]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/splice.c
6349d3189e3f8b02b04331e6c0dea6af1ace70aa
[mirror_ubuntu-zesty-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Don't try to 2nd guess the read-ahead logic, call into
293 * page_cache_readahead() like the page cache reads would do.
294 */
295 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
296
297 /*
298 * Now fill in the holes:
299 */
300 error = 0;
301 total_len = 0;
302
303 /*
304 * Lookup the (hopefully) full range of pages we need.
305 */
306 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
307
308 /*
309 * If find_get_pages_contig() returned fewer pages than we needed,
310 * allocate the rest.
311 */
312 index += spd.nr_pages;
313 while (spd.nr_pages < nr_pages) {
314 /*
315 * Page could be there, find_get_pages_contig() breaks on
316 * the first hole.
317 */
318 page = find_get_page(mapping, index);
319 if (!page) {
320 /*
321 * Make sure the read-ahead engine is notified
322 * about this failure.
323 */
324 handle_ra_miss(mapping, &in->f_ra, index);
325
326 /*
327 * page didn't exist, allocate one.
328 */
329 page = page_cache_alloc_cold(mapping);
330 if (!page)
331 break;
332
333 error = add_to_page_cache_lru(page, mapping, index,
334 GFP_KERNEL);
335 if (unlikely(error)) {
336 page_cache_release(page);
337 if (error == -EEXIST)
338 continue;
339 break;
340 }
341 /*
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
344 */
345 unlock_page(page);
346 }
347
348 pages[spd.nr_pages++] = page;
349 index++;
350 }
351
352 /*
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
355 */
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
361
362 if (!len)
363 break;
364
365 /*
366 * this_len is the max we'll use from this page
367 */
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
370
371 /*
372 * If the page isn't uptodate, we may need to start io on it
373 */
374 if (!PageUptodate(page)) {
375 /*
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
378 */
379 if (flags & SPLICE_F_NONBLOCK) {
380 if (TestSetPageLocked(page))
381 break;
382 } else
383 lock_page(page);
384
385 /*
386 * page was truncated, stop here. if this isn't the
387 * first page, we'll just complete what we already
388 * added
389 */
390 if (!page->mapping) {
391 unlock_page(page);
392 break;
393 }
394 /*
395 * page was already under io and is now done, great
396 */
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 goto fill_it;
400 }
401
402 /*
403 * need to read in the page
404 */
405 error = mapping->a_ops->readpage(in, page);
406 if (unlikely(error)) {
407 /*
408 * We really should re-lookup the page here,
409 * but it complicates things a lot. Instead
410 * lets just do what we already stored, and
411 * we'll get it the next time we are called.
412 */
413 if (error == AOP_TRUNCATED_PAGE)
414 error = 0;
415
416 break;
417 }
418
419 /*
420 * i_size must be checked after ->readpage().
421 */
422 isize = i_size_read(mapping->host);
423 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
424 if (unlikely(!isize || index > end_index))
425 break;
426
427 /*
428 * if this is the last page, see if we need to shrink
429 * the length and stop
430 */
431 if (end_index == index) {
432 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
433 if (total_len + loff > isize)
434 break;
435 /*
436 * force quit after adding this page
437 */
438 len = this_len;
439 this_len = min(this_len, loff);
440 loff = 0;
441 }
442 }
443 fill_it:
444 partial[page_nr].offset = loff;
445 partial[page_nr].len = this_len;
446 len -= this_len;
447 total_len += this_len;
448 loff = 0;
449 spd.nr_pages++;
450 index++;
451 }
452
453 /*
454 * Release any pages at the end, if we quit early. 'i' is how far
455 * we got, 'nr_pages' is how many pages are in the map.
456 */
457 while (page_nr < nr_pages)
458 page_cache_release(pages[page_nr++]);
459
460 if (spd.nr_pages)
461 return splice_to_pipe(pipe, &spd);
462
463 return error;
464 }
465
466 /**
467 * generic_file_splice_read - splice data from file to a pipe
468 * @in: file to splice from
469 * @pipe: pipe to splice to
470 * @len: number of bytes to splice
471 * @flags: splice modifier flags
472 *
473 * Will read pages from given file and fill them into a pipe.
