]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/splice.c
UBUNTU: [Config] switch squashfs to single threaded decode
[mirror_ubuntu-zesty-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 buf->flags = 0;
215 if (spd->flags & SPLICE_F_GIFT)
216 buf->flags |= PIPE_BUF_FLAG_GIFT;
217
218 pipe->nrbufs++;
219 page_nr++;
220 ret += buf->len;
221
222 if (pipe->files)
223 do_wakeup = 1;
224
225 if (!--spd->nr_pages)
226 break;
227 if (pipe->nrbufs < pipe->buffers)
228 continue;
229
230 break;
231 }
232
233 if (spd->flags & SPLICE_F_NONBLOCK) {
234 if (!ret)
235 ret = -EAGAIN;
236 break;
237 }
238
239 if (signal_pending(current)) {
240 if (!ret)
241 ret = -ERESTARTSYS;
242 break;
243 }
244
245 if (do_wakeup) {
246 smp_mb();
247 if (waitqueue_active(&pipe->wait))
248 wake_up_interruptible_sync(&pipe->wait);
249 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 do_wakeup = 0;
251 }
252
253 pipe->waiting_writers++;
254 pipe_wait(pipe);
255 pipe->waiting_writers--;
256 }
257
258 pipe_unlock(pipe);
259
260 if (do_wakeup)
261 wakeup_pipe_readers(pipe);
262
263 while (page_nr < spd_pages)
264 spd->spd_release(spd, page_nr++);
265
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(splice_to_pipe);
269
270 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 {
272 page_cache_release(spd->pages[i]);
273 }
274
275 /*
276 * Check if we need to grow the arrays holding pages and partial page
277 * descriptions.
278 */
279 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 {
281 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282
283 spd->nr_pages_max = buffers;
284 if (buffers <= PIPE_DEF_BUFFERS)
285 return 0;
286
287 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
288 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289
290 if (spd->pages && spd->partial)
291 return 0;
292
293 kfree(spd->pages);
294 kfree(spd->partial);
295 return -ENOMEM;
296 }
297
298 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 {
300 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
301 return;
302
303 kfree(spd->pages);
304 kfree(spd->partial);
305 }
306
307 static int
308 __generic_file_splice_read(struct file *in, loff_t *ppos,
309 struct pipe_inode_info *pipe, size_t len,
310 unsigned int flags)
311 {
312 struct address_space *mapping = in->f_mapping;
313 unsigned int loff, nr_pages, req_pages;
314 struct page *pages[PIPE_DEF_BUFFERS];
315 struct partial_page partial[PIPE_DEF_BUFFERS];
316 struct page *page;
317 pgoff_t index, end_index;
318 loff_t isize;
319 int error, page_nr;
320 struct splice_pipe_desc spd = {
321 .pages = pages,
322 .partial = partial,
323 .nr_pages_max = PIPE_DEF_BUFFERS,
324 .flags = flags,
325 .ops = &page_cache_pipe_buf_ops,
326 .spd_release = spd_release_page,
327 };
328
329 if (splice_grow_spd(pipe, &spd))
330 return -ENOMEM;
331
332 index = *ppos >> PAGE_CACHE_SHIFT;
333 loff = *ppos & ~PAGE_CACHE_MASK;
334 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
335 nr_pages = min(req_pages, spd.nr_pages_max);
336
337 /*
338 * Lookup the (hopefully) full range of pages we need.
339 */
340 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
341 index += spd.nr_pages;
342
343 /*
344 * If find_get_pages_contig() returned fewer pages than we needed,
345 * readahead/allocate the rest and fill in the holes.
346 */
347 if (spd.nr_pages < nr_pages)
348 page_cache_sync_readahead(mapping, &in->f_ra, in,
349 index, req_pages - spd.nr_pages);
350
351 error = 0;
352 while (spd.nr_pages < nr_pages) {
353 /*
354 * Page could be there, find_get_pages_contig() breaks on
355 * the first hole.
356 */
357 page = find_get_page(mapping, index);
358 if (!page) {
359 /*
360 * page didn't exist, allocate one.
361 */
362 page = page_cache_alloc_cold(mapping);
363 if (!page)
364 break;
365
366 error = add_to_page_cache_lru(page, mapping, index,
367 mapping_gfp_constraint(mapping, GFP_KERNEL));
368 if (unlikely(error)) {
369 page_cache_release(page);
370 if (error == -EEXIST)
371 continue;
372 break;
373 }
374 /*
375 * add_to_page_cache() locks the page, unlock it
376 * to avoid convoluting the logic below even more.
377 */
378 unlock_page(page);
379 }
380
381 spd.pages[spd.nr_pages++] = page;
382 index++;
383 }
384
385 /*
386 * Now loop over the map and see if we need to start IO on any
387 * pages, fill in the partial map, etc.
