]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/splice.c
Merge tag 'hyperv-next-signed' of git://git.kernel.org/pub/scm/linux/kernel/git/hyper...
[mirror_ubuntu-jammy-kernel.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/compat.h>
37 #include <linux/sched/signal.h>
38
39 #include "internal.h"
40
41 /*
42 * Attempt to steal a page from a pipe buffer. This should perhaps go into
43 * a vm helper function, it's already simplified quite a bit by the
44 * addition of remove_mapping(). If success is returned, the caller may
45 * attempt to reuse this page for another destination.
46 */
47 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
48 struct pipe_buffer *buf)
49 {
50 struct page *page = buf->page;
51 struct address_space *mapping;
52
53 lock_page(page);
54
55 mapping = page_mapping(page);
56 if (mapping) {
57 WARN_ON(!PageUptodate(page));
58
59 /*
60 * At least for ext2 with nobh option, we need to wait on
61 * writeback completing on this page, since we'll remove it
62 * from the pagecache. Otherwise truncate wont wait on the
63 * page, allowing the disk blocks to be reused by someone else
64 * before we actually wrote our data to them. fs corruption
65 * ensues.
66 */
67 wait_on_page_writeback(page);
68
69 if (page_has_private(page) &&
70 !try_to_release_page(page, GFP_KERNEL))
71 goto out_unlock;
72
73 /*
74 * If we succeeded in removing the mapping, set LRU flag
75 * and return good.
76 */
77 if (remove_mapping(mapping, page)) {
78 buf->flags |= PIPE_BUF_FLAG_LRU;
79 return true;
80 }
81 }
82
83 /*
84 * Raced with truncate or failed to remove page from current
85 * address space, unlock and return failure.
86 */
87 out_unlock:
88 unlock_page(page);
89 return false;
90 }
91
92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
93 struct pipe_buffer *buf)
94 {
95 put_page(buf->page);
96 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 }
98
99 /*
100 * Check whether the contents of buf is OK to access. Since the content
101 * is a page cache page, IO may be in flight.
102 */
103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
104 struct pipe_buffer *buf)
105 {
106 struct page *page = buf->page;
107 int err;
108
109 if (!PageUptodate(page)) {
110 lock_page(page);
111
112 /*
113 * Page got truncated/unhashed. This will cause a 0-byte
114 * splice, if this is the first page.
115 */
116 if (!page->mapping) {
117 err = -ENODATA;
118 goto error;
119 }
120
121 /*
122 * Uh oh, read-error from disk.
123 */
124 if (!PageUptodate(page)) {
125 err = -EIO;
126 goto error;
127 }
128
129 /*
130 * Page is ok afterall, we are done.
131 */
132 unlock_page(page);
133 }
134
135 return 0;
136 error:
137 unlock_page(page);
138 return err;
139 }
140
141 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
142 .confirm = page_cache_pipe_buf_confirm,
143 .release = page_cache_pipe_buf_release,
144 .try_steal = page_cache_pipe_buf_try_steal,
145 .get = generic_pipe_buf_get,
146 };
147
148 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
149 struct pipe_buffer *buf)
150 {
151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 return false;
153
154 buf->flags |= PIPE_BUF_FLAG_LRU;
155 return generic_pipe_buf_try_steal(pipe, buf);
156 }
157
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 .release = page_cache_pipe_buf_release,
160 .try_steal = user_page_pipe_buf_try_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 smp_mb();
167 if (waitqueue_active(&pipe->rd_wait))
168 wake_up_interruptible(&pipe->rd_wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171
172 /**
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
176 *
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
181 *
182 */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
185 {
186 unsigned int spd_pages = spd->nr_pages;
187 unsigned int tail = pipe->tail;
188 unsigned int head = pipe->head;
189 unsigned int mask = pipe->ring_size - 1;
190 int ret = 0, page_nr = 0;
191
192 if (!spd_pages)
193 return 0;
194
195 if (unlikely(!pipe->readers)) {
196 send_sig(SIGPIPE, current, 0);
197 ret = -EPIPE;
198 goto out;
199 }
200
201 while (!pipe_full(head, tail, pipe->max_usage)) {
202 struct pipe_buffer *buf = &pipe->bufs[head & mask];
203
204 buf->page = spd->pages[page_nr];
205 buf->offset = spd->partial[page_nr].offset;
206 buf->len = spd->partial[page_nr].len;
207 buf->private = spd->partial[page_nr].private;
208 buf->ops = spd->ops;
209 buf->flags = 0;
210
211 head++;
212 pipe->head = head;
213 page_nr++;
214 ret += buf->len;
215
216 if (!--spd->nr_pages)
217 break;
218 }
219
220 if (!ret)
221 ret = -EAGAIN;
222
223 out:
224 while (page_nr < spd_pages)
225 spd->spd_release(spd, page_nr++);
226
227 return ret;
228 }
229 EXPORT_SYMBOL_GPL(splice_to_pipe);
230
231 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
232 {
233 unsigned int head = pipe->head;
234 unsigned int tail = pipe->tail;
235 unsigned int mask = pipe->ring_size - 1;
236 int ret;
237
238 if (unlikely(!pipe->readers)) {
239 send_sig(SIGPIPE, current, 0);
240 ret = -EPIPE;
241 } else if (pipe_full(head, tail, pipe->max_usage)) {
242 ret = -EAGAIN;
243 } else {
244 pipe->bufs[head & mask] = *buf;
245 pipe->head = head + 1;
246 return buf->len;
247 }
248 pipe_buf_release(pipe, buf);
249 return ret;
250 }
251 EXPORT_SYMBOL(add_to_pipe);
252
253 /*
254 * Check if we need to grow the arrays holding pages and partial page
255 * descriptions.
