]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/splice.c
switch generic_file_splice_read() to use of ->read_iter()
[mirror_ubuntu-artful-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 int ret = 0, page_nr = 0;
187
188 if (!spd_pages)
189 return 0;
190
191 if (unlikely(!pipe->readers)) {
192 send_sig(SIGPIPE, current, 0);
193 ret = -EPIPE;
194 goto out;
195 }
196
197 while (pipe->nrbufs < pipe->buffers) {
198 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
199 struct pipe_buffer *buf = pipe->bufs + newbuf;
200
201 buf->page = spd->pages[page_nr];
202 buf->offset = spd->partial[page_nr].offset;
203 buf->len = spd->partial[page_nr].len;
204 buf->private = spd->partial[page_nr].private;
205 buf->ops = spd->ops;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (!--spd->nr_pages)
212 break;
213 }
214
215 if (!ret)
216 ret = -EAGAIN;
217
218 out:
219 while (page_nr < spd_pages)
220 spd->spd_release(spd, page_nr++);
221
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(splice_to_pipe);
225
226 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
227 {
228 int ret;
229
230 if (unlikely(!pipe->readers)) {
231 send_sig(SIGPIPE, current, 0);
232 ret = -EPIPE;
233 } else if (pipe->nrbufs == pipe->buffers) {
234 ret = -EAGAIN;
235 } else {
236 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
237 pipe->bufs[newbuf] = *buf;
238 pipe->nrbufs++;
239 return buf->len;
240 }
241 buf->ops->release(pipe, buf);
242 buf->ops = NULL;
243 return ret;
244 }
245 EXPORT_SYMBOL(add_to_pipe);
246
247 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
248 {
249 put_page(spd->pages[i]);
250 }
251
252 /*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
259
260 spd->nr_pages_max = buffers;
261 if (buffers <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
266
267 if (spd->pages && spd->partial)
268 return 0;
269
270 kfree(spd->pages);
271 kfree(spd->partial);
272 return -ENOMEM;
273 }
274
275 void splice_shrink_spd(struct splice_pipe_desc *spd)
276 {
277 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
278 return;
279
280 kfree(spd->pages);
281 kfree(spd->partial);
282 }
283
284 /**
285 * generic_file_splice_read - splice data from file to a pipe
286 * @in: file to splice from
287 * @ppos: position in @in
288 * @pipe: pipe to splice to
289 * @len: number of bytes to splice
290 * @flags: splice modifier flags
291 *
292 * Description:
293 * Will read pages from given file and fill them into a pipe. Can be
294 * used as long as it has more or less sane ->read_iter().
295 *
296 */
297 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
298 struct pipe_inode_info *pipe, size_t len,
299 unsigned int flags)
300 {
301 struct iov_iter to;
302 struct kiocb kiocb;
303 loff_t isize;
304 int idx, ret;
305
306 isize = i_size_read(in->f_mapping->host);
307 if (unlikely(*ppos >= isize))
308 return 0;
309
310 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
311 idx = to.idx;
312 init_sync_kiocb(&kiocb, in);
313 kiocb.ki_pos = *ppos;
314 ret = in->f_op->read_iter(&kiocb, &to);
315 if (ret > 0) {
316 *ppos = kiocb.ki_pos;
317 file_accessed(in);
318 } else if (ret < 0) {
319 if (WARN_ON(to.idx != idx || to.iov_offset)) {
320 /*
321 * a bogus ->read_iter() has copied something and still
322 * returned an error instead of a short read.
323 */
324 to.idx = idx;
325 to.iov_offset = 0;
326 iov_iter_advance(&to, 0); /* to free what was emitted */
327 }
328 /*
329 * callers of ->splice_read() expect -EAGAIN on
330 * "can't put anything in there", rather than -EFAULT.
331 */
332 if (ret == -EFAULT)
333 ret = -EAGAIN;
334 }
335
336 return ret;
337 }
338 EXPORT_SYMBOL(generic_file_splice_read);
339
340 const struct pipe_buf_operations default_pipe_buf_ops = {
341 .can_merge = 0,
342 .confirm = generic_pipe_buf_confirm,
343 .release = generic_pipe_buf_release,
344 .steal = generic_pipe_buf_steal,
345 .get = generic_pipe_buf_get,
346 };
347
348 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
349 struct pipe_buffer *buf)
350 {
351 return 1;
352 }
353
354 /* Pipe buffer operations for a socket and similar. */
355 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
356 .can_merge = 0,
357 .confirm = generic_pipe_buf_confirm,
358 .release = generic_pipe_buf_release,
359 .steal = generic_pipe_buf_nosteal,
360 .get = generic_pipe_buf_get,
361 };
362 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
363
364 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
365 unsigned long vlen, loff_t offset)
366 {
367 mm_segment_t old_fs;
368 loff_t pos = offset;
369 ssize_t res;
370
371 old_fs = get_fs();
372 set_fs(get_ds());
373 /* The cast to a user pointer is valid due to the set_fs() */
374 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
375 set_fs(old_fs);
376
377 return res;
378 }
379
380 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
381 loff_t pos)
382 {
383 mm_segment_t old_fs;
384 ssize_t res;
385
386 old_fs = get_fs();
387 set_fs(get_ds());
388 /* The cast to a user pointer is valid due to the set_fs() */
389 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
390 set_fs(old_fs);
391
392 return res;
393 }
394 EXPORT_SYMBOL(kernel_write);
395
396 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
397 struct pipe_inode_info *pipe, size_t len,
