]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
[SCSI] libfc: fix memory leakage in local port
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 /**
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
168 * @spd: data to fill
169 *
170 * Description:
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
174 *
175 */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
181
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
185
186 pipe_lock(pipe);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < pipe->buffers) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < pipe->buffers)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 pipe_unlock(pipe);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
259
260 return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 page_cache_release(spd->pages[i]);
266 }
267
268 /*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 return 0;
276
277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279
280 if (spd->pages && spd->partial)
281 return 0;
282
283 kfree(spd->pages);
284 kfree(spd->partial);
285 return -ENOMEM;
286 }
287
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 struct splice_pipe_desc *spd)
290 {
291 if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 return;
293
294 kfree(spd->pages);
295 kfree(spd->partial);
296 }
297
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302 {
303 struct address_space *mapping = in->f_mapping;
304 unsigned int loff, nr_pages, req_pages;
305 struct page *pages[PIPE_DEF_BUFFERS];
306 struct partial_page partial[PIPE_DEF_BUFFERS];
307 struct page *page;
308 pgoff_t index, end_index;
309 loff_t isize;
310 int error, page_nr;
311 struct splice_pipe_desc spd = {
312 .pages = pages,
313 .partial = partial,
314 .flags = flags,
315 .ops = &page_cache_pipe_buf_ops,
316 .spd_release = spd_release_page,
317 };
318
319 if (splice_grow_spd(pipe, &spd))
320 return -ENOMEM;
321
322 index = *ppos >> PAGE_CACHE_SHIFT;
323 loff = *ppos & ~PAGE_CACHE_MASK;
324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 nr_pages = min(req_pages, pipe->buffers);
326
327 /*
328 * Lookup the (hopefully) full range of pages we need.
329 */
330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 index += spd.nr_pages;
332
333 /*
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
336 */
337 if (spd.nr_pages < nr_pages)
338 page_cache_sync_readahead(mapping, &in->f_ra, in,
339 index, req_pages - spd.nr_pages);
340
341 error = 0;
342 while (spd.nr_pages < nr_pages) {
343 /*
344 * Page could be there, find_get_pages_contig() breaks on
345 * the first hole.
346 */
347 page = find_get_page(mapping, index);
348 if (!page) {
349 /*
350 * page didn't exist, allocate one.
351 */
352 page = page_cache_alloc_cold(mapping);
353 if (!page)
354 break;
355
356 error = add_to_page_cache_lru(page, mapping, index,
357 GFP_KERNEL);
358 if (unlikely(error)) {
359 page_cache_release(page);
360 if (error == -EEXIST)
361 continue;
362 break;
363 }
364 /*
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
367 */
368 unlock_page(page);
369 }
370
371 spd.pages[spd.nr_pages++] = page;
372 index++;
373 }
374
375 /*
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
378 */
379 index = *ppos >> PAGE_CACHE_SHIFT;
380 nr_pages = spd.nr_pages;
381 spd.nr_pages = 0;
382 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 unsigned int this_len;
384
385 if (!len)
386 break;
387
388 /*
389 * this_len is the max we'll use from this page
390 */
391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 page = spd.pages[page_nr];
393
394 if (PageReadahead(page))
395 page_cache_async_readahead(mapping, &in->f_ra, in,
396 page, index, req_pages - page_nr);
397
398 /*
399 * If the page isn't uptodate, we may need to start io on it
400 */
401 if (!PageUptodate(page)) {
402 lock_page(page);
403
404 /*
405 * Page was truncated, or invalidated by the
406 * filesystem. Redo the find/create, but this time the
407 * page is kept locked, so there's no chance of another
408 * race with truncate/invalidate.
409 */
410 if (!page->mapping) {
411 unlock_page(page);
412 page = find_or_create_page(mapping, index,
413 mapping_gfp_mask(mapping));
414
415 if (!page) {
416 error = -ENOMEM;
417 break;
418 }
419 page_cache_release(spd.pages[page_nr]);
420 spd.pages[page_nr] = page;
421 }
422 /*
423 * page was already under io and is now done, great
424 */
425 if (PageUptodate(page)) {
426 unlock_page(page);
427 goto fill_it;
428 }
429
430 /*
431 * need to read in the page
432 */
433 error = mapping->a_ops->readpage(in, page);
434 if (unlikely(error)) {
435 /*
436 * We really should re-lookup the page here,
437 * but it complicates things a lot. Instead
438 * lets just do what we already stored, and
439 * we'll get it the next time we are called.
440 */
441 if (error == AOP_TRUNCATED_PAGE)
442 error = 0;
443
444 break;
445 }
446 }
447 fill_it:
448 /*
449 * i_size must be checked after PageUptodate.
450 */
451 isize = i_size_read(mapping->host);
452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 if (unlikely(!isize || index > end_index))
454 break;
455
456 /*
457 * if this is the last page, see if we need to shrink
458 * the length and stop
459 */
460 if (end_index == index) {
461 unsigned int plen;
462
463 /*
464 * max good bytes in this page
465 */
466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 if (plen <= loff)
468 break;
469
470 /*
471 * force quit after adding this page
472 */
473 this_len = min(this_len, plen - loff);
474 len = this_len;
475 }
476
477 spd.partial[page_nr].offset = loff;
478 spd.partial[page_nr].len = this_len;
479 len -= this_len;
480 loff = 0;
481 spd.nr_pages++;
482 index++;
483 }
484
485 /*
486 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 * we got, 'nr_pages' is how many pages are in the map.
488 */
489 while (page_nr < nr_pages)
490 page_cache_release(spd.pages[page_nr++]);
491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492
493 if (spd.nr_pages)
494 error = splice_to_pipe(pipe, &spd);
495
496 splice_shrink_spd(pipe, &spd);
497 return error;
498 }
499
500 /**
501 * generic_file_splice_read - splice data from file to a pipe
502 * @in: file to splice from
503 * @ppos: position in @in
504 * @pipe: pipe to splice to
505 * @len: number of bytes to splice
506 * @flags: splice modifier flags
507 *
508 * Description:
509 * Will read pages from given file and fill them into a pipe. Can be
510 * used as long as the address_space operations for the source implements
511 * a readpage() hook.