474 */
475 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
476 struct pipe_inode_info *pipe, size_t len,
477 unsigned int flags)
478 {
479 ssize_t spliced;
480 int ret;
481 loff_t isize, left;
482
483 isize = i_size_read(in->f_mapping->host);
484 if (unlikely(*ppos >= isize))
485 return 0;
486
487 left = isize - *ppos;
488 if (unlikely(left < len))
489 len = left;
490
491 ret = 0;
492 spliced = 0;
493 while (len) {
494 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
495
496 if (ret < 0)
497 break;
498 else if (!ret) {
499 if (spliced)
500 break;
501 if (flags & SPLICE_F_NONBLOCK) {
502 ret = -EAGAIN;
503 break;
504 }
505 }
506
507 *ppos += ret;
508 len -= ret;
509 spliced += ret;
510 }
511
512 if (spliced)
513 return spliced;
514
515 return ret;
516 }
517
518 EXPORT_SYMBOL(generic_file_splice_read);
519
520 /*
521 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
522 * using sendpage(). Return the number of bytes sent.
523 */
524 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
525 struct pipe_buffer *buf, struct splice_desc *sd)
526 {
527 struct file *file = sd->file;
528 loff_t pos = sd->pos;
529 int ret, more;
530
531 ret = buf->ops->pin(pipe, buf);
532 if (!ret) {
533 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
534
535 ret = file->f_op->sendpage(file, buf->page, buf->offset,
536 sd->len, &pos, more);
537 }
538
539 return ret;
540 }
541
542 /*
543 * This is a little more tricky than the file -> pipe splicing. There are
544 * basically three cases:
545 *
546 * - Destination page already exists in the address space and there
547 * are users of it. For that case we have no other option that
548 * copying the data. Tough luck.
549 * - Destination page already exists in the address space, but there
550 * are no users of it. Make sure it's uptodate, then drop it. Fall
551 * through to last case.
552 * - Destination page does not exist, we can add the pipe page to
553 * the page cache and avoid the copy.
554 *
555 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
556 * sd->flags), we attempt to migrate pages from the pipe to the output
557 * file address space page cache. This is possible if no one else has
558 * the pipe page referenced outside of the pipe and page cache. If
559 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
560 * a new page in the output file page cache and fill/dirty that.
561 */
562 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
563 struct splice_desc *sd)
564 {
565 struct file *file = sd->file;
566 struct address_space *mapping = file->f_mapping;
567 unsigned int offset, this_len;
568 struct page *page;
569 pgoff_t index;
570 int ret;
571
572 /*
573 * make sure the data in this buffer is uptodate
574 */
575 ret = buf->ops->pin(pipe, buf);
576 if (unlikely(ret))
577 return ret;
578
579 index = sd->pos >> PAGE_CACHE_SHIFT;
580 offset = sd->pos & ~PAGE_CACHE_MASK;
581
582 this_len = sd->len;
583 if (this_len + offset > PAGE_CACHE_SIZE)
584 this_len = PAGE_CACHE_SIZE - offset;
585
586 find_page:
587 page = find_lock_page(mapping, index);
588 if (!page) {
589 ret = -ENOMEM;
590 page = page_cache_alloc_cold(mapping);
591 if (unlikely(!page))
592 goto out_ret;
593
594 /*
595 * This will also lock the page
596 */
597 ret = add_to_page_cache_lru(page, mapping, index,
598 GFP_KERNEL);
599 if (unlikely(ret))
600 goto out;
601 }
602
603 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
604 if (unlikely(ret)) {
605 loff_t isize = i_size_read(mapping->host);
606
607 if (ret != AOP_TRUNCATED_PAGE)
608 unlock_page(page);
609 page_cache_release(page);
610 if (ret == AOP_TRUNCATED_PAGE)
611 goto find_page;
612
613 /*
614 * prepare_write() may have instantiated a few blocks
615 * outside i_size. Trim these off again.
616 */
617 if (sd->pos + this_len > isize)
618 vmtruncate(mapping->host, isize);
619
620 goto out_ret;
621 }
622
623 if (buf->page != page) {
624 /*
625 * Careful, ->map() uses KM_USER0!