398 unsigned int flags)
399 {
400 unsigned int nr_pages;
401 unsigned int nr_freed;
402 size_t offset;
403 struct page *pages[PIPE_DEF_BUFFERS];
404 struct partial_page partial[PIPE_DEF_BUFFERS];
405 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
406 ssize_t res;
407 size_t this_len;
408 int error;
409 int i;
410 struct splice_pipe_desc spd = {
411 .pages = pages,
412 .partial = partial,
413 .nr_pages_max = PIPE_DEF_BUFFERS,
414 .flags = flags,
415 .ops = &default_pipe_buf_ops,
416 .spd_release = spd_release_page,
417 };
418
419 if (splice_grow_spd(pipe, &spd))
420 return -ENOMEM;
421
422 res = -ENOMEM;
423 vec = __vec;
424 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
425 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
426 if (!vec)
427 goto shrink_ret;
428 }
429
430 offset = *ppos & ~PAGE_MASK;
431 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
432
433 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
434 struct page *page;
435
436 page = alloc_page(GFP_USER);
437 error = -ENOMEM;
438 if (!page)
439 goto err;
440
441 this_len = min_t(size_t, len, PAGE_SIZE - offset);
442 vec[i].iov_base = (void __user *) page_address(page);
443 vec[i].iov_len = this_len;
444 spd.pages[i] = page;
445 spd.nr_pages++;
446 len -= this_len;
447 offset = 0;
448 }
449
450 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
451 if (res < 0) {
452 error = res;
453 goto err;
454 }
455
456 error = 0;
457 if (!res)
458 goto err;
459
460 nr_freed = 0;
461 for (i = 0; i < spd.nr_pages; i++) {
462 this_len = min_t(size_t, vec[i].iov_len, res);
463 spd.partial[i].offset = 0;
464 spd.partial[i].len = this_len;
465 if (!this_len) {
466 __free_page(spd.pages[i]);
467 spd.pages[i] = NULL;
468 nr_freed++;
469 }
470 res -= this_len;
471 }
472 spd.nr_pages -= nr_freed;
473
474 res = splice_to_pipe(pipe, &spd);
475 if (res > 0)
476 *ppos += res;
477
478 shrink_ret:
479 if (vec != __vec)
480 kfree(vec);
481 splice_shrink_spd(&spd);
482 return res;
483
484 err:
485 for (i = 0; i < spd.nr_pages; i++)
486 __free_page(spd.pages[i]);
487
488 res = error;
489 goto shrink_ret;
490 }
491
492 /*
493 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
494 * using sendpage(). Return the number of bytes sent.
495 */
496 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
497 struct pipe_buffer *buf, struct splice_desc *sd)
498 {
499 struct file *file = sd->u.file;
500 loff_t pos = sd->pos;
501 int more;
502
503 if (!likely(file->f_op->sendpage))
504 return -EINVAL;
505
506 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
507
508 if (sd->len < sd->total_len && pipe->nrbufs > 1)
509 more |= MSG_SENDPAGE_NOTLAST;
510
511 return file->f_op->sendpage(file, buf->page, buf->offset,
512 sd->len, &pos, more);
513 }
514
515 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
516 {
517 smp_mb();
518 if (waitqueue_active(&pipe->wait))
519 wake_up_interruptible(&pipe->wait);
520 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
521 }
522
523 /**
524 * splice_from_pipe_feed - feed available data from a pipe to a file
525 * @pipe: pipe to splice from
526 * @sd: information to @actor
527 * @actor: handler that splices the data
528 *
529 * Description:
530 * This function loops over the pipe and calls @actor to do the
531 * actual moving of a single struct pipe_buffer to the desired
532 * destination. It returns when there's no more buffers left in
533 * the pipe or if the requested number of bytes (@sd->total_len)
534 * have been copied. It returns a positive number (one) if the
535 * pipe needs to be filled with more data, zero if the required
536 * number of bytes have been copied and -errno on error.
537 *
538 * This, together with splice_from_pipe_{begin,end,next}, may be
539 * used to implement the functionality of __splice_from_pipe() when
540 * locking is required around copying the pipe buffers to the
541 * destination.
542 */
543 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
544 splice_actor *actor)
545 {
546 int ret;
547
548 while (pipe->nrbufs) {
549 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
550 const struct pipe_buf_operations *ops = buf->ops;
551
552 sd->len = buf->len;
553 if (sd->len > sd->total_len)
554 sd->len = sd->total_len;
555
556 ret = buf->ops->confirm(pipe, buf);
557 if (unlikely(ret)) {
558 if (ret == -ENODATA)
559 ret = 0;
560 return ret;
561 }
562
563 ret = actor(pipe, buf, sd);
564 if (ret <= 0)
565 return ret;
566
567 buf->offset += ret;
568 buf->len -= ret;
569
570 sd->num_spliced += ret;
571 sd->len -= ret;
572 sd->pos += ret;
573 sd->total_len -= ret;
574
575 if (!buf->len) {
576 buf->ops = NULL;
577 ops->release(pipe, buf);
578 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
579 pipe->nrbufs--;
580 if (pipe->files)
581 sd->need_wakeup = true;
582 }
583
584 if (!sd->total_len)
585 return 0;
586 }
587
588 return 1;
589 }
590
591 /**
592 * splice_from_pipe_next - wait for some data to splice from
593 * @pipe: pipe to splice from
594 * @sd: information about the splice operation
595 *
596 * Description:
597 * This function will wait for some data and return a positive
598 * value (one) if pipe buffers are available. It will return zero
599 * or -errno if no more data needs to be spliced.