512 *
513 */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 struct pipe_inode_info *pipe, size_t len,
516 unsigned int flags)
517 {
518 loff_t isize, left;
519 int ret;
520
521 isize = i_size_read(in->f_mapping->host);
522 if (unlikely(*ppos >= isize))
523 return 0;
524
525 left = isize - *ppos;
526 if (unlikely(left < len))
527 len = left;
528
529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 if (ret > 0) {
531 *ppos += ret;
532 file_accessed(in);
533 }
534
535 return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 .can_merge = 0,
541 .map = generic_pipe_buf_map,
542 .unmap = generic_pipe_buf_unmap,
543 .confirm = generic_pipe_buf_confirm,
544 .release = generic_pipe_buf_release,
545 .steal = generic_pipe_buf_steal,
546 .get = generic_pipe_buf_get,
547 };
548
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 unsigned long vlen, loff_t offset)
551 {
552 mm_segment_t old_fs;
553 loff_t pos = offset;
554 ssize_t res;
555
556 old_fs = get_fs();
557 set_fs(get_ds());
558 /* The cast to a user pointer is valid due to the set_fs() */
559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 set_fs(old_fs);
561
562 return res;
563 }
564
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 loff_t pos)
567 {
568 mm_segment_t old_fs;
569 ssize_t res;
570
571 old_fs = get_fs();
572 set_fs(get_ds());
573 /* The cast to a user pointer is valid due to the set_fs() */
574 res = vfs_write(file, (const char __user *)buf, count, &pos);
575 set_fs(old_fs);
576
577 return res;
578 }
579
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 struct pipe_inode_info *pipe, size_t len,
582 unsigned int flags)
583 {
584 unsigned int nr_pages;
585 unsigned int nr_freed;
586 size_t offset;
587 struct page *pages[PIPE_DEF_BUFFERS];
588 struct partial_page partial[PIPE_DEF_BUFFERS];
589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 ssize_t res;
591 size_t this_len;
592 int error;
593 int i;
594 struct splice_pipe_desc spd = {
595 .pages = pages,
596 .partial = partial,
597 .flags = flags,
598 .ops = &default_pipe_buf_ops,
599 .spd_release = spd_release_page,
600 };
601
602 if (splice_grow_spd(pipe, &spd))
603 return -ENOMEM;
604
605 res = -ENOMEM;
606 vec = __vec;
607 if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 if (!vec)
610 goto shrink_ret;
611 }
612
613 offset = *ppos & ~PAGE_CACHE_MASK;
614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615
616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 struct page *page;
618
619 page = alloc_page(GFP_USER);
620 error = -ENOMEM;
621 if (!page)
622 goto err;
623
624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 vec[i].iov_base = (void __user *) page_address(page);
626 vec[i].iov_len = this_len;
627 spd.pages[i] = page;
628 spd.nr_pages++;
629 len -= this_len;
630 offset = 0;
631 }
632
633 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 if (res < 0) {
635 error = res;
636 goto err;
637 }
638
639 error = 0;
640 if (!res)
641 goto err;
642
643 nr_freed = 0;
644 for (i = 0; i < spd.nr_pages; i++) {
645 this_len = min_t(size_t, vec[i].iov_len, res);
646 spd.partial[i].offset = 0;
647 spd.partial[i].len = this_len;
648 if (!this_len) {
649 __free_page(spd.pages[i]);
650 spd.pages[i] = NULL;
651 nr_freed++;
652 }
653 res -= this_len;
654 }
655 spd.nr_pages -= nr_freed;
656
657 res = splice_to_pipe(pipe, &spd);
658 if (res > 0)
659 *ppos += res;
660
661 shrink_ret:
662 if (vec != __vec)
663 kfree(vec);
664 splice_shrink_spd(pipe, &spd);
665 return res;
666
667 err:
668 for (i = 0; i < spd.nr_pages; i++)
669 __free_page(spd.pages[i]);
670
671 res = error;
672 goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675
676 /*
677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678 * using sendpage(). Return the number of bytes sent.
679 */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 struct file *file = sd->u.file;
684 loff_t pos = sd->pos;
685 int ret, more;
686
687 ret = buf->ops->confirm(pipe, buf);
688 if (!ret) {
689 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
690 if (file->f_op && file->f_op->sendpage)
691 ret = file->f_op->sendpage(file, buf->page, buf->offset,
692 sd->len, &pos, more);
693 else
694 ret = -EINVAL;
695 }
696
697 return ret;
698 }
699
700 /*
701 * This is a little more tricky than the file -> pipe splicing. There are
702 * basically three cases:
703 *
704 * - Destination page already exists in the address space and there
705 * are users of it. For that case we have no other option that
706 * copying the data. Tough luck.
707 * - Destination page already exists in the address space, but there
708 * are no users of it. Make sure it's uptodate, then drop it. Fall
709 * through to last case.
710 * - Destination page does not exist, we can add the pipe page to
711 * the page cache and avoid the copy.
712 *
713 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
714 * sd->flags), we attempt to migrate pages from the pipe to the output
715 * file address space page cache. This is possible if no one else has
716 * the pipe page referenced outside of the pipe and page cache. If
717 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
718 * a new page in the output file page cache and fill/dirty that.
719 */
720 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
721 struct splice_desc *sd)
722 {
723 struct file *file = sd->u.file;
724 struct address_space *mapping = file->f_mapping;
725 unsigned int offset, this_len;
726 struct page *page;
727 void *fsdata;
728 int ret;
729
730 /*
731 * make sure the data in this buffer is uptodate
732 */
733 ret = buf->ops->confirm(pipe, buf);
734 if (unlikely(ret))
735 return ret;
736
737 offset = sd->pos & ~PAGE_CACHE_MASK;
738
739 this_len = sd->len;
740 if (this_len + offset > PAGE_CACHE_SIZE)
741 this_len = PAGE_CACHE_SIZE - offset;
742
743 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
744 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
745 if (unlikely(ret))
746 goto out;
747
748 if (buf->page != page) {
749 /*
750 * Careful, ->map() uses KM_USER0!
