiguous range into the partial page map.
1204 */
1205 for (i = 0; i < error; i++) {
1206 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1207
1208 partial[buffers].offset = off;
1209 partial[buffers].len = plen;
1210
1211 off = 0;
1212 len -= plen;
1213 buffers++;
1214 }
1215
1216 /*
1217 * We didn't complete this iov, stop here since it probably
1218 * means we have to move some of this into a pipe to
1219 * be able to continue.
1220 */
1221 if (len)
1222 break;
1223
1224 /*
1225 * Don't continue if we mapped fewer pages than we asked for,
1226 * or if we mapped the max number of pages that we have
1227 * room for.
1228 */
1229 if (error < npages || buffers == PIPE_BUFFERS)
1230 break;
1231
1232 nr_vecs--;
1233 iov++;
1234 }
1235
1236 up_read(&current->mm->mmap_sem);
1237
1238 if (buffers)
1239 return buffers;
1240
1241 return error;
1242 }
1243
1244 /*
1245 * vmsplice splices a user address range into a pipe. It can be thought of
1246 * as splice-from-memory, where the regular splice is splice-from-file (or
1247 * to file). In both cases the output is a pipe, naturally.
1248 *
1249 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1250 * not the other way around. Splicing from user memory is a simple operation
1251 * that can be supported without any funky alignment restrictions or nasty
1252 * vm tricks. We simply map in the user memory and fill them into a pipe.
1253 * The reverse isn't quite as easy, though. There are two possible solutions
1254 * for that:
1255 *
1256 * - memcpy() the data internally, at which point we might as well just
1257 * do a regular read() on the buffer anyway.
1258 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1259 * has restriction limitations on both ends of the pipe).
1260 *
1261 * Alas, it isn't here.
1262 *
1263 */
1264 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1265 unsigned long nr_segs, unsigned int flags)
1266 {
1267 struct pipe_inode_info *pipe;
1268 struct page *pages[PIPE_BUFFERS];
1269 struct partial_page partial[PIPE_BUFFERS];
1270 struct splice_pipe_desc spd = {
1271 .pages = pages,
1272 .partial = partial,
1273 .flags = flags,
1274 .ops = &user_page_pipe_buf_ops,
1275 };
1276
1277 pipe = pipe_info(file->f_path.dentry->d_inode);
1278 if (!pipe)
1279 return -EBADF;
1280 if (unlikely(nr_segs > UIO_MAXIOV))
1281 return -EINVAL;
1282 else if (unlikely(!nr_segs))
1283 return 0;
1284
1285 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1286 flags & SPLICE_F_GIFT);
1287 if (spd.nr_pages <= 0)
1288 return spd.nr_pages;
1289
1290 return splice_to_pipe(pipe, &spd);
1291 }
1292
1293 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1294 unsigned long nr_segs, unsigned int flags)
1295 {
1296 struct file *file;
1297 long error;
1298 int fput;
1299
1300 error = -EBADF;
1301 file = fget_light(fd, &fput);
1302 if (file) {
1303 if (file->f_mode & FMODE_WRITE)
1304 error = do_vmsplice(file, iov, nr_segs, flags);
1305
1306 fput_light(file, fput);
1307 }
1308
1309 return error;
1310 }
1311
1312 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1313 int fd_out, loff_t __user *off_out,
1314 size_t len, unsigned int flags)
1315 {
1316 long error;
1317 struct file *in, *out;
1318 int fput_in, fput_out;
1319
1320 if (unlikely(!len))
1321 return 0;
1322
1323 error = -EBADF;
1324 in = fget_light(fd_in, &fput_in);
1325 if (in) {
1326 if (in->f_mode & FMODE_READ) {
1327 out = fget_light(fd_out, &fput_out);
1328 if (out) {
1329 if (out->f_mode & FMODE_WRITE)
1330 error = do_splice(in, off_in,
1331 out, off_out,
1332 len, flags);
1333 fput_light(out, fput_out);
1334 }
1335 }
1336
1337 fput_light(in, fput_in);
1338 }
1339
1340 return error;
1341 }
1342
1343 /*
1344 * Make sure there's data to read. Wait for input if we can, otherwise
1345 * return an appropriate error.
1346 */
1347 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1348 {
1349 int ret;
1350
1351 /*
1352 * Check ->nrbufs without the inode lock first. This function
1353 * is speculative anyways, so missing one is ok.
1354 */
1355 if (pipe->nrbufs)
1356 return 0;
1357
1358 ret = 0;
1359 mutex_lock(&pipe->inode->i_mutex);
1360
1361 while (!pipe->nrbufs) {
1362 if (signal_pending(current)) {
1363 ret = -ERESTARTSYS;
1364 break;
1365 }
1366 if (!pipe->writers)
1367 break;
1368 if (!pipe->waiting_writers) {
1369 if (flags & SPLICE_F_NONBLOCK) {
1370 ret = -EAGAIN;
1371 break;
1372 }
1373 }
1374 pipe_wait(pipe);
1375 }
1376
1377 mutex_unlock(&pipe->inode->i_mutex);
1378 return ret;
1379 }
1380
1381 /*
1382 * Make sure there's writeable room. Wait for room if we can, otherwise
1383 * return an appropriate error.