600 */
601 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
602 {
603 /*
604 * Check for signal early to make process killable when there are
605 * always buffers available
606 */
607 if (signal_pending(current))
608 return -ERESTARTSYS;
609
610 while (!pipe->nrbufs) {
611 if (!pipe->writers)
612 return 0;
613
614 if (!pipe->waiting_writers && sd->num_spliced)
615 return 0;
616
617 if (sd->flags & SPLICE_F_NONBLOCK)
618 return -EAGAIN;
619
620 if (signal_pending(current))
621 return -ERESTARTSYS;
622
623 if (sd->need_wakeup) {
624 wakeup_pipe_writers(pipe);
625 sd->need_wakeup = false;
626 }
627
628 pipe_wait(pipe);
629 }
630
631 return 1;
632 }
633
634 /**
635 * splice_from_pipe_begin - start splicing from pipe
636 * @sd: information about the splice operation
637 *
638 * Description:
639 * This function should be called before a loop containing
640 * splice_from_pipe_next() and splice_from_pipe_feed() to
641 * initialize the necessary fields of @sd.
642 */
643 static void splice_from_pipe_begin(struct splice_desc *sd)
644 {
645 sd->num_spliced = 0;
646 sd->need_wakeup = false;
647 }
648
649 /**
650 * splice_from_pipe_end - finish splicing from pipe
651 * @pipe: pipe to splice from
652 * @sd: information about the splice operation
653 *
654 * Description:
655 * This function will wake up pipe writers if necessary. It should
656 * be called after a loop containing splice_from_pipe_next() and
657 * splice_from_pipe_feed().
658 */
659 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
660 {
661 if (sd->need_wakeup)
662 wakeup_pipe_writers(pipe);
663 }
664
665 /**
666 * __splice_from_pipe - splice data from a pipe to given actor
667 * @pipe: pipe to splice from
668 * @sd: information to @actor
669 * @actor: handler that splices the data
670 *
671 * Description:
672 * This function does little more than loop over the pipe and call
673 * @actor to do the actual moving of a single struct pipe_buffer to
674 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
675 * pipe_to_user.
676 *
677 */
678 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
679 splice_actor *actor)
680 {
681 int ret;
682
683 splice_from_pipe_begin(sd);
684 do {
685 cond_resched();
686 ret = splice_from_pipe_next(pipe, sd);
687 if (ret > 0)
688 ret = splice_from_pipe_feed(pipe, sd, actor);
689 } while (ret > 0);
690 splice_from_pipe_end(pipe, sd);
691
692 return sd->num_spliced ? sd->num_spliced : ret;
693 }
694 EXPORT_SYMBOL(__splice_from_pipe);
695
696 /**
697 * splice_from_pipe - splice data from a pipe to a file
698 * @pipe: pipe to splice from
699 * @out: file to splice to
700 * @ppos: position in @out
701 * @len: how many bytes to splice
702 * @flags: splice modifier flags
703 * @actor: handler that splices the data
704 *
705 * Description:
706 * See __splice_from_pipe. This function locks the pipe inode,
707 * otherwise it's identical to __splice_from_pipe().
708 *
709 */
710 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
711 loff_t *ppos, size_t len, unsigned int flags,
712 splice_actor *actor)
713 {
714 ssize_t ret;
715 struct splice_desc sd = {
716 .total_len = len,
717 .flags = flags,
718 .pos = *ppos,
719 .u.file = out,
720 };
721
722 pipe_lock(pipe);
723 ret = __splice_from_pipe(pipe, &sd, actor);
724 pipe_unlock(pipe);
725
726 return ret;
727 }
728
729 /**
730 * iter_file_splice_write - splice data from a pipe to a file
731 * @pipe: pipe info
732 * @out: file to write to
733 * @ppos: position in @out
734 * @len: number of bytes to splice
735 * @flags: splice modifier flags
736 *
737 * Description:
738 * Will either move or copy pages (determined by @flags options) from
739 * the given pipe inode to the given file.
740 * This one is ->write_iter-based.
741 *
742 */
743 ssize_t
744 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
745 loff_t *ppos, size_t len, unsigned int flags)
746 {
747 struct splice_desc sd = {
748 .total_len = len,
749 .flags = flags,
750 .pos = *ppos,
751 .u.file = out,
752 };
753 int nbufs = pipe->buffers;
754 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
755 GFP_KERNEL);
756 ssize_t ret;
757
758 if (unlikely(!array))
759 return -ENOMEM;
760
761 pipe_lock(pipe);
762
763 splice_from_pipe_begin(&sd);
764 while (sd.total_len) {
765 struct iov_iter from;
766 size_t left;
767 int n, idx;
768
769 ret = splice_from_pipe_next(pipe, &sd);
770 if (ret <= 0)
771 break;
772
773 if (unlikely(nbufs < pipe->buffers)) {
774 kfree(array);
775 nbufs = pipe->buffers;
776 array = kcalloc(nbufs, sizeof(struct bio_vec),
777 GFP_KERNEL);
778 if (!array) {
779 ret = -ENOMEM;
780 break;
781 }
782 }
783
784 /* build the vector */
785 left = sd.total_len;
786 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
787 struct pipe_buffer *buf = pipe->bufs + idx;
788 size_t this_len = buf->len;
789
790 if (this_len > left)
791 this_len = left;
792
793 if (idx == pipe->buffers - 1)
794 idx = -1;
795
796 ret = buf->ops->confirm(pipe, buf);
797 if (unlikely(ret)) {
798 if (ret == -ENODATA)
799 ret = 0;
800 goto done;
801 }
802
803 array[n].bv_page = buf->page;
804 array[n].bv_len = this_len;
805 array[n].bv_offset = buf->offset;
806 left -= this_len;
807 }
808
809 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
810 sd.total_len - left);
811 ret = vfs_iter_write(out, &from, &sd.pos);
812 if (ret <= 0)
813 break;
814
815 sd.num_spliced += ret;
816 sd.total_len -= ret;
817 *ppos = sd.pos;