751 */
752 char *src = buf->ops->map(pipe, buf, 1);
753 char *dst = kmap_atomic(page, KM_USER1);
754
755 memcpy(dst + offset, src + buf->offset, this_len);
756 flush_dcache_page(page);
757 kunmap_atomic(dst, KM_USER1);
758 buf->ops->unmap(pipe, buf, src);
759 }
760 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
761 page, fsdata);
762 out:
763 return ret;
764 }
765 EXPORT_SYMBOL(pipe_to_file);
766
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
768 {
769 smp_mb();
770 if (waitqueue_active(&pipe->wait))
771 wake_up_interruptible(&pipe->wait);
772 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
773 }
774
775 /**
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
780 *
781 * Description:
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
789 *
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
793 * destination.
794 */
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
796 splice_actor *actor)
797 {
798 int ret;
799
800 while (pipe->nrbufs) {
801 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 const struct pipe_buf_operations *ops = buf->ops;
803
804 sd->len = buf->len;
805 if (sd->len > sd->total_len)
806 sd->len = sd->total_len;
807
808 ret = actor(pipe, buf, sd);
809 if (ret <= 0) {
810 if (ret == -ENODATA)
811 ret = 0;
812 return ret;
813 }
814 buf->offset += ret;
815 buf->len -= ret;
816
817 sd->num_spliced += ret;
818 sd->len -= ret;
819 sd->pos += ret;
820 sd->total_len -= ret;
821
822 if (!buf->len) {
823 buf->ops = NULL;
824 ops->release(pipe, buf);
825 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
826 pipe->nrbufs--;
827 if (pipe->inode)
828 sd->need_wakeup = true;
829 }
830
831 if (!sd->total_len)
832 return 0;
833 }
834
835 return 1;
836 }
837 EXPORT_SYMBOL(splice_from_pipe_feed);
838
839 /**
840 * splice_from_pipe_next - wait for some data to splice from
841 * @pipe: pipe to splice from
842 * @sd: information about the splice operation
843 *
844 * Description:
845 * This function will wait for some data and return a positive
846 * value (one) if pipe buffers are available. It will return zero
847 * or -errno if no more data needs to be spliced.
848 */
849 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 {
851 while (!pipe->nrbufs) {
852 if (!pipe->writers)
853 return 0;
854
855 if (!pipe->waiting_writers && sd->num_spliced)
856 return 0;
857
858 if (sd->flags & SPLICE_F_NONBLOCK)
859 return -EAGAIN;
860
861 if (signal_pending(current))
862 return -ERESTARTSYS;
863
864 if (sd->need_wakeup) {
865 wakeup_pipe_writers(pipe);
866 sd->need_wakeup = false;
867 }
868
869 pipe_wait(pipe);
870 }
871
872 return 1;
873 }
874 EXPORT_SYMBOL(splice_from_pipe_next);
875
876 /**
877 * splice_from_pipe_begin - start splicing from pipe
878 * @sd: information about the splice operation
879 *
880 * Description:
881 * This function should be called before a loop containing
882 * splice_from_pipe_next() and splice_from_pipe_feed() to
883 * initialize the necessary fields of @sd.
884 */
885 void splice_from_pipe_begin(struct splice_desc *sd)
886 {
887 sd->num_spliced = 0;
888 sd->need_wakeup = false;
889 }
890 EXPORT_SYMBOL(splice_from_pipe_begin);
891
892 /**
893 * splice_from_pipe_end - finish splicing from pipe
894 * @pipe: pipe to splice from
895 * @sd: information about the splice operation
896 *
897 * Description:
898 * This function will wake up pipe writers if necessary. It should
899 * be called after a loop containing splice_from_pipe_next() and
900 * splice_from_pipe_feed().
901 */
902 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 {
904 if (sd->need_wakeup)
905 wakeup_pipe_writers(pipe);
906 }
907 EXPORT_SYMBOL(splice_from_pipe_end);
908
909 /**
910 * __splice_from_pipe - splice data from a pipe to given actor
911 * @pipe: pipe to splice from
912 * @sd: information to @actor
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * This function does little more than loop over the pipe and call
917 * @actor to do the actual moving of a single struct pipe_buffer to
918 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
919 * pipe_to_user.
920 *
921 */
922 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
923 splice_actor *actor)
924 {
925 int ret;
926
927 splice_from_pipe_begin(sd);
928 do {
929 ret = splice_from_pipe_next(pipe, sd);
930 if (ret > 0)
931 ret = splice_from_pipe_feed(pipe, sd, actor);
932 } while (ret > 0);
933 splice_from_pipe_end(pipe, sd);
934
935 return sd->num_spliced ? sd->num_spliced : ret;
936 }
937 EXPORT_SYMBOL(__splice_from_pipe);
938
939 /**
940 * splice_from_pipe - splice data from a pipe to a file
941 * @pipe: pipe to splice from
942 * @out: file to splice to
943 * @ppos: position in @out
944 * @len: how many bytes to splice
945 * @flags: splice modifier flags
946 * @actor: handler that splices the data
947 *
948 * Description:
949 * See __splice_from_pipe. This function locks the pipe inode,
950 * otherwise it's identical to __splice_from_pipe().
951 *
952 */
953 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
954 loff_t *ppos, size_t len, unsigned int flags,
955 splice_actor *actor)
956 {
957 ssize_t ret;
958 struct splice_desc sd = {
959 .total_len = len,
960 .flags = flags,
961 .pos = *ppos,
962 .u.file = out,
963 };
964
965 pipe_lock(pipe);
966 ret = __splice_from_pipe(pipe, &sd, actor);
967 pipe_unlock(pipe);
968
969 return ret;
970 }
971
972 /**
973 * generic_file_splice_write - splice data from a pipe to a file
974 * @pipe: pipe info
975 * @out: file to write to
976 * @ppos: position in @out
977 * @len: number of bytes to splice
978 * @flags: splice modifier flags
979 *
980 * Description:
981 * Will either move or copy pages (determined by @flags options) from
982 * the given pipe inode to the given file.