256 */
257 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
258 {
259 unsigned int max_usage = READ_ONCE(pipe->max_usage);
260
261 spd->nr_pages_max = max_usage;
262 if (max_usage <= PIPE_DEF_BUFFERS)
263 return 0;
264
265 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
266 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
267 GFP_KERNEL);
268
269 if (spd->pages && spd->partial)
270 return 0;
271
272 kfree(spd->pages);
273 kfree(spd->partial);
274 return -ENOMEM;
275 }
276
277 void splice_shrink_spd(struct splice_pipe_desc *spd)
278 {
279 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
280 return;
281
282 kfree(spd->pages);
283 kfree(spd->partial);
284 }
285
286 /**
287 * generic_file_splice_read - splice data from file to a pipe
288 * @in: file to splice from
289 * @ppos: position in @in
290 * @pipe: pipe to splice to
291 * @len: number of bytes to splice
292 * @flags: splice modifier flags
293 *
294 * Description:
295 * Will read pages from given file and fill them into a pipe. Can be
296 * used as long as it has more or less sane ->read_iter().
297 *
298 */
299 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302 {
303 struct iov_iter to;
304 struct kiocb kiocb;
305 unsigned int i_head;
306 int ret;
307
308 iov_iter_pipe(&to, READ, pipe, len);
309 i_head = to.head;
310 init_sync_kiocb(&kiocb, in);
311 kiocb.ki_pos = *ppos;
312 ret = call_read_iter(in, &kiocb, &to);
313 if (ret > 0) {
314 *ppos = kiocb.ki_pos;
315 file_accessed(in);
316 } else if (ret < 0) {
317 to.head = i_head;
318 to.iov_offset = 0;
319 iov_iter_advance(&to, 0); /* to free what was emitted */
320 /*
321 * callers of ->splice_read() expect -EAGAIN on
322 * "can't put anything in there", rather than -EFAULT.
323 */
324 if (ret == -EFAULT)
325 ret = -EAGAIN;
326 }
327
328 return ret;
329 }
330 EXPORT_SYMBOL(generic_file_splice_read);
331
332 const struct pipe_buf_operations default_pipe_buf_ops = {
333 .release = generic_pipe_buf_release,
334 .try_steal = generic_pipe_buf_try_steal,
335 .get = generic_pipe_buf_get,
336 };
337
338 /* Pipe buffer operations for a socket and similar. */
339 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
340 .release = generic_pipe_buf_release,
341 .get = generic_pipe_buf_get,
342 };
343 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
344
345 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
346 unsigned long vlen, loff_t offset)
347 {
348 mm_segment_t old_fs;
349 loff_t pos = offset;
350 ssize_t res;
351
352 old_fs = get_fs();
353 set_fs(KERNEL_DS);
354 /* The cast to a user pointer is valid due to the set_fs() */
355 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
356 set_fs(old_fs);
357
358 return res;
359 }
360
361 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
362 struct pipe_inode_info *pipe, size_t len,
363 unsigned int flags)
364 {
365 struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
366 struct iov_iter to;
367 struct page **pages;
368 unsigned int nr_pages;
369 unsigned int mask;
370 size_t offset, base, copied = 0;
371 ssize_t res;
372 int i;
373
374 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
375 return -EAGAIN;
376
377 /*
378 * Try to keep page boundaries matching to source pagecache ones -
379 * it probably won't be much help, but...
380 */
381 offset = *ppos & ~PAGE_MASK;
382
383 iov_iter_pipe(&to, READ, pipe, len + offset);
384
385 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
386 if (res <= 0)
387 return -ENOMEM;
388
389 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
390
391 vec = __vec;
392 if (nr_pages > PIPE_DEF_BUFFERS) {
393 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
394 if (unlikely(!vec)) {
395 res = -ENOMEM;
396 goto out;
397 }
398 }
399
400 mask = pipe->ring_size - 1;
401 pipe->bufs[to.head & mask].offset = offset;
402 pipe->bufs[to.head & mask].len -= offset;
403
404 for (i = 0; i < nr_pages; i++) {
405 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
406 vec[i].iov_base = page_address(pages[i]) + offset;
407 vec[i].iov_len = this_len;
408 len -= this_len;
409 offset = 0;
410 }
411
412 res = kernel_readv(in, vec, nr_pages, *ppos);
413 if (res > 0) {
414 copied = res;
415 *ppos += res;
416 }
417
418 if (vec != __vec)
419 kfree(vec);
420 out:
421 for (i = 0; i < nr_pages; i++)
422 put_page(pages[i]);
423 kvfree(pages);
424 iov_iter_advance(&to, copied); /* truncates and discards */
425 return res;
426 }
427
428 /*
429 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
430 * using sendpage(). Return the number of bytes sent.
431 */
432 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
433 struct pipe_buffer *buf, struct splice_desc *sd)
434 {
435 struct file *file = sd->u.file;
436 loff_t pos = sd->pos;
437 int more;
438
439 if (!likely(file->f_op->sendpage))
440 return -EINVAL;
441
442 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
443
444 if (sd->len < sd->total_len &&
445 pipe_occupancy(pipe->head, pipe->tail) > 1)
446 more |= MSG_SENDPAGE_NOTLAST;
447
448 return file->f_op->sendpage(file, buf->page, buf->offset,
449 sd->len, &pos, more);
450 }
451
452 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
453 {
454 smp_mb();
455 if (waitqueue_active(&pipe->wr_wait))
456 wake_up_interruptible(&pipe->wr_wait);
457 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
458 }
459
460 /**
461 * splice_from_pipe_feed - feed available data from a pipe to a file
462 * @pipe: pipe to splice from
463 * @sd: information to @actor
464 * @actor: handler that splices the data
465 *
466 * Description:
467 * This function loops over the pipe and calls @actor to do the
468 * actual moving of a single struct pipe_buffer to the desired
469 * destination. It returns when there's no more buffers left in
470 * the pipe or if the requested number of bytes (@sd->total_len)
471 * have been copied. It returns a positive number (one) if the
472 * pipe needs to be filled with more data, zero if the required
473 * number of bytes have been copied and -errno on error.
474 *
475 * This, together with splice_from_pipe_{begin,end,next}, may be
476 * used to implement the functionality of __splice_from_pipe() when
477 * locking is required around copying the pipe buffers to the
478 * destination.