818
819 /* dismiss the fully eaten buffers, adjust the partial one */
820 while (ret) {
821 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
822 if (ret >= buf->len) {
823 const struct pipe_buf_operations *ops = buf->ops;
824 ret -= buf->len;
825 buf->len = 0;
826 buf->ops = NULL;
827 ops->release(pipe, buf);
828 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
829 pipe->nrbufs--;
830 if (pipe->files)
831 sd.need_wakeup = true;
832 } else {
833 buf->offset += ret;
834 buf->len -= ret;
835 ret = 0;
836 }
837 }
838 }
839 done:
840 kfree(array);
841 splice_from_pipe_end(pipe, &sd);
842
843 pipe_unlock(pipe);
844
845 if (sd.num_spliced)
846 ret = sd.num_spliced;
847
848 return ret;
849 }
850
851 EXPORT_SYMBOL(iter_file_splice_write);
852
853 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
854 struct splice_desc *sd)
855 {
856 int ret;
857 void *data;
858 loff_t tmp = sd->pos;
859
860 data = kmap(buf->page);
861 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
862 kunmap(buf->page);
863
864 return ret;
865 }
866
867 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
868 struct file *out, loff_t *ppos,
869 size_t len, unsigned int flags)
870 {
871 ssize_t ret;
872
873 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
874 if (ret > 0)
875 *ppos += ret;
876
877 return ret;
878 }
879
880 /**
881 * generic_splice_sendpage - splice data from a pipe to a socket
882 * @pipe: pipe to splice from
883 * @out: socket to write to
884 * @ppos: position in @out
885 * @len: number of bytes to splice
886 * @flags: splice modifier flags
887 *
888 * Description:
889 * Will send @len bytes from the pipe to a network socket. No data copying
890 * is involved.
891 *
892 */
893 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
894 loff_t *ppos, size_t len, unsigned int flags)
895 {
896 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
897 }
898
899 EXPORT_SYMBOL(generic_splice_sendpage);
900
901 /*
902 * Attempt to initiate a splice from pipe to file.
903 */
904 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
905 loff_t *ppos, size_t len, unsigned int flags)
906 {
907 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
908 loff_t *, size_t, unsigned int);
909
910 if (out->f_op->splice_write)
911 splice_write = out->f_op->splice_write;
912 else
913 splice_write = default_file_splice_write;
914
915 return splice_write(pipe, out, ppos, len, flags);
916 }
917
918 /*
919 * Attempt to initiate a splice from a file to a pipe.
920 */
921 static long do_splice_to(struct file *in, loff_t *ppos,
922 struct pipe_inode_info *pipe, size_t len,
923 unsigned int flags)
924 {
925 ssize_t (*splice_read)(struct file *, loff_t *,
926 struct pipe_inode_info *, size_t, unsigned int);
927 int ret;
928
929 if (unlikely(!(in->f_mode & FMODE_READ)))
930 return -EBADF;
931
932 ret = rw_verify_area(READ, in, ppos, len);
933 if (unlikely(ret < 0))
934 return ret;
935
936 if (unlikely(len > MAX_RW_COUNT))
937 len = MAX_RW_COUNT;
938
939 if (in->f_op->splice_read)
940 splice_read = in->f_op->splice_read;
941 else
942 splice_read = default_file_splice_read;
943
944 return splice_read(in, ppos, pipe, len, flags);
945 }
946
947 /**
948 * splice_direct_to_actor - splices data directly between two non-pipes
949 * @in: file to splice from
950 * @sd: actor information on where to splice to
951 * @actor: handles the data splicing
952 *
953 * Description:
954 * This is a special case helper to splice directly between two
955 * points, without requiring an explicit pipe. Internally an allocated
956 * pipe is cached in the process, and reused during the lifetime of
957 * that process.
958 *
959 */
960 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
961 splice_direct_actor *actor)
962 {
963 struct pipe_inode_info *pipe;
964 long ret, bytes;
965 umode_t i_mode;
966 size_t len;
967 int i, flags, more;
968
969 /*
970 * We require the input being a regular file, as we don't want to
971 * randomly drop data for eg socket -> socket splicing. Use the
972 * piped splicing for that!
973 */
974 i_mode = file_inode(in)->i_mode;
975 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
976 return -EINVAL;
977
978 /*
979 * neither in nor out is a pipe, setup an internal pipe attached to
980 * 'out' and transfer the wanted data from 'in' to 'out' through that
981 */
982 pipe = current->splice_pipe;
983 if (unlikely(!pipe)) {
984 pipe = alloc_pipe_info();
985 if (!pipe)
986 return -ENOMEM;
987
988 /*
989 * We don't have an immediate reader, but we'll read the stuff
990 * out of the pipe right after the splice_to_pipe(). So set
991 * PIPE_READERS appropriately.
992 */
993 pipe->readers = 1;
994
995 current->splice_pipe = pipe;
996 }
997
998 /*
999 * Do the splice.
1000 */
1001 ret = 0;
1002 bytes = 0;
1003 len = sd->total_len;
1004 flags = sd->flags;
1005
1006 /*
1007 * Don't block on output, we have to drain the direct pipe.
1008 */
1009 sd->flags &= ~SPLICE_F_NONBLOCK;
1010 more = sd->flags & SPLICE_F_MORE;
1011
1012 while (len) {
1013 size_t read_len;
1014 loff_t pos = sd->pos, prev_pos = pos;
1015
1016 ret = do_splice_to(in, &pos, pipe, len, flags);
1017 if (unlikely(ret <= 0))
1018 goto out_release;
1019
1020 read_len = ret;
1021 sd->total_len = read_len;
1022
1023 /*
1024 * If more data is pending, set SPLICE_F_MORE
1025 * If this is the last data and SPLICE_F_MORE was not set
1026 * initially, clears it.
