]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/splice.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37
38 #include "internal.h"
39
40 /*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48 {
49 struct page *page = buf->page;
50 struct address_space *mapping;
51
52 lock_page(page);
53
54 mapping = page_mapping(page);
55 if (mapping) {
56 WARN_ON(!PageUptodate(page));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this page, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * page, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 wait_on_page_writeback(page);
67
68 if (page_has_private(page) &&
69 !try_to_release_page(page, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, page)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove page from current
84 * address space, unlock and return failure.
85 */
86 out_unlock:
87 unlock_page(page);
88 return false;
89 }
90
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93 {
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97
98 /*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104 {
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135 error:
136 unlock_page(page);
137 return err;
138 }
139
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145 };
146
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149 {
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155 }
156
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222 out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251
252 /*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274 }
275
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283 }
284
285 /**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301 {
302 struct iov_iter to;
303 struct kiocb kiocb;
304 unsigned int i_head;
305 int ret;
306
307 iov_iter_pipe(&to, READ, pipe, len);
308 i_head = to.head;
309 init_sync_kiocb(&kiocb, in);
310 kiocb.ki_pos = *ppos;
311 ret = call_read_iter(in, &kiocb, &to);
312 if (ret > 0) {
313 *ppos = kiocb.ki_pos;
314 file_accessed(in);
315 } else if (ret < 0) {
316 to.head = i_head;
317 to.iov_offset = 0;
318 iov_iter_advance(&to, 0); /* to free what was emitted */
319 /*
320 * callers of ->splice_read() expect -EAGAIN on
321 * "can't put anything in there", rather than -EFAULT.
322 */
323 if (ret == -EFAULT)
324 ret = -EAGAIN;
325 }
326
327 return ret;
328 }
329 EXPORT_SYMBOL(generic_file_splice_read);
330
331 const struct pipe_buf_operations default_pipe_buf_ops = {
332 .release = generic_pipe_buf_release,
333 .try_steal = generic_pipe_buf_try_steal,
334 .get = generic_pipe_buf_get,
335 };
336
337 /* Pipe buffer operations for a socket and similar. */
338 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
339 .release = generic_pipe_buf_release,
340 .get = generic_pipe_buf_get,
341 };
342 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
343
344 /*
345 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
346 * using sendpage(). Return the number of bytes sent.
347 */
348 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
349 struct pipe_buffer *buf, struct splice_desc *sd)
350 {
351 struct file *file = sd->u.file;
352 loff_t pos = sd->pos;
353 int more;
354
355 if (!likely(file->f_op->sendpage))
356 return -EINVAL;
357
358 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
359
360 if (sd->len < sd->total_len &&
361 pipe_occupancy(pipe->head, pipe->tail) > 1)
362 more |= MSG_SENDPAGE_NOTLAST;
363
364 return file->f_op->sendpage(file, buf->page, buf->offset,
365 sd->len, &pos, more);
366 }
367
368 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
369 {
370 smp_mb();
371 if (waitqueue_active(&pipe->wr_wait))
372 wake_up_interruptible(&pipe->wr_wait);
373 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374 }
375
376 /**
377 * splice_from_pipe_feed - feed available data from a pipe to a file
378 * @pipe: pipe to splice from
379 * @sd: information to @actor
380 * @actor: handler that splices the data
381 *
382 * Description:
383 * This function loops over the pipe and calls @actor to do the
384 * actual moving of a single struct pipe_buffer to the desired
385 * destination. It returns when there's no more buffers left in
386 * the pipe or if the requested number of bytes (@sd->total_len)
387 * have been copied. It returns a positive number (one) if the
388 * pipe needs to be filled with more data, zero if the required
389 * number of bytes have been copied and -errno on error.
390 *
391 * This, together with splice_from_pipe_{begin,end,next}, may be
392 * used to implement the functionality of __splice_from_pipe() when
393 * locking is required around copying the pipe buffers to the
394 * destination.
395 */
396 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
397 splice_actor *actor)
398 {
399 unsigned int head = pipe->head;
400 unsigned int tail = pipe->tail;
401 unsigned int mask = pipe->ring_size - 1;
402 int ret;
403
404 while (!pipe_empty(head, tail)) {
405 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
406
407 sd->len = buf->len;
408 if (sd->len > sd->total_len)
409 sd->len = sd->total_len;
410
411 ret = pipe_buf_confirm(pipe, buf);
412 if (unlikely(ret)) {
413 if (ret == -ENODATA)
414 ret = 0;
415 return ret;
416 }
417
418 ret = actor(pipe, buf, sd);
419 if (ret <= 0)
420 return ret;
421
422 buf->offset += ret;
423 buf->len -= ret;
424
425 sd->num_spliced += ret;
426 sd->len -= ret;
427 sd->pos += ret;
428 sd->total_len -= ret;
429
430 if (!buf->len) {
431 pipe_buf_release(pipe, buf);
432 tail++;
433 pipe->tail = tail;
434 if (pipe->files)
435 sd->need_wakeup = true;
436 }
437
438 if (!sd->total_len)
439 return 0;
440 }
441
442 return 1;
443 }
444
445 /* We know we have a pipe buffer, but maybe it's empty? */
446 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
447 {
448 unsigned int tail = pipe->tail;
449 unsigned int mask = pipe->ring_size - 1;
450 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
451
452 if (unlikely(!buf->len)) {
453 pipe_buf_release(pipe, buf);
454 pipe->tail = tail+1;
455 return true;
456 }
457
458 return false;
459 }
460
461 /**
462 * splice_from_pipe_next - wait for some data to splice from
463 * @pipe: pipe to splice from
464 * @sd: information about the splice operation
465 *
466 * Description:
467 * This function will wait for some data and return a positive
468 * value (one) if pipe buffers are available. It will return zero
469 * or -errno if no more data needs to be spliced.