388 */
389 index = *ppos >> PAGE_CACHE_SHIFT;
390 nr_pages = spd.nr_pages;
391 spd.nr_pages = 0;
392 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
393 unsigned int this_len;
394
395 if (!len)
396 break;
397
398 /*
399 * this_len is the max we'll use from this page
400 */
401 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
402 page = spd.pages[page_nr];
403
404 if (PageReadahead(page))
405 page_cache_async_readahead(mapping, &in->f_ra, in,
406 page, index, req_pages - page_nr);
407
408 /*
409 * If the page isn't uptodate, we may need to start io on it
410 */
411 if (!PageUptodate(page)) {
412 lock_page(page);
413
414 /*
415 * Page was truncated, or invalidated by the
416 * filesystem. Redo the find/create, but this time the
417 * page is kept locked, so there's no chance of another
418 * race with truncate/invalidate.
419 */
420 if (!page->mapping) {
421 unlock_page(page);
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 page_cache_release(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * We really should re-lookup the page here,
447 * but it complicates things a lot. Instead
448 * lets just do what we already stored, and
449 * we'll get it the next time we are called.
450 */
451 if (error == AOP_TRUNCATED_PAGE)
452 error = 0;
453
454 break;
455 }
456 }
457 fill_it:
458 /*
459 * i_size must be checked after PageUptodate.
460 */
461 isize = i_size_read(mapping->host);
462 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
463 if (unlikely(!isize || index > end_index))
464 break;
465
466 /*
467 * if this is the last page, see if we need to shrink
468 * the length and stop
469 */
470 if (end_index == index) {
471 unsigned int plen;
472
473 /*
474 * max good bytes in this page
475 */
476 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
477 if (plen <= loff)
478 break;
479
480 /*
481 * force quit after adding this page
482 */
483 this_len = min(this_len, plen - loff);
484 len = this_len;
485 }
486
487 spd.partial[page_nr].offset = loff;
488 spd.partial[page_nr].len = this_len;
489 len -= this_len;
490 loff = 0;
491 spd.nr_pages++;
492 index++;
493 }
494
495 /*
496 * Release any pages at the end, if we quit early. 'page_nr' is how far
497 * we got, 'nr_pages' is how many pages are in the map.
498 */
499 while (page_nr < nr_pages)
500 page_cache_release(spd.pages[page_nr++]);
501 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
502
503 if (spd.nr_pages)
504 error = splice_to_pipe(pipe, &spd);
505
506 splice_shrink_spd(&spd);
507 return error;
508 }
509
510 /**
511 * generic_file_splice_read - splice data from file to a pipe
512 * @in: file to splice from
513 * @ppos: position in @in
514 * @pipe: pipe to splice to
515 * @len: number of bytes to splice
516 * @flags: splice modifier flags
517 *
518 * Description:
519 * Will read pages from given file and fill them into a pipe. Can be
520 * used as long as the address_space operations for the source implements
521 * a readpage() hook.
522 *
523 */
524 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
525 struct pipe_inode_info *pipe, size_t len,
526 unsigned int flags)
527 {
528 loff_t isize, left;
529 int ret;
530
531 if (IS_DAX(in->f_mapping->host))
532 return default_file_splice_read(in, ppos, pipe, len, flags);
533
534 isize = i_size_read(in->f_mapping->host);
535 if (unlikely(*ppos >= isize))
536 return 0;
537
538 left = isize - *ppos;
539 if (unlikely(left < len))
540 len = left;
541
542 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
543 if (ret > 0) {
544 *ppos += ret;
545 file_accessed(in);
546 }
547
548 return ret;
549 }
550 EXPORT_SYMBOL(generic_file_splice_read);
551
552 static const struct pipe_buf_operations default_pipe_buf_ops = {
553 .can_merge = 0,
554 .confirm = generic_pipe_buf_confirm,
555 .release = generic_pipe_buf_release,
556 .steal = generic_pipe_buf_steal,
557 .get = generic_pipe_buf_get,
558 };
559
560 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
561 struct pipe_buffer *buf)
562 {
563 return 1;
564 }
565
566 /* Pipe buffer operations for a socket and similar. */
567 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
568 .can_merge = 0,
569 .confirm = generic_pipe_buf_confirm,
570 .release = generic_pipe_buf_release,
571 .steal = generic_pipe_buf_nosteal,
572 .get = generic_pipe_buf_get,
573 };
574 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
575
576 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
577 unsigned long vlen, loff_t offset)
578 {
579 mm_segment_t old_fs;
580 loff_t pos = offset;
581 ssize_t res;
582
583 old_fs = get_fs();
584 set_fs(get_ds());
585 /* The cast to a user pointer is valid due to the set_fs() */
586 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
587 set_fs(old_fs);
588
589 return res;
590 }
591
592 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
593 loff_t pos)
594 {
595 mm_segment_t old_fs;
596 ssize_t res;
597
598 old_fs = get_fs();
599 set_fs(get_ds());