1027 */
1028 if (read_len < len)
1029 sd->flags |= SPLICE_F_MORE;
1030 else if (!more)
1031 sd->flags &= ~SPLICE_F_MORE;
1032 /*
1033 * NOTE: nonblocking mode only applies to the input. We
1034 * must not do the output in nonblocking mode as then we
1035 * could get stuck data in the internal pipe:
1036 */
1037 ret = actor(pipe, sd);
1038 if (unlikely(ret <= 0)) {
1039 sd->pos = prev_pos;
1040 goto out_release;
1041 }
1042
1043 bytes += ret;
1044 len -= ret;
1045 sd->pos = pos;
1046
1047 if (ret < read_len) {
1048 sd->pos = prev_pos + ret;
1049 goto out_release;
1050 }
1051 }
1052
1053 done:
1054 pipe->nrbufs = pipe->curbuf = 0;
1055 file_accessed(in);
1056 return bytes;
1057
1058 out_release:
1059 /*
1060 * If we did an incomplete transfer we must release
1061 * the pipe buffers in question:
1062 */
1063 for (i = 0; i < pipe->buffers; i++) {
1064 struct pipe_buffer *buf = pipe->bufs + i;
1065
1066 if (buf->ops) {
1067 buf->ops->release(pipe, buf);
1068 buf->ops = NULL;
1069 }
1070 }
1071
1072 if (!bytes)
1073 bytes = ret;
1074
1075 goto done;
1076 }
1077 EXPORT_SYMBOL(splice_direct_to_actor);
1078
1079 static int direct_splice_actor(struct pipe_inode_info *pipe,
1080 struct splice_desc *sd)
1081 {
1082 struct file *file = sd->u.file;
1083
1084 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1085 sd->flags);
1086 }
1087
1088 /**
1089 * do_splice_direct - splices data directly between two files
1090 * @in: file to splice from
1091 * @ppos: input file offset
1092 * @out: file to splice to
1093 * @opos: output file offset
1094 * @len: number of bytes to splice
1095 * @flags: splice modifier flags
1096 *
1097 * Description:
1098 * For use by do_sendfile(). splice can easily emulate sendfile, but
1099 * doing it in the application would incur an extra system call
1100 * (splice in + splice out, as compared to just sendfile()). So this helper
1101 * can splice directly through a process-private pipe.
1102 *
1103 */
1104 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1105 loff_t *opos, size_t len, unsigned int flags)
1106 {
1107 struct splice_desc sd = {
1108 .len = len,
1109 .total_len = len,
1110 .flags = flags,
1111 .pos = *ppos,
1112 .u.file = out,
1113 .opos = opos,
1114 };
1115 long ret;
1116
1117 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1118 return -EBADF;
1119
1120 if (unlikely(out->f_flags & O_APPEND))
1121 return -EINVAL;
1122
1123 ret = rw_verify_area(WRITE, out, opos, len);
1124 if (unlikely(ret < 0))
1125 return ret;
1126
1127 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1128 if (ret > 0)
1129 *ppos = sd.pos;
1130
1131 return ret;
1132 }
1133 EXPORT_SYMBOL(do_splice_direct);
1134
1135 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1136 {
1137 while (pipe->nrbufs == pipe->buffers) {
1138 if (flags & SPLICE_F_NONBLOCK)
1139 return -EAGAIN;
1140 if (signal_pending(current))
1141 return -ERESTARTSYS;
1142 pipe->waiting_writers++;
1143 pipe_wait(pipe);
1144 pipe->waiting_writers--;
1145 }
1146 return 0;
1147 }
1148
1149 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1150 struct pipe_inode_info *opipe,
1151 size_t len, unsigned int flags);
1152
1153 /*
1154 * Determine where to splice to/from.
1155 */
1156 static long do_splice(struct file *in, loff_t __user *off_in,
1157 struct file *out, loff_t __user *off_out,
1158 size_t len, unsigned int flags)
1159 {
1160 struct pipe_inode_info *ipipe;
1161 struct pipe_inode_info *opipe;
1162 loff_t offset;
1163 long ret;
1164
1165 ipipe = get_pipe_info(in);
1166 opipe = get_pipe_info(out);
1167
1168 if (ipipe && opipe) {
1169 if (off_in || off_out)
1170 return -ESPIPE;
1171
1172 if (!(in->f_mode & FMODE_READ))
1173 return -EBADF;
1174
1175 if (!(out->f_mode & FMODE_WRITE))
1176 return -EBADF;
1177
1178 /* Splicing to self would be fun, but... */
1179 if (ipipe == opipe)
1180 return -EINVAL;
1181
1182 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1183 }
1184
1185 if (ipipe) {
1186 if (off_in)
1187 return -ESPIPE;
1188 if (off_out) {
1189 if (!(out->f_mode & FMODE_PWRITE))
1190 return -EINVAL;
1191 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1192 return -EFAULT;
1193 } else {
1194 offset = out->f_pos;
1195 }
1196
1197 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1198 return -EBADF;
1199
1200 if (unlikely(out->f_flags & O_APPEND))
1201 return -EINVAL;
1202
1203 ret = rw_verify_area(WRITE, out, &offset, len);
1204 if (unlikely(ret < 0))
1205 return ret;
1206
1207 file_start_write(out);
1208 ret = do_splice_from(ipipe, out, &offset, len, flags);
1209 file_end_write(out);
1210
1211 if (!off_out)
1212 out->f_pos = offset;
1213 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1214 ret = -EFAULT;