470 */
471 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
472 {
473 /*
474 * Check for signal early to make process killable when there are
475 * always buffers available
476 */
477 if (signal_pending(current))
478 return -ERESTARTSYS;
479
480 repeat:
481 while (pipe_empty(pipe->head, pipe->tail)) {
482 if (!pipe->writers)
483 return 0;
484
485 if (sd->num_spliced)
486 return 0;
487
488 if (sd->flags & SPLICE_F_NONBLOCK)
489 return -EAGAIN;
490
491 if (signal_pending(current))
492 return -ERESTARTSYS;
493
494 if (sd->need_wakeup) {
495 wakeup_pipe_writers(pipe);
496 sd->need_wakeup = false;
497 }
498
499 pipe_wait_readable(pipe);
500 }
501
502 if (eat_empty_buffer(pipe))
503 goto repeat;
504
505 return 1;
506 }
507
508 /**
509 * splice_from_pipe_begin - start splicing from pipe
510 * @sd: information about the splice operation
511 *
512 * Description:
513 * This function should be called before a loop containing
514 * splice_from_pipe_next() and splice_from_pipe_feed() to
515 * initialize the necessary fields of @sd.
516 */
517 static void splice_from_pipe_begin(struct splice_desc *sd)
518 {
519 sd->num_spliced = 0;
520 sd->need_wakeup = false;
521 }
522
523 /**
524 * splice_from_pipe_end - finish splicing from pipe
525 * @pipe: pipe to splice from
526 * @sd: information about the splice operation
527 *
528 * Description:
529 * This function will wake up pipe writers if necessary. It should
530 * be called after a loop containing splice_from_pipe_next() and
531 * splice_from_pipe_feed().
532 */
533 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
534 {
535 if (sd->need_wakeup)
536 wakeup_pipe_writers(pipe);
537 }
538
539 /**
540 * __splice_from_pipe - splice data from a pipe to given actor
541 * @pipe: pipe to splice from
542 * @sd: information to @actor
543 * @actor: handler that splices the data
544 *
545 * Description:
546 * This function does little more than loop over the pipe and call
547 * @actor to do the actual moving of a single struct pipe_buffer to
548 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
549 * pipe_to_user.
550 *
551 */
552 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
553 splice_actor *actor)
554 {
555 int ret;
556
557 splice_from_pipe_begin(sd);
558 do {
559 cond_resched();
560 ret = splice_from_pipe_next(pipe, sd);
561 if (ret > 0)
562 ret = splice_from_pipe_feed(pipe, sd, actor);
563 } while (ret > 0);
564 splice_from_pipe_end(pipe, sd);
565
566 return sd->num_spliced ? sd->num_spliced : ret;
567 }
568 EXPORT_SYMBOL(__splice_from_pipe);
569
570 /**
571 * splice_from_pipe - splice data from a pipe to a file
572 * @pipe: pipe to splice from
573 * @out: file to splice to
574 * @ppos: position in @out
575 * @len: how many bytes to splice
576 * @flags: splice modifier flags
577 * @actor: handler that splices the data
578 *
579 * Description:
580 * See __splice_from_pipe. This function locks the pipe inode,
581 * otherwise it's identical to __splice_from_pipe().
582 *
583 */
584 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
585 loff_t *ppos, size_t len, unsigned int flags,
586 splice_actor *actor)
587 {
588 ssize_t ret;
589 struct splice_desc sd = {
590 .total_len = len,
591 .flags = flags,
592 .pos = *ppos,
593 .u.file = out,
594 };
595
596 pipe_lock(pipe);
597 ret = __splice_from_pipe(pipe, &sd, actor);
598 pipe_unlock(pipe);
599
600 return ret;
601 }
602
603 /**
604 * iter_file_splice_write - splice data from a pipe to a file
605 * @pipe: pipe info
606 * @out: file to write to
607 * @ppos: position in @out
608 * @len: number of bytes to splice
609 * @flags: splice modifier flags
610 *
611 * Description:
612 * Will either move or copy pages (determined by @flags options) from
613 * the given pipe inode to the given file.
614 * This one is ->write_iter-based.