626 */
627 char *src = buf->ops->map(pipe, buf, 1);
628 char *dst = kmap_atomic(page, KM_USER1);
629
630 memcpy(dst + offset, src + buf->offset, this_len);
631 flush_dcache_page(page);
632 kunmap_atomic(dst, KM_USER1);
633 buf->ops->unmap(pipe, buf, src);
634 }
635
636 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
637 if (ret) {
638 if (ret == AOP_TRUNCATED_PAGE) {
639 page_cache_release(page);
640 goto find_page;
641 }
642 if (ret < 0)
643 goto out;
644 /*
645 * Partial write has happened, so 'ret' already initialized by
646 * number of bytes written, Where is nothing we have to do here.
647 */
648 } else
649 ret = this_len;
650 /*
651 * Return the number of bytes written and mark page as
652 * accessed, we are now done!
653 */
654 mark_page_accessed(page);
655 out:
656 page_cache_release(page);
657 unlock_page(page);
658 out_ret:
659 return ret;
660 }
661
662 /*
663 * Pipe input worker. Most of this logic works like a regular pipe, the
664 * key here is the 'actor' worker passed in that actually moves the data
665 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
666 */
667 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
668 struct file *out, loff_t *ppos, size_t len,
669 unsigned int flags, splice_actor *actor)
670 {
671 int ret, do_wakeup, err;
672 struct splice_desc sd;
673
674 ret = 0;
675 do_wakeup = 0;
676
677 sd.total_len = len;
678 sd.flags = flags;
679 sd.file = out;
680 sd.pos = *ppos;
681
682 for (;;) {
683 if (pipe->nrbufs) {
684 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
685 const struct pipe_buf_operations *ops = buf->ops;
686
687 sd.len = buf->len;
688 if (sd.len > sd.total_len)
689 sd.len = sd.total_len;
690
691 err = actor(pipe, buf, &sd);
692 if (err <= 0) {
693 if (!ret && err != -ENODATA)
694 ret = err;
695
696 break;
697 }
698
699 ret += err;
700 buf->offset += err;
701 buf->len -= err;
702
703 sd.len -= err;
704 sd.pos += err;
705 sd.total_len -= err;
706 if (sd.len)
707 continue;
708
709 if (!buf->len) {
710 buf->ops = NULL;
711 ops->release(pipe, buf);
712 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
713 pipe->nrbufs--;
714 if (pipe->inode)
715 do_wakeup = 1;
716 }
717
718 if (!sd.total_len)
719 break;
720 }
721
722 if (pipe->nrbufs)
723 continue;
724 if (!pipe->writers)
725 break;
726 if (!pipe->waiting_writers) {
727 if (ret)
728 break;
729 }
730
731 if (flags & SPLICE_F_NONBLOCK) {
732 if (!ret)
733 ret = -EAGAIN;
734 break;
735 }
736
737 if (signal_pending(current)) {
738 if (!ret)
739 ret = -ERESTARTSYS;
740 break;
741 }
742
743 if (do_wakeup) {
744 smp_mb();
745 if (waitqueue_active(&pipe->wait))
746 wake_up_interruptible_sync(&pipe->wait);
747 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
748 do_wakeup = 0;
749 }
750
751 pipe_wait(pipe);
752 }
753
754 if (do_wakeup) {
755 smp_mb();
756 if (waitqueue_active(&pipe->wait))
757 wake_up_interruptible(&pipe->wait);
758 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
759 }
760
761 return ret;
762 }
763 EXPORT_SYMBOL(__splice_from_pipe);
764
765 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
766 loff_t *ppos, size_t len, unsigned int flags,
767 splice_actor *actor)
768 {
769 ssize_t ret;
770 struct inode *inode = out->f_mapping->host;
771
772 /*
773 * The actor worker might be calling ->prepare_write and
774 * ->commit_write. Most of the time, these expect i_mutex to
775 * be held. Since this may result in an ABBA deadlock with
776 * pipe->inode, we have to order lock acquiry here.
777 */
778 inode_double_lock(inode, pipe->inode);
779 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
780 inode_double_unlock(inode, pipe->inode);
781
782 return ret;
783 }
784
785 /**
786 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
787 * @pipe: pipe info
788 * @out: file to write to
789 * @len: number of bytes to splice
790 * @flags: splice modifier flags
791 *
792 * Will either move or copy pages (determined by @flags options) from
793 * the given pipe inode to the given file. The caller is responsible
794 * for acquiring i_mutex on both inodes.