479 */
480 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
481 splice_actor *actor)
482 {
483 unsigned int head = pipe->head;
484 unsigned int tail = pipe->tail;
485 unsigned int mask = pipe->ring_size - 1;
486 int ret;
487
488 while (!pipe_empty(head, tail)) {
489 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
490
491 sd->len = buf->len;
492 if (sd->len > sd->total_len)
493 sd->len = sd->total_len;
494
495 ret = pipe_buf_confirm(pipe, buf);
496 if (unlikely(ret)) {
497 if (ret == -ENODATA)
498 ret = 0;
499 return ret;
500 }
501
502 ret = actor(pipe, buf, sd);
503 if (ret <= 0)
504 return ret;
505
506 buf->offset += ret;
507 buf->len -= ret;
508
509 sd->num_spliced += ret;
510 sd->len -= ret;
511 sd->pos += ret;
512 sd->total_len -= ret;
513
514 if (!buf->len) {
515 pipe_buf_release(pipe, buf);
516 tail++;
517 pipe->tail = tail;
518 if (pipe->files)
519 sd->need_wakeup = true;
520 }
521
522 if (!sd->total_len)
523 return 0;
524 }
525
526 return 1;
527 }
528
529 /**
530 * splice_from_pipe_next - wait for some data to splice from
531 * @pipe: pipe to splice from
532 * @sd: information about the splice operation
533 *
534 * Description:
535 * This function will wait for some data and return a positive
536 * value (one) if pipe buffers are available. It will return zero
537 * or -errno if no more data needs to be spliced.
538 */
539 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
540 {
541 /*
542 * Check for signal early to make process killable when there are
543 * always buffers available
544 */
545 if (signal_pending(current))
546 return -ERESTARTSYS;
547
548 while (pipe_empty(pipe->head, pipe->tail)) {
549 if (!pipe->writers)
550 return 0;
551
552 if (sd->num_spliced)
553 return 0;
554
555 if (sd->flags & SPLICE_F_NONBLOCK)
556 return -EAGAIN;
557
558 if (signal_pending(current))
559 return -ERESTARTSYS;
560
561 if (sd->need_wakeup) {
562 wakeup_pipe_writers(pipe);
563 sd->need_wakeup = false;
564 }
565
566 pipe_wait(pipe);
567 }
568
569 return 1;
570 }
571
572 /**
573 * splice_from_pipe_begin - start splicing from pipe
574 * @sd: information about the splice operation
575 *
576 * Description:
577 * This function should be called before a loop containing
578 * splice_from_pipe_next() and splice_from_pipe_feed() to
579 * initialize the necessary fields of @sd.
580 */
581 static void splice_from_pipe_begin(struct splice_desc *sd)
582 {
583 sd->num_spliced = 0;
584 sd->need_wakeup = false;
585 }
586
587 /**
588 * splice_from_pipe_end - finish splicing from pipe
589 * @pipe: pipe to splice from
590 * @sd: information about the splice operation
591 *
592 * Description:
593 * This function will wake up pipe writers if necessary. It should
594 * be called after a loop containing splice_from_pipe_next() and
595 * splice_from_pipe_feed().
596 */
597 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
598 {
599 if (sd->need_wakeup)
600 wakeup_pipe_writers(pipe);
601 }
602
603 /**
604 * __splice_from_pipe - splice data from a pipe to given actor
605 * @pipe: pipe to splice from
606 * @sd: information to @actor
607 * @actor: handler that splices the data
608 *
609 * Description:
610 * This function does little more than loop over the pipe and call
611 * @actor to do the actual moving of a single struct pipe_buffer to
612 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
613 * pipe_to_user.
614 *
615 */
616 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
617 splice_actor *actor)
618 {
619 int ret;
620
621 splice_from_pipe_begin(sd);
622 do {
623 cond_resched();
624 ret = splice_from_pipe_next(pipe, sd);
625 if (ret > 0)
626 ret = splice_from_pipe_feed(pipe, sd, actor);
627 } while (ret > 0);
628 splice_from_pipe_end(pipe, sd);
629
630 return sd->num_spliced ? sd->num_spliced : ret;
631 }
632 EXPORT_SYMBOL(__splice_from_pipe);
633
634 /**
635 * splice_from_pipe - splice data from a pipe to a file
636 * @pipe: pipe to splice from
637 * @out: file to splice to
638 * @ppos: position in @out
639 * @len: how many bytes to splice
640 * @flags: splice modifier flags
641 * @actor: handler that splices the data
642 *
643 * Description:
644 * See __splice_from_pipe. This function locks the pipe inode,
645 * otherwise it's identical to __splice_from_pipe().
646 *
647 */
648 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
649 loff_t *ppos, size_t len, unsigned int flags,
650 splice_actor *actor)
651 {
652 ssize_t ret;
653 struct splice_desc sd = {
654 .total_len = len,
655 .flags = flags,
656 .pos = *ppos,
657 .u.file = out,
658 };
659
660 pipe_lock(pipe);
661 ret = __splice_from_pipe(pipe, &sd, actor);
662 pipe_unlock(pipe);
663
664 return ret;
665 }
666
667 /**
668 * iter_file_splice_write - splice data from a pipe to a file
669 * @pipe: pipe info
670 * @out: file to write to
671 * @ppos: position in @out
672 * @len: number of bytes to splice
673 * @flags: splice modifier flags
674 *
675 * Description:
676 * Will either move or copy pages (determined by @flags options) from
677 * the given pipe inode to the given file.
678 * This one is ->write_iter-based.