615 *
616 */
617 ssize_t
618 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
619 loff_t *ppos, size_t len, unsigned int flags)
620 {
621 struct splice_desc sd = {
622 .total_len = len,
623 .flags = flags,
624 .pos = *ppos,
625 .u.file = out,
626 };
627 int nbufs = pipe->max_usage;
628 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
629 GFP_KERNEL);
630 ssize_t ret;
631
632 if (unlikely(!array))
633 return -ENOMEM;
634
635 pipe_lock(pipe);
636
637 splice_from_pipe_begin(&sd);
638 while (sd.total_len) {
639 struct iov_iter from;
640 unsigned int head, tail, mask;
641 size_t left;
642 int n;
643
644 ret = splice_from_pipe_next(pipe, &sd);
645 if (ret <= 0)
646 break;
647
648 if (unlikely(nbufs < pipe->max_usage)) {
649 kfree(array);
650 nbufs = pipe->max_usage;
651 array = kcalloc(nbufs, sizeof(struct bio_vec),
652 GFP_KERNEL);
653 if (!array) {
654 ret = -ENOMEM;
655 break;
656 }
657 }
658
659 head = pipe->head;
660 tail = pipe->tail;
661 mask = pipe->ring_size - 1;
662
663 /* build the vector */
664 left = sd.total_len;
665 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
666 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
667 size_t this_len = buf->len;
668
669 /* zero-length bvecs are not supported, skip them */
670 if (!this_len)
671 continue;
672 this_len = min(this_len, left);
673
674 ret = pipe_buf_confirm(pipe, buf);
675 if (unlikely(ret)) {
676 if (ret == -ENODATA)
677 ret = 0;
678 goto done;
679 }
680
681 array[n].bv_page = buf->page;
682 array[n].bv_len = this_len;
683 array[n].bv_offset = buf->offset;
684 left -= this_len;
685 n++;
686 }
687
688 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
689 ret = vfs_iter_write(out, &from, &sd.pos, 0);
690 if (ret <= 0)
691 break;
692
693 sd.num_spliced += ret;
694 sd.total_len -= ret;
695 *ppos = sd.pos;
696
697 /* dismiss the fully eaten buffers, adjust the partial one */
698 tail = pipe->tail;
699 while (ret) {
700 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
701 if (ret >= buf->len) {
702 ret -= buf->len;
703 buf->len = 0;
704 pipe_buf_release(pipe, buf);
705 tail++;
706 pipe->tail = tail;
707 if (pipe->files)
708 sd.need_wakeup = true;
709 } else {
710 buf->offset += ret;
711 buf->len -= ret;
712 ret = 0;
713 }
714 }
715 }
716 done:
717 kfree(array);
718 splice_from_pipe_end(pipe, &sd);
719
720 pipe_unlock(pipe);
721
722 if (sd.num_spliced)
723 ret = sd.num_spliced;
724
725 return ret;
726 }
727
728 EXPORT_SYMBOL(iter_file_splice_write);
729
730 /**
731 * generic_splice_sendpage - splice data from a pipe to a socket
732 * @pipe: pipe to splice from
733 * @out: socket to write to
734 * @ppos: position in @out
735 * @len: number of bytes to splice
736 * @flags: splice modifier flags
737 *
738 * Description:
739 * Will send @len bytes from the pipe to a network socket. No data copying
740 * is involved.
741 *
742 */
743 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
744 loff_t *ppos, size_t len, unsigned int flags)
745 {
746 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
747 }
748
749 EXPORT_SYMBOL(generic_splice_sendpage);
750
751 static int warn_unsupported(struct file *file, const char *op)
752 {
753 pr_debug_ratelimited(
754 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
755 op, file, current->pid, current->comm);
756 return -EINVAL;
757 }
758
759 /*
760 * Attempt to initiate a splice from pipe to file.
761 */
762 long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
763 loff_t *ppos, size_t len, unsigned int flags)
764 {
765 if (unlikely(!out->f_op->splice_write))
766 return warn_unsupported(out, "write");
767 return out->f_op->splice_write(pipe, out, ppos, len, flags);
768 }
769 EXPORT_SYMBOL_GPL(do_splice_from);
770
771 /*
772 * Attempt to initiate a splice from a file to a pipe.
773 */
774 long do_splice_to(struct file *in, loff_t *ppos,
775 struct pipe_inode_info *pipe, size_t len,
776 unsigned int flags)
777 {
778 unsigned int p_space;
779 int ret;
780
781 if (unlikely(!(in->f_mode & FMODE_READ)))
782 return -EBADF;
783
784 /* Don't try to read more the pipe has space for. */
785 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
786 len = min_t(size_t, len, p_space << PAGE_SHIFT);
787
788 ret = rw_verify_area(READ, in, ppos, len);
789 if (unlikely(ret < 0))
790 return ret;
791
792 if (unlikely(len > MAX_RW_COUNT))
793 len = MAX_RW_COUNT;
794
795 if (unlikely(!in->f_op->splice_read))
796 return warn_unsupported(in, "read");
797 return in->f_op->splice_read(in, ppos, pipe, len, flags);
798 }
799 EXPORT_SYMBOL_GPL(do_splice_to);
800
801 /**
802 * splice_direct_to_actor - splices data directly between two non-pipes
803 * @in: file to splice from
804 * @sd: actor information on where to splice to
805 * @actor: handles the data splicing
806 *
807 * Description:
808 * This is a special case helper to splice directly between two
809 * points, without requiring an explicit pipe. Internally an allocated
810 * pipe is cached in the process, and reused during the lifetime of
811 * that process.