983 *
984 */
985 ssize_t
986 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
987 loff_t *ppos, size_t len, unsigned int flags)
988 {
989 struct address_space *mapping = out->f_mapping;
990 struct inode *inode = mapping->host;
991 struct splice_desc sd = {
992 .total_len = len,
993 .flags = flags,
994 .pos = *ppos,
995 .u.file = out,
996 };
997 ssize_t ret;
998
999 pipe_lock(pipe);
1000
1001 splice_from_pipe_begin(&sd);
1002 do {
1003 ret = splice_from_pipe_next(pipe, &sd);
1004 if (ret <= 0)
1005 break;
1006
1007 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1008 ret = file_remove_suid(out);
1009 if (!ret) {
1010 file_update_time(out);
1011 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012 }
1013 mutex_unlock(&inode->i_mutex);
1014 } while (ret > 0);
1015 splice_from_pipe_end(pipe, &sd);
1016
1017 pipe_unlock(pipe);
1018
1019 if (sd.num_spliced)
1020 ret = sd.num_spliced;
1021
1022 if (ret > 0) {
1023 unsigned long nr_pages;
1024 int err;
1025
1026 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027
1028 err = generic_write_sync(out, *ppos, ret);
1029 if (err)
1030 ret = err;
1031 else
1032 *ppos += ret;
1033 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1034 }
1035
1036 return ret;
1037 }
1038
1039 EXPORT_SYMBOL(generic_file_splice_write);
1040
1041 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1042 struct splice_desc *sd)
1043 {
1044 int ret;
1045 void *data;
1046
1047 ret = buf->ops->confirm(pipe, buf);
1048 if (ret)
1049 return ret;
1050
1051 data = buf->ops->map(pipe, buf, 0);
1052 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1053 buf->ops->unmap(pipe, buf, data);
1054
1055 return ret;
1056 }
1057
1058 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1059 struct file *out, loff_t *ppos,
1060 size_t len, unsigned int flags)
1061 {
1062 ssize_t ret;
1063
1064 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1065 if (ret > 0)
1066 *ppos += ret;
1067
1068 return ret;
1069 }
1070
1071 /**
1072 * generic_splice_sendpage - splice data from a pipe to a socket
1073 * @pipe: pipe to splice from
1074 * @out: socket to write to
1075 * @ppos: position in @out
1076 * @len: number of bytes to splice
1077 * @flags: splice modifier flags
1078 *
1079 * Description:
1080 * Will send @len bytes from the pipe to a network socket. No data copying
1081 * is involved.
1082 *
1083 */
1084 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1088 }
1089
1090 EXPORT_SYMBOL(generic_splice_sendpage);
1091
1092 /*
1093 * Attempt to initiate a splice from pipe to file.
1094 */
1095 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1096 loff_t *ppos, size_t len, unsigned int flags)
1097 {
1098 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1099 loff_t *, size_t, unsigned int);
1100 int ret;
1101
1102 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1103 return -EBADF;
1104
1105 if (unlikely(out->f_flags & O_APPEND))
1106 return -EINVAL;
1107
1108 ret = rw_verify_area(WRITE, out, ppos, len);
1109 if (unlikely(ret < 0))
1110 return ret;
1111
1112 if (out->f_op && out->f_op->splice_write)
1113 splice_write = out->f_op->splice_write;
1114 else
1115 splice_write = default_file_splice_write;
1116
1117 return splice_write(pipe, out, ppos, len, flags);
1118 }
1119
1120 /*
1121 * Attempt to initiate a splice from a file to a pipe.
1122 */
1123 static long do_splice_to(struct file *in, loff_t *ppos,
1124 struct pipe_inode_info *pipe, size_t len,
1125 unsigned int flags)
1126 {
1127 ssize_t (*splice_read)(struct file *, loff_t *,
1128 struct pipe_inode_info *, size_t, unsigned int);
1129 int ret;
1130
1131 if (unlikely(!(in->f_mode & FMODE_READ)))
1132 return -EBADF;
1133
1134 ret = rw_verify_area(READ, in, ppos, len);
1135 if (unlikely(ret < 0))
1136 return ret;
1137
1138 if (in->f_op && in->f_op->splice_read)
1139 splice_read = in->f_op->splice_read;
1140 else
1141 splice_read = default_file_splice_read;
1142
1143 return splice_read(in, ppos, pipe, len, flags);
1144 }
1145
1146 /**
1147 * splice_direct_to_actor - splices data directly between two non-pipes
1148 * @in: file to splice from
1149 * @sd: actor information on where to splice to
1150 * @actor: handles the data splicing
1151 *
1152 * Description:
1153 * This is a special case helper to splice directly between two
1154 * points, without requiring an explicit pipe. Internally an allocated
1155 * pipe is cached in the process, and reused during the lifetime of
1156 * that process.
1157 *
1158 */
1159 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1160 splice_direct_actor *actor)
1161 {
1162 struct pipe_inode_info *pipe;
1163 long ret, bytes;
1164 umode_t i_mode;
1165 size_t len;
1166 int i, flags;
1167
1168 /*
1169 * We require the input being a regular file, as we don't want to
1170 * randomly drop data for eg socket -> socket splicing. Use the
1171 * piped splicing for that!
1172 */
1173 i_mode = in->f_path.dentry->d_inode->i_mode;
1174 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1175 return -EINVAL;
1176
1177 /*
1178 * neither in nor out is a pipe, setup an internal pipe attached to
1179 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 */
1181 pipe = current->splice_pipe;
1182 if (unlikely(!pipe)) {
1183 pipe = alloc_pipe_info(NULL);
1184 if (!pipe)
1185 return -ENOMEM;
1186
1187 /*
1188 * We don't have an immediate reader, but we'll read the stuff
1189 * out of the pipe right after the splice_to_pipe(). So set
1190 * PIPE_READERS appropriately.
1191 */
1192 pipe->readers = 1;
1193
1194 current->splice_pipe = pipe;
1195 }
1196
1197 /*
1198 * Do the splice.