1215
1216 return ret;
1217 }
1218
1219 if (opipe) {
1220 if (off_out)
1221 return -ESPIPE;
1222 if (off_in) {
1223 if (!(in->f_mode & FMODE_PREAD))
1224 return -EINVAL;
1225 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1226 return -EFAULT;
1227 } else {
1228 offset = in->f_pos;
1229 }
1230
1231 pipe_lock(opipe);
1232 ret = wait_for_space(opipe, flags);
1233 if (!ret)
1234 ret = do_splice_to(in, &offset, opipe, len, flags);
1235 pipe_unlock(opipe);
1236 if (ret > 0)
1237 wakeup_pipe_readers(opipe);
1238 if (!off_in)
1239 in->f_pos = offset;
1240 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1241 ret = -EFAULT;
1242
1243 return ret;
1244 }
1245
1246 return -EINVAL;
1247 }
1248
1249 static int iter_to_pipe(struct iov_iter *from,
1250 struct pipe_inode_info *pipe,
1251 unsigned flags)
1252 {
1253 struct pipe_buffer buf = {
1254 .ops = &user_page_pipe_buf_ops,
1255 .flags = flags
1256 };
1257 size_t total = 0;
1258 int ret = 0;
1259 bool failed = false;
1260
1261 while (iov_iter_count(from) && !failed) {
1262 struct page *pages[16];
1263 ssize_t copied;
1264 size_t start;
1265 int n;
1266
1267 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1268 if (copied <= 0) {
1269 ret = copied;
1270 break;
1271 }
1272
1273 for (n = 0; copied; n++, start = 0) {
1274 int size = min_t(int, copied, PAGE_SIZE - start);
1275 if (!failed) {
1276 buf.page = pages[n];
1277 buf.offset = start;
1278 buf.len = size;
1279 ret = add_to_pipe(pipe, &buf);
1280 if (unlikely(ret < 0)) {
1281 failed = true;
1282 } else {
1283 iov_iter_advance(from, ret);
1284 total += ret;
1285 }
1286 } else {
1287 put_page(pages[n]);
1288 }
1289 copied -= size;
1290 }
1291 }
1292 return total ? total : ret;
1293 }
1294
1295 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1296 struct splice_desc *sd)
1297 {
1298 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1299 return n == sd->len ? n : -EFAULT;
1300 }
1301
1302 /*
1303 * For lack of a better implementation, implement vmsplice() to userspace
1304 * as a simple copy of the pipes pages to the user iov.
1305 */
1306 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1307 unsigned long nr_segs, unsigned int flags)
1308 {
1309 struct pipe_inode_info *pipe;
1310 struct splice_desc sd;
1311 long ret;
1312 struct iovec iovstack[UIO_FASTIOV];
1313 struct iovec *iov = iovstack;
1314 struct iov_iter iter;
1315
1316 pipe = get_pipe_info(file);
1317 if (!pipe)
1318 return -EBADF;
1319
1320 ret = import_iovec(READ, uiov, nr_segs,
1321 ARRAY_SIZE(iovstack), &iov, &iter);
1322 if (ret < 0)
1323 return ret;
1324
1325 sd.total_len = iov_iter_count(&iter);
1326 sd.len = 0;
1327 sd.flags = flags;
1328 sd.u.data = &iter;
1329 sd.pos = 0;
1330
1331 if (sd.total_len) {
1332 pipe_lock(pipe);
1333 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1334 pipe_unlock(pipe);
1335 }
1336
1337 kfree(iov);
1338 return ret;
1339 }
1340
1341 /*
1342 * vmsplice splices a user address range into a pipe. It can be thought of
1343 * as splice-from-memory, where the regular splice is splice-from-file (or
1344 * to file). In both cases the output is a pipe, naturally.
1345 */
1346 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1347 unsigned long nr_segs, unsigned int flags)
1348 {
1349 struct pipe_inode_info *pipe;
1350 struct iovec iovstack[UIO_FASTIOV];
1351 struct iovec *iov = iovstack;
1352 struct iov_iter from;
1353 long ret;
1354 unsigned buf_flag = 0;
1355
1356 if (flags & SPLICE_F_GIFT)
1357 buf_flag = PIPE_BUF_FLAG_GIFT;
1358
1359 pipe = get_pipe_info(file);
1360 if (!pipe)
1361 return -EBADF;
1362
1363 ret = import_iovec(WRITE, uiov, nr_segs,
1364 ARRAY_SIZE(iovstack), &iov, &from);
1365 if (ret < 0)
1366 return ret;
1367
1368 pipe_lock(pipe);
1369 ret = wait_for_space(pipe, flags);
1370 if (!ret)
1371 ret = iter_to_pipe(&from, pipe, buf_flag);
1372 pipe_unlock(pipe);
1373 if (ret > 0)
1374 wakeup_pipe_readers(pipe);
1375 kfree(iov);
1376 return ret;
1377 }
1378
1379 /*
1380 * Note that vmsplice only really supports true splicing _from_ user memory
1381 * to a pipe, not the other way around. Splicing from user memory is a simple
1382 * operation that can be supported without any funky alignment restrictions
1383 * or nasty vm tricks. We simply map in the user memory and fill them into
1384 * a pipe. The reverse isn't quite as easy, though. There are two possible
1385 * solutions for that:
1386 *
1387 * - memcpy() the data internally, at which point we might as well just
1388 * do a regular read() on the buffer anyway.
1389 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1390 * has restriction limitations on both ends of the pipe).