812 *
813 */
814 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
815 splice_direct_actor *actor)
816 {
817 struct pipe_inode_info *pipe;
818 long ret, bytes;
819 umode_t i_mode;
820 size_t len;
821 int i, flags, more;
822
823 /*
824 * We require the input being a regular file, as we don't want to
825 * randomly drop data for eg socket -> socket splicing. Use the
826 * piped splicing for that!
827 */
828 i_mode = file_inode(in)->i_mode;
829 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
830 return -EINVAL;
831
832 /*
833 * neither in nor out is a pipe, setup an internal pipe attached to
834 * 'out' and transfer the wanted data from 'in' to 'out' through that
835 */
836 pipe = current->splice_pipe;
837 if (unlikely(!pipe)) {
838 pipe = alloc_pipe_info();
839 if (!pipe)
840 return -ENOMEM;
841
842 /*
843 * We don't have an immediate reader, but we'll read the stuff
844 * out of the pipe right after the splice_to_pipe(). So set
845 * PIPE_READERS appropriately.
846 */
847 pipe->readers = 1;
848
849 current->splice_pipe = pipe;
850 }
851
852 /*
853 * Do the splice.
854 */
855 ret = 0;
856 bytes = 0;
857 len = sd->total_len;
858 flags = sd->flags;
859
860 /*
861 * Don't block on output, we have to drain the direct pipe.
862 */
863 sd->flags &= ~SPLICE_F_NONBLOCK;
864 more = sd->flags & SPLICE_F_MORE;
865
866 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
867
868 while (len) {
869 size_t read_len;
870 loff_t pos = sd->pos, prev_pos = pos;
871
872 ret = do_splice_to(in, &pos, pipe, len, flags);
873 if (unlikely(ret <= 0))
874 goto out_release;
875
876 read_len = ret;
877 sd->total_len = read_len;
878
879 /*
880 * If more data is pending, set SPLICE_F_MORE
881 * If this is the last data and SPLICE_F_MORE was not set
882 * initially, clears it.
883 */
884 if (read_len < len)
885 sd->flags |= SPLICE_F_MORE;
886 else if (!more)
887 sd->flags &= ~SPLICE_F_MORE;
888 /*
889 * NOTE: nonblocking mode only applies to the input. We
890 * must not do the output in nonblocking mode as then we
891 * could get stuck data in the internal pipe:
892 */
893 ret = actor(pipe, sd);
894 if (unlikely(ret <= 0)) {
895 sd->pos = prev_pos;
896 goto out_release;
897 }
898
899 bytes += ret;
900 len -= ret;
901 sd->pos = pos;
902
903 if (ret < read_len) {
904 sd->pos = prev_pos + ret;
905 goto out_release;
906 }
907 }
908
909 done:
910 pipe->tail = pipe->head = 0;
911 file_accessed(in);
912 return bytes;
913
914 out_release:
915 /*
916 * If we did an incomplete transfer we must release
917 * the pipe buffers in question:
918 */
919 for (i = 0; i < pipe->ring_size; i++) {
920 struct pipe_buffer *buf = &pipe->bufs[i];
921
922 if (buf->ops)
923 pipe_buf_release(pipe, buf);
924 }
925
926 if (!bytes)
927 bytes = ret;
928
929 goto done;
930 }
931 EXPORT_SYMBOL(splice_direct_to_actor);
932
933 static int direct_splice_actor(struct pipe_inode_info *pipe,
934 struct splice_desc *sd)
935 {
936 struct file *file = sd->u.file;
937
938 return do_splice_from(pipe, file, sd->opos, sd->total_len,
939 sd->flags);
940 }
941
942 /**
943 * do_splice_direct - splices data directly between two files
944 * @in: file to splice from
945 * @ppos: input file offset
946 * @out: file to splice to
947 * @opos: output file offset
948 * @len: number of bytes to splice
949 * @flags: splice modifier flags
950 *
951 * Description:
952 * For use by do_sendfile(). splice can easily emulate sendfile, but
953 * doing it in the application would incur an extra system call
954 * (splice in + splice out, as compared to just sendfile()). So this helper
955 * can splice directly through a process-private pipe.
956 *
957 */
958 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
959 loff_t *opos, size_t len, unsigned int flags)
960 {
961 struct splice_desc sd = {
962 .len = len,
963 .total_len = len,
964 .flags = flags,
965 .pos = *ppos,
966 .u.file = out,
967 .opos = opos,
968 };
969 long ret;
970
971 if (unlikely(!(out->f_mode & FMODE_WRITE)))
972 return -EBADF;
973
974 if (unlikely(out->f_flags & O_APPEND))
975 return -EINVAL;
976
977 ret = rw_verify_area(WRITE, out, opos, len);
978 if (unlikely(ret < 0))
979 return ret;
980
981 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
982 if (ret > 0)
983 *ppos = sd.pos;
984
985 return ret;
986 }
987 EXPORT_SYMBOL(do_splice_direct);
988
989 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
990 {
991 for (;;) {
992 if (unlikely(!pipe->readers)) {
993 send_sig(SIGPIPE, current, 0);
994 return -EPIPE;
995 }
996 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
997 return 0;
998 if (flags & SPLICE_F_NONBLOCK)
999 return -EAGAIN;
1000 if (signal_pending(current))
1001 return -ERESTARTSYS;
1002 pipe_wait_writable(pipe);
1003 }
1004 }
1005
1006 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1007 struct pipe_inode_info *opipe,
1008 size_t len, unsigned int flags);
1009
1010 long splice_file_to_pipe(struct file *in,
1011 struct pipe_inode_info *opipe,
1012 loff_t *offset,
1013 size_t len, unsigned int flags)
1014 {
1015 long ret;
1016
1017 pipe_lock(opipe);
1018 ret = wait_for_space(opipe, flags);
1019 if (!ret)
1020 ret = do_splice_to(in, offset, opipe, len, flags);
1021 pipe_unlock(opipe);
1022 if (ret > 0)
1023 wakeup_pipe_readers(opipe);
1024 return ret;
1025 }
1026
1027 /*
1028 * Determine where to splice to/from.