795 *
796 */
797 ssize_t
798 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
799 loff_t *ppos, size_t len, unsigned int flags)
800 {
801 struct address_space *mapping = out->f_mapping;
802 struct inode *inode = mapping->host;
803 ssize_t ret;
804 int err;
805
806 err = remove_suid(out->f_path.dentry);
807 if (unlikely(err))
808 return err;
809
810 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
811 if (ret > 0) {
812 *ppos += ret;
813
814 /*
815 * If file or inode is SYNC and we actually wrote some data,
816 * sync it.
817 */
818 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
819 err = generic_osync_inode(inode, mapping,
820 OSYNC_METADATA|OSYNC_DATA);
821
822 if (err)
823 ret = err;
824 }
825 balance_dirty_pages_ratelimited(mapping);
826 }
827
828 return ret;
829 }
830
831 EXPORT_SYMBOL(generic_file_splice_write_nolock);
832
833 /**
834 * generic_file_splice_write - splice data from a pipe to a file
835 * @pipe: pipe info
836 * @out: file to write to
837 * @len: number of bytes to splice
838 * @flags: splice modifier flags
839 *
840 * Will either move or copy pages (determined by @flags options) from
841 * the given pipe inode to the given file.
842 *
843 */
844 ssize_t
845 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
846 loff_t *ppos, size_t len, unsigned int flags)
847 {
848 struct address_space *mapping = out->f_mapping;
849 struct inode *inode = mapping->host;
850 ssize_t ret;
851 int err;
852
853 err = should_remove_suid(out->f_path.dentry);
854 if (unlikely(err)) {
855 mutex_lock(&inode->i_mutex);
856 err = __remove_suid(out->f_path.dentry, err);
857 mutex_unlock(&inode->i_mutex);
858 if (err)
859 return err;
860 }
861
862 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
863 if (ret > 0) {
864 *ppos += ret;
865
866 /*
867 * If file or inode is SYNC and we actually wrote some data,
868 * sync it.
869 */
870 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
871 mutex_lock(&inode->i_mutex);
872 err = generic_osync_inode(inode, mapping,
873 OSYNC_METADATA|OSYNC_DATA);
874 mutex_unlock(&inode->i_mutex);
875
876 if (err)
877 ret = err;
878 }
879 balance_dirty_pages_ratelimited(mapping);
880 }
881
882 return ret;
883 }
884
885 EXPORT_SYMBOL(generic_file_splice_write);
886
887 /**
888 * generic_splice_sendpage - splice data from a pipe to a socket
889 * @inode: pipe inode
890 * @out: socket to write to
891 * @len: number of bytes to splice
892 * @flags: splice modifier flags
893 *
894 * Will send @len bytes from the pipe to a network socket. No data copying
895 * is involved.
896 *
897 */
898 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
899 loff_t *ppos, size_t len, unsigned int flags)
900 {
901 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
902 }
903
904 EXPORT_SYMBOL(generic_splice_sendpage);
905
906 /*
907 * Attempt to initiate a splice from pipe to file.
908 */
909 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
910 loff_t *ppos, size_t len, unsigned int flags)
911 {
912 int ret;
913
914 if (unlikely(!out->f_op || !out->f_op->splice_write))
915 return -EINVAL;
916
917 if (unlikely(!(out->f_mode & FMODE_WRITE)))
918 return -EBADF;
919
920 ret = rw_verify_area(WRITE, out, ppos, len);
921 if (unlikely(ret < 0))
922 return ret;
923
924 return out->f_op->splice_write(pipe, out, ppos, len, flags);
925 }
926
927 /*
928 * Attempt to initiate a splice from a file to a pipe.
929 */
930 static long do_splice_to(struct file *in, loff_t *ppos,
931 struct pipe_inode_info *pipe, size_t len,
932 unsigned int flags)
933 {
934 int ret;
935
936 if (unlikely(!in->f_op || !in->f_op->splice_read))
937 return -EINVAL;
938
939 if (unlikely(!(in->f_mode & FMODE_READ)))
940 return -EBADF;
941
942 ret = rw_verify_area(READ, in, ppos, len);
943 if (unlikely(ret < 0))
944 return ret;
945
946 return in->f_op->splice_read(in, ppos, pipe, len, flags);
947 }
948
949 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
950 size_t len, unsigned int flags)
951 {
952 struct pipe_inode_info *pipe;
953 long ret, bytes;
954 loff_t out_off;
955 umode_t i_mode;
956 int i;
957
958 /*
959 * We require the input being a regular file, as we don't want to
960 * randomly drop data for eg socket -> socket splicing. Use the
961 * piped splicing for that!