1199 */
1200 ret = 0;
1201 bytes = 0;
1202 len = sd->total_len;
1203 flags = sd->flags;
1204
1205 /*
1206 * Don't block on output, we have to drain the direct pipe.
1207 */
1208 sd->flags &= ~SPLICE_F_NONBLOCK;
1209
1210 while (len) {
1211 size_t read_len;
1212 loff_t pos = sd->pos, prev_pos = pos;
1213
1214 ret = do_splice_to(in, &pos, pipe, len, flags);
1215 if (unlikely(ret <= 0))
1216 goto out_release;
1217
1218 read_len = ret;
1219 sd->total_len = read_len;
1220
1221 /*
1222 * NOTE: nonblocking mode only applies to the input. We
1223 * must not do the output in nonblocking mode as then we
1224 * could get stuck data in the internal pipe:
1225 */
1226 ret = actor(pipe, sd);
1227 if (unlikely(ret <= 0)) {
1228 sd->pos = prev_pos;
1229 goto out_release;
1230 }
1231
1232 bytes += ret;
1233 len -= ret;
1234 sd->pos = pos;
1235
1236 if (ret < read_len) {
1237 sd->pos = prev_pos + ret;
1238 goto out_release;
1239 }
1240 }
1241
1242 done:
1243 pipe->nrbufs = pipe->curbuf = 0;
1244 file_accessed(in);
1245 return bytes;
1246
1247 out_release:
1248 /*
1249 * If we did an incomplete transfer we must release
1250 * the pipe buffers in question:
1251 */
1252 for (i = 0; i < pipe->buffers; i++) {
1253 struct pipe_buffer *buf = pipe->bufs + i;
1254
1255 if (buf->ops) {
1256 buf->ops->release(pipe, buf);
1257 buf->ops = NULL;
1258 }
1259 }
1260
1261 if (!bytes)
1262 bytes = ret;
1263
1264 goto done;
1265 }
1266 EXPORT_SYMBOL(splice_direct_to_actor);
1267
1268 static int direct_splice_actor(struct pipe_inode_info *pipe,
1269 struct splice_desc *sd)
1270 {
1271 struct file *file = sd->u.file;
1272
1273 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1274 sd->flags);
1275 }
1276
1277 /**
1278 * do_splice_direct - splices data directly between two files
1279 * @in: file to splice from
1280 * @ppos: input file offset
1281 * @out: file to splice to
1282 * @len: number of bytes to splice
1283 * @flags: splice modifier flags
1284 *
1285 * Description:
1286 * For use by do_sendfile(). splice can easily emulate sendfile, but
1287 * doing it in the application would incur an extra system call
1288 * (splice in + splice out, as compared to just sendfile()). So this helper
1289 * can splice directly through a process-private pipe.
1290 *
1291 */
1292 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1293 size_t len, unsigned int flags)
1294 {
1295 struct splice_desc sd = {
1296 .len = len,
1297 .total_len = len,
1298 .flags = flags,
1299 .pos = *ppos,
1300 .u.file = out,
1301 };
1302 long ret;
1303
1304 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1305 if (ret > 0)
1306 *ppos = sd.pos;
1307
1308 return ret;
1309 }
1310
1311 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1312 struct pipe_inode_info *opipe,
1313 size_t len, unsigned int flags);
1314
1315 /*
1316 * Determine where to splice to/from.
1317 */
1318 static long do_splice(struct file *in, loff_t __user *off_in,
1319 struct file *out, loff_t __user *off_out,
1320 size_t len, unsigned int flags)
1321 {
1322 struct pipe_inode_info *ipipe;
1323 struct pipe_inode_info *opipe;
1324 loff_t offset, *off;
1325 long ret;
1326
1327 ipipe = get_pipe_info(in);
1328 opipe = get_pipe_info(out);
1329
1330 if (ipipe && opipe) {
1331 if (off_in || off_out)
1332 return -ESPIPE;
1333
1334 if (!(in->f_mode & FMODE_READ))
1335 return -EBADF;
1336
1337 if (!(out->f_mode & FMODE_WRITE))
1338 return -EBADF;
1339
1340 /* Splicing to self would be fun, but... */
1341 if (ipipe == opipe)
1342 return -EINVAL;
1343
1344 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1345 }
1346
1347 if (ipipe) {
1348 if (off_in)
1349 return -ESPIPE;
1350 if (off_out) {
1351 if (!(out->f_mode & FMODE_PWRITE))
1352 return -EINVAL;
1353 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1354 return -EFAULT;
1355 off = &offset;
1356 } else
1357 off = &out->f_pos;
1358
1359 ret = do_splice_from(ipipe, out, off, len, flags);
1360
1361 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1362 ret = -EFAULT;
1363
1364 return ret;
1365 }
1366
1367 if (opipe) {
1368 if (off_out)
1369 return -ESPIPE;
1370 if (off_in) {
1371 if (!(in->f_mode & FMODE_PREAD))
1372 return -EINVAL;
1373 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1374 return -EFAULT;
1375 off = &offset;
1376 } else
1377 off = &in->f_pos;
1378
1379 ret = do_splice_to(in, off, opipe, len, flags);
1380
1381 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1382 ret = -EFAULT;
1383
1384 return ret;
1385 }
1386
1387 return -EINVAL;
1388 }
1389
1390 /*
1391 * Map an iov into an array of pages and offset/length tupples. With the
1392 * partial_page structure, we can map several non-contiguous ranges into
1393 * our ones pages[] map instead of splitting that operation into pieces.
1394 * Could easily be exported as a generic helper for other users, in which
1395 * case one would probably want to add a 'max_nr_pages' parameter as well.
1396 */
1397 static int get_iovec_page_array(const struct iovec __user *iov,
1398 unsigned int nr_vecs, struct page **pages,
1399 struct partial_page *partial, int aligned,
1400 unsigned int pipe_buffers)
1401 {
1402 int buffers = 0, error = 0;
1403
1404 while (nr_vecs) {
1405 unsigned long off, npages;
1406 struct iovec entry;
1407 void __user *base;
1408 size_t len;
1409 int i;
1410
1411 error = -EFAULT;
1412 if (copy_from_user(&entry, iov, sizeof(entry)))
1413 break;
1414
1415 base = entry.iov_base;
1416 len = entry.iov_len;
1417
1418 /*
1419 * Sanity check this iovec. 0 read succeeds.