1029 */
1030 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1031 loff_t *off_out, size_t len, unsigned int flags)
1032 {
1033 struct pipe_inode_info *ipipe;
1034 struct pipe_inode_info *opipe;
1035 loff_t offset;
1036 long ret;
1037
1038 if (unlikely(!(in->f_mode & FMODE_READ) ||
1039 !(out->f_mode & FMODE_WRITE)))
1040 return -EBADF;
1041
1042 ipipe = get_pipe_info(in, true);
1043 opipe = get_pipe_info(out, true);
1044
1045 if (ipipe && opipe) {
1046 if (off_in || off_out)
1047 return -ESPIPE;
1048
1049 /* Splicing to self would be fun, but... */
1050 if (ipipe == opipe)
1051 return -EINVAL;
1052
1053 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1054 flags |= SPLICE_F_NONBLOCK;
1055
1056 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1057 }
1058
1059 if (ipipe) {
1060 if (off_in)
1061 return -ESPIPE;
1062 if (off_out) {
1063 if (!(out->f_mode & FMODE_PWRITE))
1064 return -EINVAL;
1065 offset = *off_out;
1066 } else {
1067 offset = out->f_pos;
1068 }
1069
1070 if (unlikely(out->f_flags & O_APPEND))
1071 return -EINVAL;
1072
1073 ret = rw_verify_area(WRITE, out, &offset, len);
1074 if (unlikely(ret < 0))
1075 return ret;
1076
1077 if (in->f_flags & O_NONBLOCK)
1078 flags |= SPLICE_F_NONBLOCK;
1079
1080 file_start_write(out);
1081 ret = do_splice_from(ipipe, out, &offset, len, flags);
1082 file_end_write(out);
1083
1084 if (!off_out)
1085 out->f_pos = offset;
1086 else
1087 *off_out = offset;
1088
1089 return ret;
1090 }
1091
1092 if (opipe) {
1093 if (off_out)
1094 return -ESPIPE;
1095 if (off_in) {
1096 if (!(in->f_mode & FMODE_PREAD))
1097 return -EINVAL;
1098 offset = *off_in;
1099 } else {
1100 offset = in->f_pos;
1101 }
1102
1103 if (out->f_flags & O_NONBLOCK)
1104 flags |= SPLICE_F_NONBLOCK;
1105
1106 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1107 if (!off_in)
1108 in->f_pos = offset;
1109 else
1110 *off_in = offset;
1111
1112 return ret;
1113 }
1114
1115 return -EINVAL;
1116 }
1117
1118 static long __do_splice(struct file *in, loff_t __user *off_in,
1119 struct file *out, loff_t __user *off_out,
1120 size_t len, unsigned int flags)
1121 {
1122 struct pipe_inode_info *ipipe;
1123 struct pipe_inode_info *opipe;
1124 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1125 long ret;
1126
1127 ipipe = get_pipe_info(in, true);
1128 opipe = get_pipe_info(out, true);
1129
1130 if (ipipe && off_in)
1131 return -ESPIPE;
1132 if (opipe && off_out)
1133 return -ESPIPE;
1134
1135 if (off_out) {
1136 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1137 return -EFAULT;
1138 __off_out = &offset;
1139 }
1140 if (off_in) {
1141 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1142 return -EFAULT;
1143 __off_in = &offset;
1144 }
1145
1146 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1147 if (ret < 0)
1148 return ret;
1149
1150 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1151 return -EFAULT;
1152 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1153 return -EFAULT;
1154
1155 return ret;
1156 }
1157
1158 static int iter_to_pipe(struct iov_iter *from,
1159 struct pipe_inode_info *pipe,
1160 unsigned flags)
1161 {
1162 struct pipe_buffer buf = {
1163 .ops = &user_page_pipe_buf_ops,
1164 .flags = flags
1165 };
1166 size_t total = 0;
1167 int ret = 0;
1168 bool failed = false;
1169
1170 while (iov_iter_count(from) && !failed) {
1171 struct page *pages[16];
1172 ssize_t copied;
1173 size_t start;
1174 int n;
1175
1176 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1177 if (copied <= 0) {
1178 ret = copied;
1179 break;
1180 }
1181
1182 for (n = 0; copied; n++, start = 0) {
1183 int size = min_t(int, copied, PAGE_SIZE - start);
1184 if (!failed) {
1185 buf.page = pages[n];
1186 buf.offset = start;
1187 buf.len = size;
1188 ret = add_to_pipe(pipe, &buf);
1189 if (unlikely(ret < 0)) {
1190 failed = true;
1191 } else {
1192 iov_iter_advance(from, ret);
1193 total += ret;
1194 }
1195 } else {
1196 put_page(pages[n]);
1197 }
1198 copied -= size;
1199 }
1200 }
1201 return total ? total : ret;
1202 }
1203
1204 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1205 struct splice_desc *sd)
1206 {
1207 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1208 return n == sd->len ? n : -EFAULT;
1209 }
1210
1211 /*
1212 * For lack of a better implementation, implement vmsplice() to userspace
1213 * as a simple copy of the pipes pages to the user iov.