679 *
680 */
681 ssize_t
682 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
683 loff_t *ppos, size_t len, unsigned int flags)
684 {
685 struct splice_desc sd = {
686 .total_len = len,
687 .flags = flags,
688 .pos = *ppos,
689 .u.file = out,
690 };
691 int nbufs = pipe->max_usage;
692 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
693 GFP_KERNEL);
694 ssize_t ret;
695
696 if (unlikely(!array))
697 return -ENOMEM;
698
699 pipe_lock(pipe);
700
701 splice_from_pipe_begin(&sd);
702 while (sd.total_len) {
703 struct iov_iter from;
704 unsigned int head, tail, mask;
705 size_t left;
706 int n;
707
708 ret = splice_from_pipe_next(pipe, &sd);
709 if (ret <= 0)
710 break;
711
712 if (unlikely(nbufs < pipe->max_usage)) {
713 kfree(array);
714 nbufs = pipe->max_usage;
715 array = kcalloc(nbufs, sizeof(struct bio_vec),
716 GFP_KERNEL);
717 if (!array) {
718 ret = -ENOMEM;
719 break;
720 }
721 }
722
723 head = pipe->head;
724 tail = pipe->tail;
725 mask = pipe->ring_size - 1;
726
727 /* build the vector */
728 left = sd.total_len;
729 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
730 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
731 size_t this_len = buf->len;
732
733 if (this_len > left)
734 this_len = left;
735
736 ret = pipe_buf_confirm(pipe, buf);
737 if (unlikely(ret)) {
738 if (ret == -ENODATA)
739 ret = 0;
740 goto done;
741 }
742
743 array[n].bv_page = buf->page;
744 array[n].bv_len = this_len;
745 array[n].bv_offset = buf->offset;
746 left -= this_len;
747 }
748
749 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
750 ret = vfs_iter_write(out, &from, &sd.pos, 0);
751 if (ret <= 0)
752 break;
753
754 sd.num_spliced += ret;
755 sd.total_len -= ret;
756 *ppos = sd.pos;
757
758 /* dismiss the fully eaten buffers, adjust the partial one */
759 tail = pipe->tail;
760 while (ret) {
761 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
762 if (ret >= buf->len) {
763 ret -= buf->len;
764 buf->len = 0;
765 pipe_buf_release(pipe, buf);
766 tail++;
767 pipe->tail = tail;
768 if (pipe->files)
769 sd.need_wakeup = true;
770 } else {
771 buf->offset += ret;
772 buf->len -= ret;
773 ret = 0;
774 }
775 }
776 }
777 done:
778 kfree(array);
779 splice_from_pipe_end(pipe, &sd);
780
781 pipe_unlock(pipe);
782
783 if (sd.num_spliced)
784 ret = sd.num_spliced;
785
786 return ret;
787 }
788
789 EXPORT_SYMBOL(iter_file_splice_write);
790
791 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
792 struct splice_desc *sd)
793 {
794 int ret;
795 void *data;
796 loff_t tmp = sd->pos;
797
798 data = kmap(buf->page);
799 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
800 kunmap(buf->page);
801
802 return ret;
803 }
804
805 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
806 struct file *out, loff_t *ppos,
807 size_t len, unsigned int flags)
808 {
809 ssize_t ret;
810
811 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
812 if (ret > 0)
813 *ppos += ret;
814
815 return ret;
816 }
817
818 /**
819 * generic_splice_sendpage - splice data from a pipe to a socket
820 * @pipe: pipe to splice from
821 * @out: socket to write to
822 * @ppos: position in @out
823 * @len: number of bytes to splice
824 * @flags: splice modifier flags
825 *
826 * Description:
827 * Will send @len bytes from the pipe to a network socket. No data copying
828 * is involved.
829 *
830 */
831 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
832 loff_t *ppos, size_t len, unsigned int flags)
833 {
834 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
835 }
836
837 EXPORT_SYMBOL(generic_splice_sendpage);
838
839 /*
840 * Attempt to initiate a splice from pipe to file.
841 */
842 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
843 loff_t *ppos, size_t len, unsigned int flags)
844 {
845 if (out->f_op->splice_write)
846 return out->f_op->splice_write(pipe, out, ppos, len, flags);
847 return default_file_splice_write(pipe, out, ppos, len, flags);
848 }
849
850 /*
851 * Attempt to initiate a splice from a file to a pipe.
852 */
853 static long do_splice_to(struct file *in, loff_t *ppos,
854 struct pipe_inode_info *pipe, size_t len,
855 unsigned int flags)
856 {
857 int ret;
858
859 if (unlikely(!(in->f_mode & FMODE_READ)))
860 return -EBADF;
861
862 ret = rw_verify_area(READ, in, ppos, len);
863 if (unlikely(ret < 0))
864 return ret;
865
866 if (unlikely(len > MAX_RW_COUNT))
867 len = MAX_RW_COUNT;
868
869 if (in->f_op->splice_read)
870 return in->f_op->splice_read(in, ppos, pipe, len, flags);
871 return default_file_splice_read(in, ppos, pipe, len, flags);
872 }
873
874 /**
875 * splice_direct_to_actor - splices data directly between two non-pipes
876 * @in: file to splice from
877 * @sd: actor information on where to splice to
878 * @actor: handles the data splicing
879 *
880 * Description:
881 * This is a special case helper to splice directly between two
882 * points, without requiring an explicit pipe. Internally an allocated
883 * pipe is cached in the process, and reused during the lifetime of
884 * that process.
885 *
886 */
887 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
888 splice_direct_actor *actor)
889 {
890 struct pipe_inode_info *pipe;
891 long ret, bytes;
892 umode_t i_mode;
893 size_t len;
894 int i, flags, more;
895
896 /*
897 * We require the input being a regular file, as we don't want to
898 * randomly drop data for eg socket -> socket splicing. Use the
899 * piped splicing for that!
900 */
901 i_mode = file_inode(in)->i_mode;
902 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
903 return -EINVAL;
904
905 /*
906 * neither in nor out is a pipe, setup an internal pipe attached to
907 * 'out' and transfer the wanted data from 'in' to 'out' through that
908 */
909 pipe = current->splice_pipe;
910 if (unlikely(!pipe)) {
911 pipe = alloc_pipe_info();
912 if (!pipe)
913 return -ENOMEM;
914
915 /*
916 * We don't have an immediate reader, but we'll read the stuff
917 * out of the pipe right after the splice_to_pipe(). So set
918 * PIPE_READERS appropriately.
919 */
920 pipe->readers = 1;
921
922 current->splice_pipe = pipe;
923 }
924
925 /*
926 * Do the splice.
927 */
928 ret = 0;
929 bytes = 0;
930 len = sd->total_len;
931 flags = sd->flags;
932
933 /*
934 * Don't block on output, we have to drain the direct pipe.