962 */
963 i_mode = in->f_path.dentry->d_inode->i_mode;
964 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
965 return -EINVAL;
966
967 /*
968 * neither in nor out is a pipe, setup an internal pipe attached to
969 * 'out' and transfer the wanted data from 'in' to 'out' through that
970 */
971 pipe = current->splice_pipe;
972 if (unlikely(!pipe)) {
973 pipe = alloc_pipe_info(NULL);
974 if (!pipe)
975 return -ENOMEM;
976
977 /*
978 * We don't have an immediate reader, but we'll read the stuff
979 * out of the pipe right after the splice_to_pipe(). So set
980 * PIPE_READERS appropriately.
981 */
982 pipe->readers = 1;
983
984 current->splice_pipe = pipe;
985 }
986
987 /*
988 * Do the splice.
989 */
990 ret = 0;
991 bytes = 0;
992 out_off = 0;
993
994 while (len) {
995 size_t read_len, max_read_len;
996
997 /*
998 * Do at most PIPE_BUFFERS pages worth of transfer:
999 */
1000 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1001
1002 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1003 if (unlikely(ret < 0))
1004 goto out_release;
1005
1006 read_len = ret;
1007
1008 /*
1009 * NOTE: nonblocking mode only applies to the input. We
1010 * must not do the output in nonblocking mode as then we
1011 * could get stuck data in the internal pipe:
1012 */
1013 ret = do_splice_from(pipe, out, &out_off, read_len,
1014 flags & ~SPLICE_F_NONBLOCK);
1015 if (unlikely(ret < 0))
1016 goto out_release;
1017
1018 bytes += ret;
1019 len -= ret;
1020
1021 /*
1022 * In nonblocking mode, if we got back a short read then
1023 * that was due to either an IO error or due to the
1024 * pagecache entry not being there. In the IO error case
1025 * the _next_ splice attempt will produce a clean IO error
1026 * return value (not a short read), so in both cases it's
1027 * correct to break out of the loop here:
1028 */
1029 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1030 break;
1031 }
1032
1033 pipe->nrbufs = pipe->curbuf = 0;
1034
1035 return bytes;
1036
1037 out_release:
1038 /*
1039 * If we did an incomplete transfer we must release
1040 * the pipe buffers in question:
1041 */
1042 for (i = 0; i < PIPE_BUFFERS; i++) {
1043 struct pipe_buffer *buf = pipe->bufs + i;
1044
1045 if (buf->ops) {
1046 buf->ops->release(pipe, buf);
1047 buf->ops = NULL;
1048 }
1049 }
1050 pipe->nrbufs = pipe->curbuf = 0;
1051
1052 /*
1053 * If we transferred some data, return the number of bytes:
1054 */
1055 if (bytes > 0)
1056 return bytes;
1057
1058 return ret;
1059 }
1060
1061 /*
1062 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1063 * location, so checking ->i_pipe is not enough to verify that this is a
1064 * pipe.
1065 */
1066 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1067 {
1068 if (S_ISFIFO(inode->i_mode))
1069 return inode->i_pipe;
1070
1071 return NULL;
1072 }
1073
1074 /*
1075 * Determine where to splice to/from.
1076 */
1077 static long do_splice(struct file *in, loff_t __user *off_in,
1078 struct file *out, loff_t __user *off_out,
1079 size_t len, unsigned int flags)
1080 {
1081 struct pipe_inode_info *pipe;
1082 loff_t offset, *off;
1083 long ret;
1084
1085 pipe = pipe_info(in->f_path.dentry->d_inode);
1086 if (pipe) {
1087 if (off_in)
1088 return -ESPIPE;
1089 if (off_out) {
1090 if (out->f_op->llseek == no_llseek)
1091 return -EINVAL;
1092 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1093 return -EFAULT;
1094 off = &offset;
1095 } else
1096 off = &out->f_pos;
1097
1098 ret = do_splice_from(pipe, out, off, len, flags);
1099
1100 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1101 ret = -EFAULT;
1102
1103 return ret;
1104 }
1105
1106 pipe = pipe_info(out->f_path.dentry->d_inode);
1107 if (pipe) {
1108 if (off_out)
1109 return -ESPIPE;
1110 if (off_in) {
1111 if (in->f_op->llseek == no_llseek)
1112 return -EINVAL;
1113 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1114 return -EFAULT;
1115 off = &offset;
1116 } else
1117 off = &in->f_pos;
1118
1119 ret = do_splice_to(in, off, pipe, len, flags);
1120
1121 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1122 ret = -EFAULT;
1123
1124 return ret;
1125 }
1126
1127 return -EINVAL;
1128 }
1129
1130 /*
1131 * Map an iov into an array of pages and offset/length tupples. With the
1132 * partial_page structure, we can map several non-contiguous ranges into
1133 * our ones pages[] map instead of splitting that operation into pieces.