1214 */
1215 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1216 unsigned int flags)
1217 {
1218 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1219 struct splice_desc sd = {
1220 .total_len = iov_iter_count(iter),
1221 .flags = flags,
1222 .u.data = iter
1223 };
1224 long ret = 0;
1225
1226 if (!pipe)
1227 return -EBADF;
1228
1229 if (sd.total_len) {
1230 pipe_lock(pipe);
1231 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1232 pipe_unlock(pipe);
1233 }
1234
1235 return ret;
1236 }
1237
1238 /*
1239 * vmsplice splices a user address range into a pipe. It can be thought of
1240 * as splice-from-memory, where the regular splice is splice-from-file (or
1241 * to file). In both cases the output is a pipe, naturally.
1242 */
1243 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1244 unsigned int flags)
1245 {
1246 struct pipe_inode_info *pipe;
1247 long ret = 0;
1248 unsigned buf_flag = 0;
1249
1250 if (flags & SPLICE_F_GIFT)
1251 buf_flag = PIPE_BUF_FLAG_GIFT;
1252
1253 pipe = get_pipe_info(file, true);
1254 if (!pipe)
1255 return -EBADF;
1256
1257 pipe_lock(pipe);
1258 ret = wait_for_space(pipe, flags);
1259 if (!ret)
1260 ret = iter_to_pipe(iter, pipe, buf_flag);
1261 pipe_unlock(pipe);
1262 if (ret > 0)
1263 wakeup_pipe_readers(pipe);
1264 return ret;
1265 }
1266
1267 static int vmsplice_type(struct fd f, int *type)
1268 {
1269 if (!f.file)
1270 return -EBADF;
1271 if (f.file->f_mode & FMODE_WRITE) {
1272 *type = WRITE;
1273 } else if (f.file->f_mode & FMODE_READ) {
1274 *type = READ;
1275 } else {
1276 fdput(f);
1277 return -EBADF;
1278 }
1279 return 0;
1280 }
1281
1282 /*
1283 * Note that vmsplice only really supports true splicing _from_ user memory
1284 * to a pipe, not the other way around. Splicing from user memory is a simple
1285 * operation that can be supported without any funky alignment restrictions
1286 * or nasty vm tricks. We simply map in the user memory and fill them into
1287 * a pipe. The reverse isn't quite as easy, though. There are two possible
1288 * solutions for that:
1289 *
1290 * - memcpy() the data internally, at which point we might as well just
1291 * do a regular read() on the buffer anyway.
1292 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1293 * has restriction limitations on both ends of the pipe).
1294 *
1295 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1296 *
1297 */
1298 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1299 unsigned long, nr_segs, unsigned int, flags)
1300 {
1301 struct iovec iovstack[UIO_FASTIOV];
1302 struct iovec *iov = iovstack;
1303 struct iov_iter iter;
1304 ssize_t error;
1305 struct fd f;
1306 int type;
1307
1308 if (unlikely(flags & ~SPLICE_F_ALL))
1309 return -EINVAL;
1310
1311 f = fdget(fd);
1312 error = vmsplice_type(f, &type);
1313 if (error)
1314 return error;
1315
1316 error = import_iovec(type, uiov, nr_segs,
1317 ARRAY_SIZE(iovstack), &iov, &iter);
1318 if (error < 0)
1319 goto out_fdput;
1320
1321 if (!iov_iter_count(&iter))
1322 error = 0;
1323 else if (iov_iter_rw(&iter) == WRITE)
1324 error = vmsplice_to_pipe(f.file, &iter, flags);
1325 else
1326 error = vmsplice_to_user(f.file, &iter, flags);
1327
1328 kfree(iov);
1329 out_fdput:
1330 fdput(f);
1331 return error;
1332 }
1333
1334 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1335 int, fd_out, loff_t __user *, off_out,
1336 size_t, len, unsigned int, flags)
1337 {
1338 struct fd in, out;
1339 long error;
1340
1341 if (unlikely(!len))
1342 return 0;
1343
1344 if (unlikely(flags & ~SPLICE_F_ALL))
1345 return -EINVAL;
1346
1347 error = -EBADF;
1348 in = fdget(fd_in);
1349 if (in.file) {
1350 out = fdget(fd_out);
1351 if (out.file) {
1352 error = __do_splice(in.file, off_in, out.file, off_out,
1353 len, flags);
1354 fdput(out);
1355 }
1356 fdput(in);
1357 }
1358 return error;
1359 }
1360
1361 /*
1362 * Make sure there's data to read. Wait for input if we can, otherwise
1363 * return an appropriate error.