935 */
936 sd->flags &= ~SPLICE_F_NONBLOCK;
937 more = sd->flags & SPLICE_F_MORE;
938
939 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
940
941 while (len) {
942 unsigned int p_space;
943 size_t read_len;
944 loff_t pos = sd->pos, prev_pos = pos;
945
946 /* Don't try to read more the pipe has space for. */
947 p_space = pipe->max_usage -
948 pipe_occupancy(pipe->head, pipe->tail);
949 read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
950 ret = do_splice_to(in, &pos, pipe, read_len, flags);
951 if (unlikely(ret <= 0))
952 goto out_release;
953
954 read_len = ret;
955 sd->total_len = read_len;
956
957 /*
958 * If more data is pending, set SPLICE_F_MORE
959 * If this is the last data and SPLICE_F_MORE was not set
960 * initially, clears it.
961 */
962 if (read_len < len)
963 sd->flags |= SPLICE_F_MORE;
964 else if (!more)
965 sd->flags &= ~SPLICE_F_MORE;
966 /*
967 * NOTE: nonblocking mode only applies to the input. We
968 * must not do the output in nonblocking mode as then we
969 * could get stuck data in the internal pipe:
970 */
971 ret = actor(pipe, sd);
972 if (unlikely(ret <= 0)) {
973 sd->pos = prev_pos;
974 goto out_release;
975 }
976
977 bytes += ret;
978 len -= ret;
979 sd->pos = pos;
980
981 if (ret < read_len) {
982 sd->pos = prev_pos + ret;
983 goto out_release;
984 }
985 }
986
987 done:
988 pipe->tail = pipe->head = 0;
989 file_accessed(in);
990 return bytes;
991
992 out_release:
993 /*
994 * If we did an incomplete transfer we must release
995 * the pipe buffers in question:
996 */
997 for (i = 0; i < pipe->ring_size; i++) {
998 struct pipe_buffer *buf = &pipe->bufs[i];
999
1000 if (buf->ops)
1001 pipe_buf_release(pipe, buf);
1002 }
1003
1004 if (!bytes)
1005 bytes = ret;
1006
1007 goto done;
1008 }
1009 EXPORT_SYMBOL(splice_direct_to_actor);
1010
1011 static int direct_splice_actor(struct pipe_inode_info *pipe,
1012 struct splice_desc *sd)
1013 {
1014 struct file *file = sd->u.file;
1015
1016 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1017 sd->flags);
1018 }
1019
1020 /**
1021 * do_splice_direct - splices data directly between two files
1022 * @in: file to splice from
1023 * @ppos: input file offset
1024 * @out: file to splice to
1025 * @opos: output file offset
1026 * @len: number of bytes to splice
1027 * @flags: splice modifier flags
1028 *
1029 * Description:
1030 * For use by do_sendfile(). splice can easily emulate sendfile, but
1031 * doing it in the application would incur an extra system call
1032 * (splice in + splice out, as compared to just sendfile()). So this helper
1033 * can splice directly through a process-private pipe.
1034 *
1035 */
1036 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1037 loff_t *opos, size_t len, unsigned int flags)
1038 {
1039 struct splice_desc sd = {
1040 .len = len,
1041 .total_len = len,
1042 .flags = flags,
1043 .pos = *ppos,
1044 .u.file = out,
1045 .opos = opos,
1046 };
1047 long ret;
1048
1049 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1050 return -EBADF;
1051
1052 if (unlikely(out->f_flags & O_APPEND))
1053 return -EINVAL;
1054
1055 ret = rw_verify_area(WRITE, out, opos, len);
1056 if (unlikely(ret < 0))
1057 return ret;
1058
1059 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1060 if (ret > 0)
1061 *ppos = sd.pos;
1062
1063 return ret;
1064 }
1065 EXPORT_SYMBOL(do_splice_direct);
1066
1067 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1068 {
1069 for (;;) {
1070 if (unlikely(!pipe->readers)) {
1071 send_sig(SIGPIPE, current, 0);
1072 return -EPIPE;
1073 }
1074 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1075 return 0;
1076 if (flags & SPLICE_F_NONBLOCK)
1077 return -EAGAIN;
1078 if (signal_pending(current))
1079 return -ERESTARTSYS;
1080 pipe_wait(pipe);
1081 }
1082 }
1083
1084 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1085 struct pipe_inode_info *opipe,
1086 size_t len, unsigned int flags);
1087
1088 /*
1089 * Determine where to splice to/from.
1090 */
1091 long do_splice(struct file *in, loff_t __user *off_in,
1092 struct file *out, loff_t __user *off_out,
1093 size_t len, unsigned int flags)
1094 {
1095 struct pipe_inode_info *ipipe;
1096 struct pipe_inode_info *opipe;
1097 loff_t offset;
1098 long ret;
1099
1100 if (unlikely(!(in->f_mode & FMODE_READ) ||
1101 !(out->f_mode & FMODE_WRITE)))
1102 return -EBADF;
1103
1104 ipipe = get_pipe_info(in, true);
1105 opipe = get_pipe_info(out, true);
1106
1107 if (ipipe && opipe) {
1108 if (off_in || off_out)
1109 return -ESPIPE;
1110
1111 /* Splicing to self would be fun, but... */
1112 if (ipipe == opipe)
1113 return -EINVAL;
1114
1115 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1116 flags |= SPLICE_F_NONBLOCK;
1117
1118 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1119 }
1120
1121 if (ipipe) {
1122 if (off_in)
1123 return -ESPIPE;
1124 if (off_out) {
1125 if (!(out->f_mode & FMODE_PWRITE))
1126 return -EINVAL;
1127 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1128 return -EFAULT;
1129 } else {
1130 offset = out->f_pos;
1131 }
1132
1133 if (unlikely(out->f_flags & O_APPEND))
1134 return -EINVAL;