1134 * Could easily be exported as a generic helper for other users, in which
1135 * case one would probably want to add a 'max_nr_pages' parameter as well.
1136 */
1137 static int get_iovec_page_array(const struct iovec __user *iov,
1138 unsigned int nr_vecs, struct page **pages,
1139 struct partial_page *partial, int aligned)
1140 {
1141 int buffers = 0, error = 0;
1142
1143 /*
1144 * It's ok to take the mmap_sem for reading, even
1145 * across a "get_user()".
1146 */
1147 down_read(&current->mm->mmap_sem);
1148
1149 while (nr_vecs) {
1150 unsigned long off, npages;
1151 void __user *base;
1152 size_t len;
1153 int i;
1154
1155 /*
1156 * Get user address base and length for this iovec.
1157 */
1158 error = get_user(base, &iov->iov_base);
1159 if (unlikely(error))
1160 break;
1161 error = get_user(len, &iov->iov_len);
1162 if (unlikely(error))
1163 break;
1164
1165 /*
1166 * Sanity check this iovec. 0 read succeeds.
1167 */
1168 if (unlikely(!len))
1169 break;
1170 error = -EFAULT;
1171 if (unlikely(!base))
1172 break;
1173
1174 /*
1175 * Get this base offset and number of pages, then map
1176 * in the user pages.
1177 */
1178 off = (unsigned long) base & ~PAGE_MASK;
1179
1180 /*
1181 * If asked for alignment, the offset must be zero and the
1182 * length a multiple of the PAGE_SIZE.
1183 */
1184 error = -EINVAL;
1185 if (aligned && (off || len & ~PAGE_MASK))
1186 break;
1187
1188 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1189 if (npages > PIPE_BUFFERS - buffers)
1190 npages = PIPE_BUFFERS - buffers;
1191
1192 error = get_user_pages(current, current->mm,
1193 (unsigned long) base, npages, 0, 0,
1194 &pages[buffers], NULL);
1195
1196 if (unlikely(error <= 0))
1197 break;
1198
1199 /*
1200 * Fill this contiguous range into the partial page map.
1201 */
1202 for (i = 0; i < error; i++) {
1203 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1204
1205 partial[buffers].offset = off;
1206 partial[buffers].len = plen;
1207
1208 off = 0;
1209 len -= plen;
1210 buffers++;
1211 }
1212
1213 /*
1214 * We didn't complete this iov, stop here since it probably
1215 * means we have to move some of this into a pipe to
1216 * be able to continue.
1217 */
1218 if (len)
1219 break;
1220
1221 /*
1222 * Don't continue if we mapped fewer pages than we asked for,
1223 * or if we mapped the max number of pages that we have
1224 * room for.
1225 */
1226 if (error < npages || buffers == PIPE_BUFFERS)
1227 break;
1228
1229 nr_vecs--;
1230 iov++;
1231 }
1232
1233 up_read(&current->mm->mmap_sem);
1234
1235 if (buffers)
1236 return buffers;
1237
1238 return error;
1239 }
1240
1241 /*
1242 * vmsplice splices a user address range into a pipe. It can be thought of
1243 * as splice-from-memory, where the regular splice is splice-from-file (or
1244 * to file). In both cases the output is a pipe, naturally.
1245 *
1246 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1247 * not the other way around. Splicing from user memory is a simple operation
1248 * that can be supported without any funky alignment restrictions or nasty
1249 * vm tricks. We simply map in the user memory and fill them into a pipe.
1250 * The reverse isn't quite as easy, though. There are two possible solutions
1251 * for that:
1252 *
1253 * - memcpy() the data internally, at which point we might as well just
1254 * do a regular read() on the buffer anyway.
1255 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1256 * has restriction limitations on both ends of the pipe).