1364 */
1365 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1366 {
1367 int ret;
1368
1369 /*
1370 * Check the pipe occupancy without the inode lock first. This function
1371 * is speculative anyways, so missing one is ok.
1372 */
1373 if (!pipe_empty(pipe->head, pipe->tail))
1374 return 0;
1375
1376 ret = 0;
1377 pipe_lock(pipe);
1378
1379 while (pipe_empty(pipe->head, pipe->tail)) {
1380 if (signal_pending(current)) {
1381 ret = -ERESTARTSYS;
1382 break;
1383 }
1384 if (!pipe->writers)
1385 break;
1386 if (flags & SPLICE_F_NONBLOCK) {
1387 ret = -EAGAIN;
1388 break;
1389 }
1390 pipe_wait_readable(pipe);
1391 }
1392
1393 pipe_unlock(pipe);
1394 return ret;
1395 }
1396
1397 /*
1398 * Make sure there's writeable room. Wait for room if we can, otherwise
1399 * return an appropriate error.
1400 */
1401 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1402 {
1403 int ret;
1404
1405 /*
1406 * Check pipe occupancy without the inode lock first. This function
1407 * is speculative anyways, so missing one is ok.
1408 */
1409 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1410 return 0;
1411
1412 ret = 0;
1413 pipe_lock(pipe);
1414
1415 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1416 if (!pipe->readers) {
1417 send_sig(SIGPIPE, current, 0);
1418 ret = -EPIPE;
1419 break;
1420 }
1421 if (flags & SPLICE_F_NONBLOCK) {
1422 ret = -EAGAIN;
1423 break;
1424 }
1425 if (signal_pending(current)) {
1426 ret = -ERESTARTSYS;
1427 break;
1428 }
1429 pipe_wait_writable(pipe);
1430 }
1431
1432 pipe_unlock(pipe);
1433 return ret;
1434 }
1435
1436 /*
1437 * Splice contents of ipipe to opipe.
1438 */
1439 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1440 struct pipe_inode_info *opipe,
1441 size_t len, unsigned int flags)
1442 {
1443 struct pipe_buffer *ibuf, *obuf;
1444 unsigned int i_head, o_head;
1445 unsigned int i_tail, o_tail;
1446 unsigned int i_mask, o_mask;
1447 int ret = 0;
1448 bool input_wakeup = false;
1449
1450
1451 retry:
1452 ret = ipipe_prep(ipipe, flags);
1453 if (ret)
1454 return ret;
1455
1456 ret = opipe_prep(opipe, flags);
1457 if (ret)
1458 return ret;
1459
1460 /*
1461 * Potential ABBA deadlock, work around it by ordering lock
1462 * grabbing by pipe info address. Otherwise two different processes
1463 * could deadlock (one doing tee from A -> B, the other from B -> A).
1464 */
1465 pipe_double_lock(ipipe, opipe);
1466
1467 i_tail = ipipe->tail;
1468 i_mask = ipipe->ring_size - 1;
1469 o_head = opipe->head;
1470 o_mask = opipe->ring_size - 1;
1471
1472 do {
1473 size_t o_len;
1474
1475 if (!opipe->readers) {
1476 send_sig(SIGPIPE, current, 0);
1477 if (!ret)
1478 ret = -EPIPE;
1479 break;
1480 }
1481
1482 i_head = ipipe->head;
1483 o_tail = opipe->tail;
1484
1485 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1486 break;
1487
1488 /*
1489 * Cannot make any progress, because either the input
1490 * pipe is empty or the output pipe is full.
1491 */
1492 if (pipe_empty(i_head, i_tail) ||
1493 pipe_full(o_head, o_tail, opipe->max_usage)) {
1494 /* Already processed some buffers, break */
1495 if (ret)
1496 break;
1497
1498 if (flags & SPLICE_F_NONBLOCK) {
1499 ret = -EAGAIN;
1500 break;
1501 }
1502
1503 /*
1504 * We raced with another reader/writer and haven't
1505 * managed to process any buffers. A zero return
1506 * value means EOF, so retry instead.
1507 */
1508 pipe_unlock(ipipe);
1509 pipe_unlock(opipe);
1510 goto retry;
1511 }
1512
1513 ibuf = &ipipe->bufs[i_tail & i_mask];
1514 obuf = &opipe->bufs[o_head & o_mask];
1515
1516 if (len >= ibuf->len) {
1517 /*
1518 * Simply move the whole buffer from ipipe to opipe
1519 */
1520 *obuf = *ibuf;
1521 ibuf->ops = NULL;
1522 i_tail++;
1523 ipipe->tail = i_tail;
1524 input_wakeup = true;
1525 o_len = obuf->len;
1526 o_head++;
1527 opipe->head = o_head;
1528 } else {
1529 /*
1530 * Get a reference to this pipe buffer,
1531 * so we can copy the contents over.
1532 */
1533 if (!pipe_buf_get(ipipe, ibuf)) {
1534 if (ret == 0)
1535 ret = -EFAULT;
1536 break;
1537 }
1538 *obuf = *ibuf;
1539
1540 /*
1541 * Don't inherit the gift and merge flags, we need to
1542 * prevent multiple steals of this page.