1135
1136 ret = rw_verify_area(WRITE, out, &offset, len);
1137 if (unlikely(ret < 0))
1138 return ret;
1139
1140 if (in->f_flags & O_NONBLOCK)
1141 flags |= SPLICE_F_NONBLOCK;
1142
1143 file_start_write(out);
1144 ret = do_splice_from(ipipe, out, &offset, len, flags);
1145 file_end_write(out);
1146
1147 if (!off_out)
1148 out->f_pos = offset;
1149 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1150 ret = -EFAULT;
1151
1152 return ret;
1153 }
1154
1155 if (opipe) {
1156 if (off_out)
1157 return -ESPIPE;
1158 if (off_in) {
1159 if (!(in->f_mode & FMODE_PREAD))
1160 return -EINVAL;
1161 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1162 return -EFAULT;
1163 } else {
1164 offset = in->f_pos;
1165 }
1166
1167 if (out->f_flags & O_NONBLOCK)
1168 flags |= SPLICE_F_NONBLOCK;
1169
1170 pipe_lock(opipe);
1171 ret = wait_for_space(opipe, flags);
1172 if (!ret) {
1173 unsigned int p_space;
1174
1175 /* Don't try to read more the pipe has space for. */
1176 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1177 len = min_t(size_t, len, p_space << PAGE_SHIFT);
1178
1179 ret = do_splice_to(in, &offset, opipe, len, flags);
1180 }
1181 pipe_unlock(opipe);
1182 if (ret > 0)
1183 wakeup_pipe_readers(opipe);
1184 if (!off_in)
1185 in->f_pos = offset;
1186 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1187 ret = -EFAULT;
1188
1189 return ret;
1190 }
1191
1192 return -EINVAL;
1193 }
1194
1195 static int iter_to_pipe(struct iov_iter *from,
1196 struct pipe_inode_info *pipe,
1197 unsigned flags)
1198 {
1199 struct pipe_buffer buf = {
1200 .ops = &user_page_pipe_buf_ops,
1201 .flags = flags
1202 };
1203 size_t total = 0;
1204 int ret = 0;
1205 bool failed = false;
1206
1207 while (iov_iter_count(from) && !failed) {
1208 struct page *pages[16];
1209 ssize_t copied;
1210 size_t start;
1211 int n;
1212
1213 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1214 if (copied <= 0) {
1215 ret = copied;
1216 break;
1217 }
1218
1219 for (n = 0; copied; n++, start = 0) {
1220 int size = min_t(int, copied, PAGE_SIZE - start);
1221 if (!failed) {
1222 buf.page = pages[n];
1223 buf.offset = start;
1224 buf.len = size;
1225 ret = add_to_pipe(pipe, &buf);
1226 if (unlikely(ret < 0)) {
1227 failed = true;
1228 } else {
1229 iov_iter_advance(from, ret);
1230 total += ret;
1231 }
1232 } else {
1233 put_page(pages[n]);
1234 }
1235 copied -= size;
1236 }
1237 }
1238 return total ? total : ret;
1239 }
1240
1241 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1242 struct splice_desc *sd)
1243 {
1244 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1245 return n == sd->len ? n : -EFAULT;
1246 }
1247
1248 /*
1249 * For lack of a better implementation, implement vmsplice() to userspace
1250 * as a simple copy of the pipes pages to the user iov.
1251 */
1252 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1253 unsigned int flags)
1254 {
1255 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1256 struct splice_desc sd = {
1257 .total_len = iov_iter_count(iter),
1258 .flags = flags,
1259 .u.data = iter
1260 };
1261 long ret = 0;
1262
1263 if (!pipe)
1264 return -EBADF;
1265
1266 if (sd.total_len) {
1267 pipe_lock(pipe);
1268 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1269 pipe_unlock(pipe);
1270 }
1271
1272 return ret;
1273 }
1274
1275 /*
1276 * vmsplice splices a user address range into a pipe. It can be thought of
1277 * as splice-from-memory, where the regular splice is splice-from-file (or
1278 * to file). In both cases the output is a pipe, naturally.
1279 */
1280 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1281 unsigned int flags)
1282 {
1283 struct pipe_inode_info *pipe;
1284 long ret = 0;
1285 unsigned buf_flag = 0;
1286
1287 if (flags & SPLICE_F_GIFT)
1288 buf_flag = PIPE_BUF_FLAG_GIFT;
1289
1290 pipe = get_pipe_info(file, true);
1291 if (!pipe)
1292 return -EBADF;
1293
1294 pipe_lock(pipe);
1295 ret = wait_for_space(pipe, flags);
1296 if (!ret)
1297 ret = iter_to_pipe(iter, pipe, buf_flag);
1298 pipe_unlock(pipe);
1299 if (ret > 0)
1300 wakeup_pipe_readers(pipe);
1301 return ret;
1302 }
1303
1304 static int vmsplice_type(struct fd f, int *type)
1305 {
1306 if (!f.file)
1307 return -EBADF;
1308 if (f.file->f_mode & FMODE_WRITE) {
1309 *type = WRITE;
1310 } else if (f.file->f_mode & FMODE_READ) {
1311 *type = READ;
1312 } else {
1313 fdput(f);
1314 return -EBADF;
1315 }
1316 return 0;
1317 }
1318
1319 /*
1320 * Note that vmsplice only really supports true splicing _from_ user memory
1321 * to a pipe, not the other way around. Splicing from user memory is a simple
1322 * operation that can be supported without any funky alignment restrictions
1323 * or nasty vm tricks. We simply map in the user memory and fill them into
1324 * a pipe. The reverse isn't quite as easy, though. There are two possible
1325 * solutions for that:
1326 *
1327 * - memcpy() the data internally, at which point we might as well just
1328 * do a regular read() on the buffer anyway.
1329 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1330 * has restriction limitations on both ends of the pipe).