1420 */
1421 error = 0;
1422 if (unlikely(!len))
1423 break;
1424 error = -EFAULT;
1425 if (!access_ok(VERIFY_READ, base, len))
1426 break;
1427
1428 /*
1429 * Get this base offset and number of pages, then map
1430 * in the user pages.
1431 */
1432 off = (unsigned long) base & ~PAGE_MASK;
1433
1434 /*
1435 * If asked for alignment, the offset must be zero and the
1436 * length a multiple of the PAGE_SIZE.
1437 */
1438 error = -EINVAL;
1439 if (aligned && (off || len & ~PAGE_MASK))
1440 break;
1441
1442 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1443 if (npages > pipe_buffers - buffers)
1444 npages = pipe_buffers - buffers;
1445
1446 error = get_user_pages_fast((unsigned long)base, npages,
1447 0, &pages[buffers]);
1448
1449 if (unlikely(error <= 0))
1450 break;
1451
1452 /*
1453 * Fill this contiguous range into the partial page map.
1454 */
1455 for (i = 0; i < error; i++) {
1456 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1457
1458 partial[buffers].offset = off;
1459 partial[buffers].len = plen;
1460
1461 off = 0;
1462 len -= plen;
1463 buffers++;
1464 }
1465
1466 /*
1467 * We didn't complete this iov, stop here since it probably
1468 * means we have to move some of this into a pipe to
1469 * be able to continue.
1470 */
1471 if (len)
1472 break;
1473
1474 /*
1475 * Don't continue if we mapped fewer pages than we asked for,
1476 * or if we mapped the max number of pages that we have
1477 * room for.
1478 */
1479 if (error < npages || buffers == pipe_buffers)
1480 break;
1481
1482 nr_vecs--;
1483 iov++;
1484 }
1485
1486 if (buffers)
1487 return buffers;
1488
1489 return error;
1490 }
1491
1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1493 struct splice_desc *sd)
1494 {
1495 char *src;
1496 int ret;
1497
1498 ret = buf->ops->confirm(pipe, buf);
1499 if (unlikely(ret))
1500 return ret;
1501
1502 /*
1503 * See if we can use the atomic maps, by prefaulting in the
1504 * pages and doing an atomic copy
1505 */
1506 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1507 src = buf->ops->map(pipe, buf, 1);
1508 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1509 sd->len);
1510 buf->ops->unmap(pipe, buf, src);
1511 if (!ret) {
1512 ret = sd->len;
1513 goto out;
1514 }
1515 }
1516
1517 /*
1518 * No dice, use slow non-atomic map and copy
1519 */
1520 src = buf->ops->map(pipe, buf, 0);
1521
1522 ret = sd->len;
1523 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1524 ret = -EFAULT;
1525
1526 buf->ops->unmap(pipe, buf, src);
1527 out:
1528 if (ret > 0)
1529 sd->u.userptr += ret;
1530 return ret;
1531 }
1532
1533 /*
1534 * For lack of a better implementation, implement vmsplice() to userspace
1535 * as a simple copy of the pipes pages to the user iov.
1536 */
1537 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1538 unsigned long nr_segs, unsigned int flags)
1539 {
1540 struct pipe_inode_info *pipe;
1541 struct splice_desc sd;
1542 ssize_t size;
1543 int error;
1544 long ret;
1545
1546 pipe = get_pipe_info(file);
1547 if (!pipe)
1548 return -EBADF;
1549
1550 pipe_lock(pipe);
1551
1552 error = ret = 0;
1553 while (nr_segs) {
1554 void __user *base;
1555 size_t len;
1556
1557 /*
1558 * Get user address base and length for this iovec.
1559 */
1560 error = get_user(base, &iov->iov_base);
1561 if (unlikely(error))
1562 break;
1563 error = get_user(len, &iov->iov_len);
1564 if (unlikely(error))
1565 break;
1566
1567 /*
1568 * Sanity check this iovec. 0 read succeeds.
1569 */
1570 if (unlikely(!len))
1571 break;
1572 if (unlikely(!base)) {
1573 error = -EFAULT;
1574 break;
1575 }
1576
1577 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1578 error = -EFAULT;
1579 break;
1580 }
1581
1582 sd.len = 0;
1583 sd.total_len = len;
1584 sd.flags = flags;
1585 sd.u.userptr = base;
1586 sd.pos = 0;
1587
1588 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1589 if (size < 0) {
1590 if (!ret)
1591 ret = size;
1592
1593 break;
1594 }
1595
1596 ret += size;
1597
1598 if (size < len)
1599 break;
1600
1601 nr_segs--;
1602 iov++;
1603 }
1604
1605 pipe_unlock(pipe);
1606
1607 if (!ret)
1608 ret = error;
1609
1610 return ret;
1611 }
1612
1613 /*
1614 * vmsplice splices a user address range into a pipe. It can be thought of
1615 * as splice-from-memory, where the regular splice is splice-from-file (or
1616 * to file). In both cases the output is a pipe, naturally.
1617 */
1618 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1619 unsigned long nr_segs, unsigned int flags)
1620 {
1621 struct pipe_inode_info *pipe;
1622 struct page *pages[PIPE_DEF_BUFFERS];
1623 struct partial_page partial[PIPE_DEF_BUFFERS];
1624 struct splice_pipe_desc spd = {
1625 .pages = pages,
1626 .partial = partial,
1627 .flags = flags,
1628 .ops = &user_page_pipe_buf_ops,
1629 .spd_release = spd_release_page,
1630 };
1631 long ret;
1632
1633 pipe = get_pipe_info(file);
1634 if (!pipe)
1635 return -EBADF;
1636
1637 if (splice_grow_spd(pipe, &spd))
1638 return -ENOMEM;
1639
1640 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1641 spd.partial, flags & SPLICE_F_GIFT,
1642 pipe->buffers);
1643 if (spd.nr_pages <= 0)
1644 ret = spd.nr_pages;
1645 else
1646 ret = splice_to_pipe(pipe, &spd);
1647
1648 splice_shrink_spd(pipe, &spd);
1649 return ret;
1650 }
1651
1652 /*
1653 * Note that vmsplice only really supports true splicing _from_ user memory
1654 * to a pipe, not the other way around. Splicing from user memory is a simple
1655 * operation that can be supported without any funky alignment restrictions
1656 * or nasty vm tricks. We simply map in the user memory and fill them into
1657 * a pipe. The reverse isn't quite as easy, though. There are two possible
1658 * solutions for that:
1659 *
1660 * - memcpy() the data internally, at which point we might as well just
1661 * do a regular read() on the buffer anyway.