1257 *
1258 * Alas, it isn't here.
1259 *
1260 */
1261 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1262 unsigned long nr_segs, unsigned int flags)
1263 {
1264 struct pipe_inode_info *pipe;
1265 struct page *pages[PIPE_BUFFERS];
1266 struct partial_page partial[PIPE_BUFFERS];
1267 struct splice_pipe_desc spd = {
1268 .pages = pages,
1269 .partial = partial,
1270 .flags = flags,
1271 .ops = &user_page_pipe_buf_ops,
1272 };
1273
1274 pipe = pipe_info(file->f_path.dentry->d_inode);
1275 if (!pipe)
1276 return -EBADF;
1277 if (unlikely(nr_segs > UIO_MAXIOV))
1278 return -EINVAL;
1279 else if (unlikely(!nr_segs))
1280 return 0;
1281
1282 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1283 flags & SPLICE_F_GIFT);
1284 if (spd.nr_pages <= 0)
1285 return spd.nr_pages;
1286
1287 return splice_to_pipe(pipe, &spd);
1288 }
1289
1290 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1291 unsigned long nr_segs, unsigned int flags)
1292 {
1293 struct file *file;
1294 long error;
1295 int fput;
1296
1297 error = -EBADF;
1298 file = fget_light(fd, &fput);
1299 if (file) {
1300 if (file->f_mode & FMODE_WRITE)
1301 error = do_vmsplice(file, iov, nr_segs, flags);
1302
1303 fput_light(file, fput);
1304 }
1305
1306 return error;
1307 }
1308
1309 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1310 int fd_out, loff_t __user *off_out,
1311 size_t len, unsigned int flags)
1312 {
1313 long error;
1314 struct file *in, *out;
1315 int fput_in, fput_out;
1316
1317 if (unlikely(!len))
1318 return 0;
1319
1320 error = -EBADF;
1321 in = fget_light(fd_in, &fput_in);
1322 if (in) {
1323 if (in->f_mode & FMODE_READ) {
1324 out = fget_light(fd_out, &fput_out);
1325 if (out) {
1326 if (out->f_mode & FMODE_WRITE)
1327 error = do_splice(in, off_in,
1328 out, off_out,
1329 len, flags);
1330 fput_light(out, fput_out);
1331 }
1332 }
1333
1334 fput_light(in, fput_in);
1335 }
1336
1337 return error;
1338 }
1339
1340 /*
1341 * Make sure there's data to read. Wait for input if we can, otherwise
1342 * return an appropriate error.
1343 */
1344 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1345 {
1346 int ret;
1347
1348 /*
1349 * Check ->nrbufs without the inode lock first. This function
1350 * is speculative anyways, so missing one is ok.
1351 */
1352 if (pipe->nrbufs)
1353 return 0;
1354
1355 ret = 0;
1356 mutex_lock(&pipe->inode->i_mutex);
1357
1358 while (!pipe->nrbufs) {
1359 if (signal_pending(current)) {
1360 ret = -ERESTARTSYS;
1361 break;
1362 }
1363 if (!pipe->writers)
1364 break;
1365 if (!pipe->waiting_writers) {
1366 if (flags & SPLICE_F_NONBLOCK) {
1367 ret = -EAGAIN;
1368 break;
1369 }
1370 }
1371 pipe_wait(pipe);
1372 }
1373
1374 mutex_unlock(&pipe->inode->i_mutex);
1375 return ret;
1376 }
1377
1378 /*
1379 * Make sure there's writeable room. Wait for room if we can, otherwise
1380 * return an appropriate error.
1381 */
1382 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1383 {
1384 int ret;
1385
1386 /*
1387 * Check ->nrbufs without the inode lock first. This function
1388 * is speculative anyways, so missing one is ok.
1389 */
1390 if (pipe->nrbufs < PIPE_BUFFERS)
1391 return 0;
1392
1393 ret = 0;
1394 mutex_lock(&pipe->inode->i_mutex);
1395
1396 while (pipe->nrbufs >= PIPE_BUFFERS) {
1397 if (!pipe->readers) {
1398 send_sig(SIGPIPE, current, 0);
1399 ret = -EPIPE;
1400 break;
1401 }
1402 if (flags & SPLICE_F_NONBLOCK) {
1403 ret = -EAGAIN;
1404 break;
1405 }
1406 if (signal_pending(current)) {
1407 ret = -ERESTARTSYS;
1408 break;
1409 }
1410 pipe->waiting_writers++;
1411 pipe_wait(pipe);
1412 pipe->waiting_writers--;
1413 }
1414
1415 mutex_unlock(&pipe->inode->i_mutex);
1416 return ret;
1417 }
1418
1419 /*
1420 * Link contents of ipipe to opipe.