1384 */
1385 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1386 {
1387 int ret;
1388
1389 /*
1390 * Check ->nrbufs without the inode lock first. This function
1391 * is speculative anyways, so missing one is ok.
1392 */
1393 if (pipe->nrbufs < PIPE_BUFFERS)
1394 return 0;
1395
1396 ret = 0;
1397 mutex_lock(&pipe->inode->i_mutex);
1398
1399 while (pipe->nrbufs >= PIPE_BUFFERS) {
1400 if (!pipe->readers) {
1401 send_sig(SIGPIPE, current, 0);
1402 ret = -EPIPE;
1403 break;
1404 }
1405 if (flags & SPLICE_F_NONBLOCK) {
1406 ret = -EAGAIN;
1407 break;
1408 }
1409 if (signal_pending(current)) {
1410 ret = -ERESTARTSYS;
1411 break;
1412 }
1413 pipe->waiting_writers++;
1414 pipe_wait(pipe);
1415 pipe->waiting_writers--;
1416 }
1417
1418 mutex_unlock(&pipe->inode->i_mutex);
1419 return ret;
1420 }
1421
1422 /*
1423 * Link contents of ipipe to opipe.
1424 */
1425 static int link_pipe(struct pipe_inode_info *ipipe,
1426 struct pipe_inode_info *opipe,
1427 size_t len, unsigned int flags)
1428 {
1429 struct pipe_buffer *ibuf, *obuf;
1430 int ret = 0, i = 0, nbuf;
1431
1432 /*
1433 * Potential ABBA deadlock, work around it by ordering lock
1434 * grabbing by inode address. Otherwise two different processes
1435 * could deadlock (one doing tee from A -> B, the other from B -> A).
1436 */
1437 inode_double_lock(ipipe->inode, opipe->inode);
1438
1439 do {
1440 if (!opipe->readers) {
1441 send_sig(SIGPIPE, current, 0);
1442 if (!ret)
1443 ret = -EPIPE;
1444 break;
1445 }
1446
1447 /*
1448 * If we have iterated all input buffers or ran out of
1449 * output room, break.
1450 */
1451 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1452 break;
1453
1454 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1455 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1456
1457 /*
1458 * Get a reference to this pipe buffer,
1459 * so we can copy the contents over.
1460 */
1461 ibuf->ops->get(ipipe, ibuf);
1462
1463 obuf = opipe->bufs + nbuf;
1464 *obuf = *ibuf;
1465
1466 /*
1467 * Don't inherit the gift flag, we need to
1468 * prevent multiple steals of this page.
1469 */
1470 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1471
1472 if (obuf->len > len)
1473 obuf->len = len;
1474
1475 opipe->nrbufs++;
1476 ret += obuf->len;
1477 len -= obuf->len;
1478 i++;
1479 } while (len);
1480
1481 inode_double_unlock(ipipe->inode, opipe->inode);
1482
1483 /*
1484 * If we put data in the output pipe, wakeup any potential readers.
1485 */
1486 if (ret > 0) {
1487 smp_mb();
1488 if (waitqueue_active(&opipe->wait))
1489 wake_up_interruptible(&opipe->wait);
1490 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1491 }
1492
1493 return ret;
1494 }
1495
1496 /*
1497 * This is a tee(1) implementation that works on pipes. It doesn't copy
1498 * any data, it simply references the 'in' pages on the 'out' pipe.
1499 * The 'flags' used are the SPLICE_F_* variants, currently the only
1500 * applicable one is SPLICE_F_NONBLOCK.
1501 */
1502 static long do_tee(struct file *in, struct file *out, size_t len,
1503 unsigned int flags)
1504 {
1505 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1506 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1507 int ret = -EINVAL;
1508
1509 /*
1510 * Duplicate the contents of ipipe to opipe without actually
1511 * copying the data.
1512 */
1513 if (ipipe && opipe && ipipe != opipe) {
1514 /*
1515 * Keep going, unless we encounter an error. The ipipe/opipe
1516 * ordering doesn't really matter.
1517 */
1518 ret = link_ipipe_prep(ipipe, flags);
1519 if (!ret) {
1520 ret = link_opipe_prep(opipe, flags);
1521 if (!ret) {
1522 ret = link_pipe(ipipe, opipe, len, flags);
1523 if (!ret && (flags & SPLICE_F_NONBLOCK))
1524 ret = -EAGAIN;
1525 }
1526 }
1527 }
1528
1529 return ret;
1530 }
1531
1532 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1533 {
1534 struct file *in;
1535 int error, fput_in;
1536
1537 if (unlikely(!len))
1538 return 0;
1539
1540 error = -EBADF;
1541 in = fget_light(fdin, &fput_in);
1542 if (in) {
1543 if (in->f_mode & FMODE_READ) {
1544 int fput_out;
1545 struct file *out = fget_light(fdout, &fput_out);
1546
1547 if (out) {
1548 if (out->f_mode & FMODE_WRITE)
1549 error = do_tee(in, out, len, flags);
1550 fput_light(out, fput_out);
1551 }
1552 }
1553 fput_light(in, fput_in);
1554 }
1555
1556 return error;
1557 }