1662 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1663 * has restriction limitations on both ends of the pipe).
1664 *
1665 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1666 *
1667 */
1668 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1669 unsigned long, nr_segs, unsigned int, flags)
1670 {
1671 struct file *file;
1672 long error;
1673 int fput;
1674
1675 if (unlikely(nr_segs > UIO_MAXIOV))
1676 return -EINVAL;
1677 else if (unlikely(!nr_segs))
1678 return 0;
1679
1680 error = -EBADF;
1681 file = fget_light(fd, &fput);
1682 if (file) {
1683 if (file->f_mode & FMODE_WRITE)
1684 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1685 else if (file->f_mode & FMODE_READ)
1686 error = vmsplice_to_user(file, iov, nr_segs, flags);
1687
1688 fput_light(file, fput);
1689 }
1690
1691 return error;
1692 }
1693
1694 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1695 int, fd_out, loff_t __user *, off_out,
1696 size_t, len, unsigned int, flags)
1697 {
1698 long error;
1699 struct file *in, *out;
1700 int fput_in, fput_out;
1701
1702 if (unlikely(!len))
1703 return 0;
1704
1705 error = -EBADF;
1706 in = fget_light(fd_in, &fput_in);
1707 if (in) {
1708 if (in->f_mode & FMODE_READ) {
1709 out = fget_light(fd_out, &fput_out);
1710 if (out) {
1711 if (out->f_mode & FMODE_WRITE)
1712 error = do_splice(in, off_in,
1713 out, off_out,
1714 len, flags);
1715 fput_light(out, fput_out);
1716 }
1717 }
1718
1719 fput_light(in, fput_in);
1720 }
1721
1722 return error;
1723 }
1724
1725 /*
1726 * Make sure there's data to read. Wait for input if we can, otherwise
1727 * return an appropriate error.
1728 */
1729 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1730 {
1731 int ret;
1732
1733 /*
1734 * Check ->nrbufs without the inode lock first. This function
1735 * is speculative anyways, so missing one is ok.
1736 */
1737 if (pipe->nrbufs)
1738 return 0;
1739
1740 ret = 0;
1741 pipe_lock(pipe);
1742
1743 while (!pipe->nrbufs) {
1744 if (signal_pending(current)) {
1745 ret = -ERESTARTSYS;
1746 break;
1747 }
1748 if (!pipe->writers)
1749 break;
1750 if (!pipe->waiting_writers) {
1751 if (flags & SPLICE_F_NONBLOCK) {
1752 ret = -EAGAIN;
1753 break;
1754 }
1755 }
1756 pipe_wait(pipe);
1757 }
1758
1759 pipe_unlock(pipe);
1760 return ret;
1761 }
1762
1763 /*
1764 * Make sure there's writeable room. Wait for room if we can, otherwise
1765 * return an appropriate error.
1766 */
1767 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1768 {
1769 int ret;
1770
1771 /*
1772 * Check ->nrbufs without the inode lock first. This function
1773 * is speculative anyways, so missing one is ok.
1774 */
1775 if (pipe->nrbufs < pipe->buffers)
1776 return 0;
1777
1778 ret = 0;
1779 pipe_lock(pipe);
1780
1781 while (pipe->nrbufs >= pipe->buffers) {
1782 if (!pipe->readers) {
1783 send_sig(SIGPIPE, current, 0);
1784 ret = -EPIPE;
1785 break;
1786 }
1787 if (flags & SPLICE_F_NONBLOCK) {
1788 ret = -EAGAIN;
1789 break;
1790 }
1791 if (signal_pending(current)) {
1792 ret = -ERESTARTSYS;
1793 break;
1794 }
1795 pipe->waiting_writers++;
1796 pipe_wait(pipe);
1797 pipe->waiting_writers--;
1798 }
1799
1800 pipe_unlock(pipe);
1801 return ret;
1802 }
1803
1804 /*
1805 * Splice contents of ipipe to opipe.
1806 */
1807 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1808 struct pipe_inode_info *opipe,
1809 size_t len, unsigned int flags)
1810 {
1811 struct pipe_buffer *ibuf, *obuf;
1812 int ret = 0, nbuf;
1813 bool input_wakeup = false;
1814
1815
1816 retry:
1817 ret = ipipe_prep(ipipe, flags);
1818 if (ret)
1819 return ret;
1820
1821 ret = opipe_prep(opipe, flags);
1822 if (ret)
1823 return ret;
1824
1825 /*
1826 * Potential ABBA deadlock, work around it by ordering lock
1827 * grabbing by pipe info address. Otherwise two different processes
1828 * could deadlock (one doing tee from A -> B, the other from B -> A).
1829 */
1830 pipe_double_lock(ipipe, opipe);
1831
1832 do {
1833 if (!opipe->readers) {
1834 send_sig(SIGPIPE, current, 0);
1835 if (!ret)
1836 ret = -EPIPE;
1837 break;
1838 }
1839
1840 if (!ipipe->nrbufs && !ipipe->writers)
1841 break;
1842
1843 /*
1844 * Cannot make any progress, because either the input
1845 * pipe is empty or the output pipe is full.
1846 */
1847 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1848 /* Already processed some buffers, break */
1849 if (ret)
1850 break;
1851
1852 if (flags & SPLICE_F_NONBLOCK) {
1853 ret = -EAGAIN;
1854 break;
1855 }
1856
1857 /*
1858 * We raced with another reader/writer and haven't
1859 * managed to process any buffers. A zero return
1860 * value means EOF, so retry instead.