1421 */
1422 static int link_pipe(struct pipe_inode_info *ipipe,
1423 struct pipe_inode_info *opipe,
1424 size_t len, unsigned int flags)
1425 {
1426 struct pipe_buffer *ibuf, *obuf;
1427 int ret = 0, i = 0, nbuf;
1428
1429 /*
1430 * Potential ABBA deadlock, work around it by ordering lock
1431 * grabbing by inode address. Otherwise two different processes
1432 * could deadlock (one doing tee from A -> B, the other from B -> A).
1433 */
1434 inode_double_lock(ipipe->inode, opipe->inode);
1435
1436 do {
1437 if (!opipe->readers) {
1438 send_sig(SIGPIPE, current, 0);
1439 if (!ret)
1440 ret = -EPIPE;
1441 break;
1442 }
1443
1444 /*
1445 * If we have iterated all input buffers or ran out of
1446 * output room, break.
1447 */
1448 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1449 break;
1450
1451 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1452 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1453
1454 /*
1455 * Get a reference to this pipe buffer,
1456 * so we can copy the contents over.
1457 */
1458 ibuf->ops->get(ipipe, ibuf);
1459
1460 obuf = opipe->bufs + nbuf;
1461 *obuf = *ibuf;
1462
1463 /*
1464 * Don't inherit the gift flag, we need to
1465 * prevent multiple steals of this page.
1466 */
1467 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1468
1469 if (obuf->len > len)
1470 obuf->len = len;
1471
1472 opipe->nrbufs++;
1473 ret += obuf->len;
1474 len -= obuf->len;
1475 i++;
1476 } while (len);
1477
1478 inode_double_unlock(ipipe->inode, opipe->inode);
1479
1480 /*
1481 * If we put data in the output pipe, wakeup any potential readers.
1482 */
1483 if (ret > 0) {
1484 smp_mb();
1485 if (waitqueue_active(&opipe->wait))
1486 wake_up_interruptible(&opipe->wait);
1487 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1488 }
1489
1490 return ret;
1491 }
1492
1493 /*
1494 * This is a tee(1) implementation that works on pipes. It doesn't copy
1495 * any data, it simply references the 'in' pages on the 'out' pipe.
1496 * The 'flags' used are the SPLICE_F_* variants, currently the only
1497 * applicable one is SPLICE_F_NONBLOCK.
1498 */
1499 static long do_tee(struct file *in, struct file *out, size_t len,
1500 unsigned int flags)
1501 {
1502 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1503 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1504 int ret = -EINVAL;
1505
1506 /*
1507 * Duplicate the contents of ipipe to opipe without actually
1508 * copying the data.
1509 */
1510 if (ipipe && opipe && ipipe != opipe) {
1511 /*
1512 * Keep going, unless we encounter an error. The ipipe/opipe
1513 * ordering doesn't really matter.
1514 */
1515 ret = link_ipipe_prep(ipipe, flags);
1516 if (!ret) {
1517 ret = link_opipe_prep(opipe, flags);
1518 if (!ret) {
1519 ret = link_pipe(ipipe, opipe, len, flags);
1520 if (!ret && (flags & SPLICE_F_NONBLOCK))
1521 ret = -EAGAIN;
1522 }
1523 }
1524 }
1525
1526 return ret;
1527 }
1528
1529 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1530 {
1531 struct file *in;
1532 int error, fput_in;
1533
1534 if (unlikely(!len))
1535 return 0;
1536
1537 error = -EBADF;
1538 in = fget_light(fdin, &fput_in);
1539 if (in) {
1540 if (in->f_mode & FMODE_READ) {
1541 int fput_out;
1542 struct file *out = fget_light(fdout, &fput_out);
1543
1544 if (out) {
1545 if (out->f_mode & FMODE_WRITE)
1546 error = do_tee(in, out, len, flags);
1547 fput_light(out, fput_out);
1548 }
1549 }
1550 fput_light(in, fput_in);
1551 }
1552
1553 return error;
1554 }