1331 *
1332 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1333 *
1334 */
1335 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
1336 {
1337 if (unlikely(flags & ~SPLICE_F_ALL))
1338 return -EINVAL;
1339
1340 if (!iov_iter_count(iter))
1341 return 0;
1342
1343 if (iov_iter_rw(iter) == WRITE)
1344 return vmsplice_to_pipe(f, iter, flags);
1345 else
1346 return vmsplice_to_user(f, iter, flags);
1347 }
1348
1349 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1350 unsigned long, nr_segs, unsigned int, flags)
1351 {
1352 struct iovec iovstack[UIO_FASTIOV];
1353 struct iovec *iov = iovstack;
1354 struct iov_iter iter;
1355 ssize_t error;
1356 struct fd f;
1357 int type;
1358
1359 f = fdget(fd);
1360 error = vmsplice_type(f, &type);
1361 if (error)
1362 return error;
1363
1364 error = import_iovec(type, uiov, nr_segs,
1365 ARRAY_SIZE(iovstack), &iov, &iter);
1366 if (error >= 0) {
1367 error = do_vmsplice(f.file, &iter, flags);
1368 kfree(iov);
1369 }
1370 fdput(f);
1371 return error;
1372 }
1373
1374 #ifdef CONFIG_COMPAT
1375 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1376 unsigned int, nr_segs, unsigned int, flags)
1377 {
1378 struct iovec iovstack[UIO_FASTIOV];
1379 struct iovec *iov = iovstack;
1380 struct iov_iter iter;
1381 ssize_t error;
1382 struct fd f;
1383 int type;
1384
1385 f = fdget(fd);
1386 error = vmsplice_type(f, &type);
1387 if (error)
1388 return error;
1389
1390 error = compat_import_iovec(type, iov32, nr_segs,
1391 ARRAY_SIZE(iovstack), &iov, &iter);
1392 if (error >= 0) {
1393 error = do_vmsplice(f.file, &iter, flags);
1394 kfree(iov);
1395 }
1396 fdput(f);
1397 return error;
1398 }
1399 #endif
1400
1401 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1402 int, fd_out, loff_t __user *, off_out,
1403 size_t, len, unsigned int, flags)
1404 {
1405 struct fd in, out;
1406 long error;
1407
1408 if (unlikely(!len))
1409 return 0;
1410
1411 if (unlikely(flags & ~SPLICE_F_ALL))
1412 return -EINVAL;
1413
1414 error = -EBADF;
1415 in = fdget(fd_in);
1416 if (in.file) {
1417 out = fdget(fd_out);
1418 if (out.file) {
1419 error = do_splice(in.file, off_in, out.file, off_out,
1420 len, flags);
1421 fdput(out);
1422 }
1423 fdput(in);
1424 }
1425 return error;
1426 }
1427
1428 /*
1429 * Make sure there's data to read. Wait for input if we can, otherwise
1430 * return an appropriate error.
1431 */
1432 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1433 {
1434 int ret;
1435
1436 /*
1437 * Check the pipe occupancy without the inode lock first. This function
1438 * is speculative anyways, so missing one is ok.
1439 */
1440 if (!pipe_empty(pipe->head, pipe->tail))
1441 return 0;
1442
1443 ret = 0;
1444 pipe_lock(pipe);
1445
1446 while (pipe_empty(pipe->head, pipe->tail)) {
1447 if (signal_pending(current)) {
1448 ret = -ERESTARTSYS;
1449 break;
1450 }
1451 if (!pipe->writers)
1452 break;
1453 if (flags & SPLICE_F_NONBLOCK) {
1454 ret = -EAGAIN;
1455 break;
1456 }
1457 pipe_wait(pipe);
1458 }
1459
1460 pipe_unlock(pipe);
1461 return ret;
1462 }
1463
1464 /*
1465 * Make sure there's writeable room. Wait for room if we can, otherwise
1466 * return an appropriate error.
1467 */
1468 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1469 {
1470 int ret;
1471
1472 /*
1473 * Check pipe occupancy without the inode lock first. This function
1474 * is speculative anyways, so missing one is ok.
1475 */
1476 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1477 return 0;
1478
1479 ret = 0;
1480 pipe_lock(pipe);
1481
1482 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1483 if (!pipe->readers) {
1484 send_sig(SIGPIPE, current, 0);
1485 ret = -EPIPE;
1486 break;
1487 }
1488 if (flags & SPLICE_F_NONBLOCK) {
1489 ret = -EAGAIN;
1490 break;
1491 }
1492 if (signal_pending(current)) {
1493 ret = -ERESTARTSYS;
1494 break;
1495 }
1496 pipe_wait(pipe);
1497 }
1498
1499 pipe_unlock(pipe);
1500 return ret;
1501 }
1502
1503 /*
1504 * Splice contents of ipipe to opipe.
1505 */
1506 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1507 struct pipe_inode_info *opipe,
1508 size_t len, unsigned int flags)
1509 {
1510 struct pipe_buffer *ibuf, *obuf;
1511 unsigned int i_head, o_head;
1512 unsigned int i_tail, o_tail;
1513 unsigned int i_mask, o_mask;
1514 int ret = 0;
1515 bool input_wakeup = false;
1516
1517
1518 retry:
1519 ret = ipipe_prep(ipipe, flags);
1520 if (ret)
1521 return ret;
1522
1523 ret = opipe_prep(opipe, flags);
1524 if (ret)
1525 return ret;
1526
1527 /*
1528 * Potential ABBA deadlock, work around it by ordering lock
1529 * grabbing by pipe info address. Otherwise two different processes
1530 * could deadlock (one doing tee from A -> B, the other from B -> A).
1531 */
1532 pipe_double_lock(ipipe, opipe);
1533
1534 i_tail = ipipe->tail;
1535 i_mask = ipipe->ring_size - 1;
1536 o_head = opipe->head;
1537 o_mask = opipe->ring_size - 1;
1538
1539 do {
1540 size_t o_len;
1541
1542 if (!opipe->readers) {
1543 send_sig(SIGPIPE, current, 0);
1544 if (!ret)
1545 ret = -EPIPE;
1546 break;
1547 }
1548
1549 i_head = ipipe->head;
1550 o_tail = opipe->tail;
1551
1552 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1553 break;
1554
1555 /*
1556 * Cannot make any progress, because either the input
1557 * pipe is empty or the output pipe is full.
1558 */
1559 if (pipe_empty(i_head, i_tail) ||
1560 pipe_full(o_head, o_tail, opipe->max_usage)) {
1561 /* Already processed some buffers, break */
1562 if (ret)
1563 break;
1564
1565 if (flags & SPLICE_F_NONBLOCK) {
1566 ret = -EAGAIN;
1567 break;
1568 }
1569
1570 /*
1571 * We raced with another reader/writer and haven't
1572 * managed to process any buffers. A zero return
1573 * value means EOF, so retry instead.