1861 */
1862 pipe_unlock(ipipe);
1863 pipe_unlock(opipe);
1864 goto retry;
1865 }
1866
1867 ibuf = ipipe->bufs + ipipe->curbuf;
1868 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1869 obuf = opipe->bufs + nbuf;
1870
1871 if (len >= ibuf->len) {
1872 /*
1873 * Simply move the whole buffer from ipipe to opipe
1874 */
1875 *obuf = *ibuf;
1876 ibuf->ops = NULL;
1877 opipe->nrbufs++;
1878 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1879 ipipe->nrbufs--;
1880 input_wakeup = true;
1881 } else {
1882 /*
1883 * Get a reference to this pipe buffer,
1884 * so we can copy the contents over.
1885 */
1886 ibuf->ops->get(ipipe, ibuf);
1887 *obuf = *ibuf;
1888
1889 /*
1890 * Don't inherit the gift flag, we need to
1891 * prevent multiple steals of this page.
1892 */
1893 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1894
1895 obuf->len = len;
1896 opipe->nrbufs++;
1897 ibuf->offset += obuf->len;
1898 ibuf->len -= obuf->len;
1899 }
1900 ret += obuf->len;
1901 len -= obuf->len;
1902 } while (len);
1903
1904 pipe_unlock(ipipe);
1905 pipe_unlock(opipe);
1906
1907 /*
1908 * If we put data in the output pipe, wakeup any potential readers.
1909 */
1910 if (ret > 0) {
1911 smp_mb();
1912 if (waitqueue_active(&opipe->wait))
1913 wake_up_interruptible(&opipe->wait);
1914 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1915 }
1916 if (input_wakeup)
1917 wakeup_pipe_writers(ipipe);
1918
1919 return ret;
1920 }
1921
1922 /*
1923 * Link contents of ipipe to opipe.
1924 */
1925 static int link_pipe(struct pipe_inode_info *ipipe,
1926 struct pipe_inode_info *opipe,
1927 size_t len, unsigned int flags)
1928 {
1929 struct pipe_buffer *ibuf, *obuf;
1930 int ret = 0, i = 0, nbuf;
1931
1932 /*
1933 * Potential ABBA deadlock, work around it by ordering lock
1934 * grabbing by pipe info address. Otherwise two different processes
1935 * could deadlock (one doing tee from A -> B, the other from B -> A).
1936 */
1937 pipe_double_lock(ipipe, opipe);
1938
1939 do {
1940 if (!opipe->readers) {
1941 send_sig(SIGPIPE, current, 0);
1942 if (!ret)
1943 ret = -EPIPE;
1944 break;
1945 }
1946
1947 /*
1948 * If we have iterated all input buffers or ran out of
1949 * output room, break.
1950 */
1951 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1952 break;
1953
1954 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1955 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1956
1957 /*
1958 * Get a reference to this pipe buffer,
1959 * so we can copy the contents over.
1960 */
1961 ibuf->ops->get(ipipe, ibuf);
1962
1963 obuf = opipe->bufs + nbuf;
1964 *obuf = *ibuf;
1965
1966 /*
1967 * Don't inherit the gift flag, we need to
1968 * prevent multiple steals of this page.
1969 */
1970 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1971
1972 if (obuf->len > len)
1973 obuf->len = len;
1974
1975 opipe->nrbufs++;
1976 ret += obuf->len;
1977 len -= obuf->len;
1978 i++;
1979 } while (len);
1980
1981 /*
1982 * return EAGAIN if we have the potential of some data in the
1983 * future, otherwise just return 0
1984 */
1985 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1986 ret = -EAGAIN;
1987
1988 pipe_unlock(ipipe);
1989 pipe_unlock(opipe);
1990
1991 /*
1992 * If we put data in the output pipe, wakeup any potential readers.
1993 */
1994 if (ret > 0) {
1995 smp_mb();
1996 if (waitqueue_active(&opipe->wait))
1997 wake_up_interruptible(&opipe->wait);
1998 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1999 }
2000
2001 return ret;
2002 }
2003
2004 /*
2005 * This is a tee(1) implementation that works on pipes. It doesn't copy
2006 * any data, it simply references the 'in' pages on the 'out' pipe.
2007 * The 'flags' used are the SPLICE_F_* variants, currently the only
2008 * applicable one is SPLICE_F_NONBLOCK.
2009 */
2010 static long do_tee(struct file *in, struct file *out, size_t len,
2011 unsigned int flags)
2012 {
2013 struct pipe_inode_info *ipipe = get_pipe_info(in);
2014 struct pipe_inode_info *opipe = get_pipe_info(out);
2015 int ret = -EINVAL;
2016
2017 /*
2018 * Duplicate the contents of ipipe to opipe without actually
2019 * copying the data.
2020 */
2021 if (ipipe && opipe && ipipe != opipe) {
2022 /*
2023 * Keep going, unless we encounter an error. The ipipe/opipe
2024 * ordering doesn't really matter.
2025 */
2026 ret = ipipe_prep(ipipe, flags);
2027 if (!ret) {
2028 ret = opipe_prep(opipe, flags);
2029 if (!ret)
2030 ret = link_pipe(ipipe, opipe, len, flags);
2031 }
2032 }
2033
2034 return ret;
2035 }
2036
2037 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2038 {
2039 struct file *in;
2040 int error, fput_in;
2041
2042 if (unlikely(!len))
2043 return 0;
2044
2045 error = -EBADF;
2046 in = fget_light(fdin, &fput_in);
2047 if (in) {
2048 if (in->f_mode & FMODE_READ) {
2049 int fput_out;
2050 struct file *out = fget_light(fdout, &fput_out);
2051
2052 if (out) {
2053 if (out->f_mode & FMODE_WRITE)
2054 error = do_tee(in, out, len, flags);
2055 fput_light(out, fput_out);
2056 }
2057 }
2058 fput_light(in, fput_in);
2059 }
2060
2061 return error;
2062 }