1543 */
1544 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1545 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1546
1547 obuf->len = len;
1548 ibuf->offset += len;
1549 ibuf->len -= len;
1550 o_len = len;
1551 o_head++;
1552 opipe->head = o_head;
1553 }
1554 ret += o_len;
1555 len -= o_len;
1556 } while (len);
1557
1558 pipe_unlock(ipipe);
1559 pipe_unlock(opipe);
1560
1561 /*
1562 * If we put data in the output pipe, wakeup any potential readers.
1563 */
1564 if (ret > 0)
1565 wakeup_pipe_readers(opipe);
1566
1567 if (input_wakeup)
1568 wakeup_pipe_writers(ipipe);
1569
1570 return ret;
1571 }
1572
1573 /*
1574 * Link contents of ipipe to opipe.
1575 */
1576 static int link_pipe(struct pipe_inode_info *ipipe,
1577 struct pipe_inode_info *opipe,
1578 size_t len, unsigned int flags)
1579 {
1580 struct pipe_buffer *ibuf, *obuf;
1581 unsigned int i_head, o_head;
1582 unsigned int i_tail, o_tail;
1583 unsigned int i_mask, o_mask;
1584 int ret = 0;
1585
1586 /*
1587 * Potential ABBA deadlock, work around it by ordering lock
1588 * grabbing by pipe info address. Otherwise two different processes
1589 * could deadlock (one doing tee from A -> B, the other from B -> A).
1590 */
1591 pipe_double_lock(ipipe, opipe);
1592
1593 i_tail = ipipe->tail;
1594 i_mask = ipipe->ring_size - 1;
1595 o_head = opipe->head;
1596 o_mask = opipe->ring_size - 1;
1597
1598 do {
1599 if (!opipe->readers) {
1600 send_sig(SIGPIPE, current, 0);
1601 if (!ret)
1602 ret = -EPIPE;
1603 break;
1604 }
1605
1606 i_head = ipipe->head;
1607 o_tail = opipe->tail;
1608
1609 /*
1610 * If we have iterated all input buffers or run out of
1611 * output room, break.
1612 */
1613 if (pipe_empty(i_head, i_tail) ||
1614 pipe_full(o_head, o_tail, opipe->max_usage))
1615 break;
1616
1617 ibuf = &ipipe->bufs[i_tail & i_mask];
1618 obuf = &opipe->bufs[o_head & o_mask];
1619
1620 /*
1621 * Get a reference to this pipe buffer,
1622 * so we can copy the contents over.
1623 */
1624 if (!pipe_buf_get(ipipe, ibuf)) {
1625 if (ret == 0)
1626 ret = -EFAULT;
1627 break;
1628 }
1629
1630 *obuf = *ibuf;
1631
1632 /*
1633 * Don't inherit the gift and merge flag, we need to prevent
1634 * multiple steals of this page.
1635 */
1636 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1637 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1638
1639 if (obuf->len > len)
1640 obuf->len = len;
1641 ret += obuf->len;
1642 len -= obuf->len;
1643
1644 o_head++;
1645 opipe->head = o_head;
1646 i_tail++;
1647 } while (len);
1648
1649 pipe_unlock(ipipe);
1650 pipe_unlock(opipe);
1651
1652 /*
1653 * If we put data in the output pipe, wakeup any potential readers.
1654 */
1655 if (ret > 0)
1656 wakeup_pipe_readers(opipe);
1657
1658 return ret;
1659 }
1660
1661 /*
1662 * This is a tee(1) implementation that works on pipes. It doesn't copy
1663 * any data, it simply references the 'in' pages on the 'out' pipe.
1664 * The 'flags' used are the SPLICE_F_* variants, currently the only
1665 * applicable one is SPLICE_F_NONBLOCK.
1666 */
1667 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1668 {
1669 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1670 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1671 int ret = -EINVAL;
1672
1673 if (unlikely(!(in->f_mode & FMODE_READ) ||
1674 !(out->f_mode & FMODE_WRITE)))
1675 return -EBADF;
1676
1677 /*
1678 * Duplicate the contents of ipipe to opipe without actually
1679 * copying the data.
1680 */
1681 if (ipipe && opipe && ipipe != opipe) {
1682 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1683 flags |= SPLICE_F_NONBLOCK;
1684
1685 /*
1686 * Keep going, unless we encounter an error. The ipipe/opipe
1687 * ordering doesn't really matter.
1688 */
1689 ret = ipipe_prep(ipipe, flags);
1690 if (!ret) {
1691 ret = opipe_prep(opipe, flags);
1692 if (!ret)
1693 ret = link_pipe(ipipe, opipe, len, flags);
1694 }
1695 }
1696
1697 return ret;
1698 }
1699
1700 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1701 {
1702 struct fd in, out;
1703 int error;
1704
1705 if (unlikely(flags & ~SPLICE_F_ALL))
1706 return -EINVAL;
1707
1708 if (unlikely(!len))
1709 return 0;
1710
1711 error = -EBADF;
1712 in = fdget(fdin);
1713 if (in.file) {
1714 out = fdget(fdout);
1715 if (out.file) {
1716 error = do_tee(in.file, out.file, len, flags);
1717 fdput(out);
1718 }
1719 fdput(in);
1720 }
1721
1722 return error;
1723 }