1391 *
1392 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1393 *
1394 */
1395 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1396 unsigned long, nr_segs, unsigned int, flags)
1397 {
1398 struct fd f;
1399 long error;
1400
1401 if (unlikely(nr_segs > UIO_MAXIOV))
1402 return -EINVAL;
1403 else if (unlikely(!nr_segs))
1404 return 0;
1405
1406 error = -EBADF;
1407 f = fdget(fd);
1408 if (f.file) {
1409 if (f.file->f_mode & FMODE_WRITE)
1410 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1411 else if (f.file->f_mode & FMODE_READ)
1412 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1413
1414 fdput(f);
1415 }
1416
1417 return error;
1418 }
1419
1420 #ifdef CONFIG_COMPAT
1421 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1422 unsigned int, nr_segs, unsigned int, flags)
1423 {
1424 unsigned i;
1425 struct iovec __user *iov;
1426 if (nr_segs > UIO_MAXIOV)
1427 return -EINVAL;
1428 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1429 for (i = 0; i < nr_segs; i++) {
1430 struct compat_iovec v;
1431 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1432 get_user(v.iov_len, &iov32[i].iov_len) ||
1433 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1434 put_user(v.iov_len, &iov[i].iov_len))
1435 return -EFAULT;
1436 }
1437 return sys_vmsplice(fd, iov, nr_segs, flags);
1438 }
1439 #endif
1440
1441 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1442 int, fd_out, loff_t __user *, off_out,
1443 size_t, len, unsigned int, flags)
1444 {
1445 struct fd in, out;
1446 long error;
1447
1448 if (unlikely(!len))
1449 return 0;
1450
1451 error = -EBADF;
1452 in = fdget(fd_in);
1453 if (in.file) {
1454 if (in.file->f_mode & FMODE_READ) {
1455 out = fdget(fd_out);
1456 if (out.file) {
1457 if (out.file->f_mode & FMODE_WRITE)
1458 error = do_splice(in.file, off_in,
1459 out.file, off_out,
1460 len, flags);
1461 fdput(out);
1462 }
1463 }
1464 fdput(in);
1465 }
1466 return error;
1467 }
1468
1469 /*
1470 * Make sure there's data to read. Wait for input if we can, otherwise
1471 * return an appropriate error.
1472 */
1473 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1474 {
1475 int ret;
1476
1477 /*
1478 * Check ->nrbufs without the inode lock first. This function
1479 * is speculative anyways, so missing one is ok.
1480 */
1481 if (pipe->nrbufs)
1482 return 0;
1483
1484 ret = 0;
1485 pipe_lock(pipe);
1486
1487 while (!pipe->nrbufs) {
1488 if (signal_pending(current)) {
1489 ret = -ERESTARTSYS;
1490 break;
1491 }
1492 if (!pipe->writers)
1493 break;
1494 if (!pipe->waiting_writers) {
1495 if (flags & SPLICE_F_NONBLOCK) {
1496 ret = -EAGAIN;
1497 break;
1498 }
1499 }
1500 pipe_wait(pipe);
1501 }
1502
1503 pipe_unlock(pipe);
1504 return ret;
1505 }
1506
1507 /*
1508 * Make sure there's writeable room. Wait for room if we can, otherwise
1509 * return an appropriate error.
1510 */
1511 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1512 {
1513 int ret;
1514
1515 /*
1516 * Check ->nrbufs without the inode lock first. This function
1517 * is speculative anyways, so missing one is ok.
1518 */
1519 if (pipe->nrbufs < pipe->buffers)
1520 return 0;
1521
1522 ret = 0;
1523 pipe_lock(pipe);
1524
1525 while (pipe->nrbufs >= pipe->buffers) {
1526 if (!pipe->readers) {
1527 send_sig(SIGPIPE, current, 0);
1528 ret = -EPIPE;
1529 break;
1530 }
1531 if (flags & SPLICE_F_NONBLOCK) {
1532 ret = -EAGAIN;
1533 break;
1534 }
1535 if (signal_pending(current)) {
1536 ret = -ERESTARTSYS;
1537 break;
1538 }
1539 pipe->waiting_writers++;
1540 pipe_wait(pipe);
1541 pipe->waiting_writers--;
1542 }
1543
1544 pipe_unlock(pipe);
1545 return ret;
1546 }
1547
1548 /*
1549 * Splice contents of ipipe to opipe.
1550 */
1551 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1552 struct pipe_inode_info *opipe,
1553 size_t len, unsigned int flags)
1554 {
1555 struct pipe_buffer *ibuf, *obuf;
1556 int ret = 0, nbuf;
1557 bool input_wakeup = false;
1558
1559
1560 retry:
1561 ret = ipipe_prep(ipipe, flags);
1562 if (ret)
1563 return ret;
1564
1565 ret = opipe_prep(opipe, flags);
1566 if (ret)
1567 return ret;
1568
1569 /*
1570 * Potential ABBA deadlock, work around it by ordering lock
1571 * grabbing by pipe info address. Otherwise two different processes
1572 * could deadlock (one doing tee from A -> B, the other from B -> A).
1573 */
1574 pipe_double_lock(ipipe, opipe);
1575
1576 do {
1577 if (!opipe->readers) {
1578 send_sig(SIGPIPE, current, 0);
1579 if (!ret)
1580 ret = -EPIPE;
1581 break;
1582 }
1583
1584 if (!ipipe->nrbufs && !ipipe->writers)
1585 break;
1586
1587 /*
1588 * Cannot make any progress, because either the input
1589 * pipe is empty or the output pipe is full.
1590 */
1591 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1592 /* Already processed some buffers, break */
1593 if (ret)
1594 break;
1595
1596 if (flags & SPLICE_F_NONBLOCK) {
1597 ret = -EAGAIN;
1598 break;
1599 }
1600
1601 /*
1602 * We raced with another reader/writer and haven't
1603 * managed to process any buffers. A zero return
1604 * value means EOF, so retry instead.