1574 */
1575 pipe_unlock(ipipe);
1576 pipe_unlock(opipe);
1577 goto retry;
1578 }
1579
1580 ibuf = &ipipe->bufs[i_tail & i_mask];
1581 obuf = &opipe->bufs[o_head & o_mask];
1582
1583 if (len >= ibuf->len) {
1584 /*
1585 * Simply move the whole buffer from ipipe to opipe
1586 */
1587 *obuf = *ibuf;
1588 ibuf->ops = NULL;
1589 i_tail++;
1590 ipipe->tail = i_tail;
1591 input_wakeup = true;
1592 o_len = obuf->len;
1593 o_head++;
1594 opipe->head = o_head;
1595 } else {
1596 /*
1597 * Get a reference to this pipe buffer,
1598 * so we can copy the contents over.
1599 */
1600 if (!pipe_buf_get(ipipe, ibuf)) {
1601 if (ret == 0)
1602 ret = -EFAULT;
1603 break;
1604 }
1605 *obuf = *ibuf;
1606
1607 /*
1608 * Don't inherit the gift and merge flags, we need to
1609 * prevent multiple steals of this page.
1610 */
1611 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1612 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1613
1614 obuf->len = len;
1615 ibuf->offset += len;
1616 ibuf->len -= len;
1617 o_len = len;
1618 o_head++;
1619 opipe->head = o_head;
1620 }
1621 ret += o_len;
1622 len -= o_len;
1623 } while (len);
1624
1625 pipe_unlock(ipipe);
1626 pipe_unlock(opipe);
1627
1628 /*
1629 * If we put data in the output pipe, wakeup any potential readers.
1630 */
1631 if (ret > 0)
1632 wakeup_pipe_readers(opipe);
1633
1634 if (input_wakeup)
1635 wakeup_pipe_writers(ipipe);
1636
1637 return ret;
1638 }
1639
1640 /*
1641 * Link contents of ipipe to opipe.
1642 */
1643 static int link_pipe(struct pipe_inode_info *ipipe,
1644 struct pipe_inode_info *opipe,
1645 size_t len, unsigned int flags)
1646 {
1647 struct pipe_buffer *ibuf, *obuf;
1648 unsigned int i_head, o_head;
1649 unsigned int i_tail, o_tail;
1650 unsigned int i_mask, o_mask;
1651 int ret = 0;
1652
1653 /*
1654 * Potential ABBA deadlock, work around it by ordering lock
1655 * grabbing by pipe info address. Otherwise two different processes
1656 * could deadlock (one doing tee from A -> B, the other from B -> A).
1657 */
1658 pipe_double_lock(ipipe, opipe);
1659
1660 i_tail = ipipe->tail;
1661 i_mask = ipipe->ring_size - 1;
1662 o_head = opipe->head;
1663 o_mask = opipe->ring_size - 1;
1664
1665 do {
1666 if (!opipe->readers) {
1667 send_sig(SIGPIPE, current, 0);
1668 if (!ret)
1669 ret = -EPIPE;
1670 break;
1671 }
1672
1673 i_head = ipipe->head;
1674 o_tail = opipe->tail;
1675
1676 /*
1677 * If we have iterated all input buffers or run out of
1678 * output room, break.
1679 */
1680 if (pipe_empty(i_head, i_tail) ||
1681 pipe_full(o_head, o_tail, opipe->max_usage))
1682 break;
1683
1684 ibuf = &ipipe->bufs[i_tail & i_mask];
1685 obuf = &opipe->bufs[o_head & o_mask];
1686
1687 /*
1688 * Get a reference to this pipe buffer,
1689 * so we can copy the contents over.
1690 */
1691 if (!pipe_buf_get(ipipe, ibuf)) {
1692 if (ret == 0)
1693 ret = -EFAULT;
1694 break;
1695 }
1696
1697 *obuf = *ibuf;
1698
1699 /*
1700 * Don't inherit the gift and merge flag, we need to prevent
1701 * multiple steals of this page.
1702 */
1703 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1704 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1705
1706 if (obuf->len > len)
1707 obuf->len = len;
1708 ret += obuf->len;
1709 len -= obuf->len;
1710
1711 o_head++;
1712 opipe->head = o_head;
1713 i_tail++;
1714 } while (len);
1715
1716 pipe_unlock(ipipe);
1717 pipe_unlock(opipe);
1718
1719 /*
1720 * If we put data in the output pipe, wakeup any potential readers.
1721 */
1722 if (ret > 0)
1723 wakeup_pipe_readers(opipe);
1724
1725 return ret;
1726 }
1727
1728 /*
1729 * This is a tee(1) implementation that works on pipes. It doesn't copy
1730 * any data, it simply references the 'in' pages on the 'out' pipe.
1731 * The 'flags' used are the SPLICE_F_* variants, currently the only
1732 * applicable one is SPLICE_F_NONBLOCK.
1733 */
1734 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1735 {
1736 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1737 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1738 int ret = -EINVAL;
1739
1740 if (unlikely(!(in->f_mode & FMODE_READ) ||
1741 !(out->f_mode & FMODE_WRITE)))
1742 return -EBADF;
1743
1744 /*
1745 * Duplicate the contents of ipipe to opipe without actually
1746 * copying the data.
1747 */
1748 if (ipipe && opipe && ipipe != opipe) {
1749 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1750 flags |= SPLICE_F_NONBLOCK;
1751
1752 /*
1753 * Keep going, unless we encounter an error. The ipipe/opipe
1754 * ordering doesn't really matter.
1755 */
1756 ret = ipipe_prep(ipipe, flags);
1757 if (!ret) {
1758 ret = opipe_prep(opipe, flags);
1759 if (!ret)
1760 ret = link_pipe(ipipe, opipe, len, flags);
1761 }
1762 }
1763
1764 return ret;
1765 }
1766
1767 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1768 {
1769 struct fd in, out;
1770 int error;
1771
1772 if (unlikely(flags & ~SPLICE_F_ALL))
1773 return -EINVAL;
1774
1775 if (unlikely(!len))
1776 return 0;
1777
1778 error = -EBADF;
1779 in = fdget(fdin);
1780 if (in.file) {
1781 out = fdget(fdout);
1782 if (out.file) {
1783 error = do_tee(in.file, out.file, len, flags);
1784 fdput(out);
1785 }
1786 fdput(in);
1787 }
1788
1789 return error;
1790 }