1605 */
1606 pipe_unlock(ipipe);
1607 pipe_unlock(opipe);
1608 goto retry;
1609 }
1610
1611 ibuf = ipipe->bufs + ipipe->curbuf;
1612 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1613 obuf = opipe->bufs + nbuf;
1614
1615 if (len >= ibuf->len) {
1616 /*
1617 * Simply move the whole buffer from ipipe to opipe
1618 */
1619 *obuf = *ibuf;
1620 ibuf->ops = NULL;
1621 opipe->nrbufs++;
1622 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1623 ipipe->nrbufs--;
1624 input_wakeup = true;
1625 } else {
1626 /*
1627 * Get a reference to this pipe buffer,
1628 * so we can copy the contents over.
1629 */
1630 ibuf->ops->get(ipipe, ibuf);
1631 *obuf = *ibuf;
1632
1633 /*
1634 * Don't inherit the gift flag, we need to
1635 * prevent multiple steals of this page.
1636 */
1637 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1638
1639 obuf->len = len;
1640 opipe->nrbufs++;
1641 ibuf->offset += obuf->len;
1642 ibuf->len -= obuf->len;
1643 }
1644 ret += obuf->len;
1645 len -= obuf->len;
1646 } while (len);
1647
1648 pipe_unlock(ipipe);
1649 pipe_unlock(opipe);
1650
1651 /*
1652 * If we put data in the output pipe, wakeup any potential readers.
1653 */
1654 if (ret > 0)
1655 wakeup_pipe_readers(opipe);
1656
1657 if (input_wakeup)
1658 wakeup_pipe_writers(ipipe);
1659
1660 return ret;
1661 }
1662
1663 /*
1664 * Link contents of ipipe to opipe.
1665 */
1666 static int link_pipe(struct pipe_inode_info *ipipe,
1667 struct pipe_inode_info *opipe,
1668 size_t len, unsigned int flags)
1669 {
1670 struct pipe_buffer *ibuf, *obuf;
1671 int ret = 0, i = 0, nbuf;
1672
1673 /*
1674 * Potential ABBA deadlock, work around it by ordering lock
1675 * grabbing by pipe info address. Otherwise two different processes
1676 * could deadlock (one doing tee from A -> B, the other from B -> A).
1677 */
1678 pipe_double_lock(ipipe, opipe);
1679
1680 do {
1681 if (!opipe->readers) {
1682 send_sig(SIGPIPE, current, 0);
1683 if (!ret)
1684 ret = -EPIPE;
1685 break;
1686 }
1687
1688 /*
1689 * If we have iterated all input buffers or ran out of
1690 * output room, break.
1691 */
1692 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1693 break;
1694
1695 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1696 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1697
1698 /*
1699 * Get a reference to this pipe buffer,
1700 * so we can copy the contents over.
1701 */
1702 ibuf->ops->get(ipipe, ibuf);
1703
1704 obuf = opipe->bufs + nbuf;
1705 *obuf = *ibuf;
1706
1707 /*
1708 * Don't inherit the gift flag, we need to
1709 * prevent multiple steals of this page.
1710 */
1711 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1712
1713 if (obuf->len > len)
1714 obuf->len = len;
1715
1716 opipe->nrbufs++;
1717 ret += obuf->len;
1718 len -= obuf->len;
1719 i++;
1720 } while (len);
1721
1722 /*
1723 * return EAGAIN if we have the potential of some data in the
1724 * future, otherwise just return 0
1725 */
1726 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1727 ret = -EAGAIN;
1728
1729 pipe_unlock(ipipe);
1730 pipe_unlock(opipe);
1731
1732 /*
1733 * If we put data in the output pipe, wakeup any potential readers.
1734 */
1735 if (ret > 0)
1736 wakeup_pipe_readers(opipe);
1737
1738 return ret;
1739 }
1740
1741 /*
1742 * This is a tee(1) implementation that works on pipes. It doesn't copy
1743 * any data, it simply references the 'in' pages on the 'out' pipe.
1744 * The 'flags' used are the SPLICE_F_* variants, currently the only
1745 * applicable one is SPLICE_F_NONBLOCK.
1746 */
1747 static long do_tee(struct file *in, struct file *out, size_t len,
1748 unsigned int flags)
1749 {
1750 struct pipe_inode_info *ipipe = get_pipe_info(in);
1751 struct pipe_inode_info *opipe = get_pipe_info(out);
1752 int ret = -EINVAL;
1753
1754 /*
1755 * Duplicate the contents of ipipe to opipe without actually
1756 * copying the data.
1757 */
1758 if (ipipe && opipe && ipipe != opipe) {
1759 /*
1760 * Keep going, unless we encounter an error. The ipipe/opipe
1761 * ordering doesn't really matter.
1762 */
1763 ret = ipipe_prep(ipipe, flags);
1764 if (!ret) {
1765 ret = opipe_prep(opipe, flags);
1766 if (!ret)
1767 ret = link_pipe(ipipe, opipe, len, flags);
1768 }
1769 }
1770
1771 return ret;
1772 }
1773
1774 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1775 {
1776 struct fd in;
1777 int error;
1778
1779 if (unlikely(!len))
1780 return 0;
1781
1782 error = -EBADF;
1783 in = fdget(fdin);
1784 if (in.file) {
1785 if (in.file->f_mode & FMODE_READ) {
1786 struct fd out = fdget(fdout);
1787 if (out.file) {
1788 if (out.file->f_mode & FMODE_WRITE)
1789 error = do_tee(in.file, out.file,
1790 len, flags);
1791 fdput(out);
1792 }
1793 }
1794 fdput(in);
1795 }
1796
1797 return error;
1798 }