600 /* The cast to a user pointer is valid due to the set_fs() */
601 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
602 set_fs(old_fs);
603
604 return res;
605 }
606 EXPORT_SYMBOL(kernel_write);
607
608 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
609 struct pipe_inode_info *pipe, size_t len,
610 unsigned int flags)
611 {
612 unsigned int nr_pages;
613 unsigned int nr_freed;
614 size_t offset;
615 struct page *pages[PIPE_DEF_BUFFERS];
616 struct partial_page partial[PIPE_DEF_BUFFERS];
617 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
618 ssize_t res;
619 size_t this_len;
620 int error;
621 int i;
622 struct splice_pipe_desc spd = {
623 .pages = pages,
624 .partial = partial,
625 .nr_pages_max = PIPE_DEF_BUFFERS,
626 .flags = flags,
627 .ops = &default_pipe_buf_ops,
628 .spd_release = spd_release_page,
629 };
630
631 if (splice_grow_spd(pipe, &spd))
632 return -ENOMEM;
633
634 res = -ENOMEM;
635 vec = __vec;
636 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
637 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
638 if (!vec)
639 goto shrink_ret;
640 }
641
642 offset = *ppos & ~PAGE_CACHE_MASK;
643 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
644
645 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
646 struct page *page;
647
648 page = alloc_page(GFP_USER);
649 error = -ENOMEM;
650 if (!page)
651 goto err;
652
653 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
654 vec[i].iov_base = (void __user *) page_address(page);
655 vec[i].iov_len = this_len;
656 spd.pages[i] = page;
657 spd.nr_pages++;
658 len -= this_len;
659 offset = 0;
660 }
661
662 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
663 if (res < 0) {
664 error = res;
665 goto err;
666 }
667
668 error = 0;
669 if (!res)
670 goto err;
671
672 nr_freed = 0;
673 for (i = 0; i < spd.nr_pages; i++) {
674 this_len = min_t(size_t, vec[i].iov_len, res);
675 spd.partial[i].offset = 0;
676 spd.partial[i].len = this_len;
677 if (!this_len) {
678 __free_page(spd.pages[i]);
679 spd.pages[i] = NULL;
680 nr_freed++;
681 }
682 res -= this_len;
683 }
684 spd.nr_pages -= nr_freed;
685
686 res = splice_to_pipe(pipe, &spd);
687 if (res > 0)
688 *ppos += res;
689
690 shrink_ret:
691 if (vec != __vec)
692 kfree(vec);
693 splice_shrink_spd(&spd);
694 return res;
695
696 err:
697 for (i = 0; i < spd.nr_pages; i++)
698 __free_page(spd.pages[i]);
699
700 res = error;
701 goto shrink_ret;
702 }
703 EXPORT_SYMBOL(default_file_splice_read);
704
705 /*
706 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
707 * using sendpage(). Return the number of bytes sent.
708 */
709 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
710 struct pipe_buffer *buf, struct splice_desc *sd)
711 {
712 struct file *file = sd->u.file;
713 loff_t pos = sd->pos;
714 int more;
715
716 if (!likely(file->f_op->sendpage))
717 return -EINVAL;
718
719 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
720
721 if (sd->len < sd->total_len && pipe->nrbufs > 1)
722 more |= MSG_SENDPAGE_NOTLAST;
723
724 return file->f_op->sendpage(file, buf->page, buf->offset,
725 sd->len, &pos, more);
726 }
727
728 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
729 {
730 smp_mb();
731 if (waitqueue_active(&pipe->wait))
732 wake_up_interruptible(&pipe->wait);
733 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 }
735
736 /**
737 * splice_from_pipe_feed - feed available data from a pipe to a file
738 * @pipe: pipe to splice from
739 * @sd: information to @actor
740 * @actor: handler that splices the data
741 *
742 * Description:
743 * This function loops over the pipe and calls @actor to do the
744 * actual moving of a single struct pipe_buffer to the desired
745 * destination. It returns when there's no more buffers left in
746 * the pipe or if the requested number of bytes (@sd->total_len)
747 * have been copied. It returns a positive number (one) if the
748 * pipe needs to be filled with more data, zero if the required
749 * number of bytes have been copied and -errno on error.
750 *
751 * This, together with splice_from_pipe_{begin,end,next}, may be
752 * used to implement the functionality of __splice_from_pipe() when
753 * locking is required around copying the pipe buffers to the
754 * destination.
755 */
756 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
757 splice_actor *actor)
758 {
759 int ret;
760
761 while (pipe->nrbufs) {
762 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
763 const struct pipe_buf_operations *ops = buf->ops;
764
765 sd->len = buf->len;
766 if (sd->len > sd->total_len)
767 sd->len = sd->total_len;
768
769 ret = buf->ops->confirm(pipe, buf);
770 if (unlikely(ret)) {
771 if (ret == -ENODATA)
772 ret = 0;
773 return ret;
774 }
775
776 ret = actor(pipe, buf, sd);
777 if (ret <= 0)
778 return ret;
779
780 buf->offset += ret;
781 buf->len -= ret;
782
783 sd->num_spliced += ret;
784 sd->len -= ret;
785 sd->pos += ret;
786 sd->total_len -= ret;
787
788 if (!buf->len) {
789 buf->ops = NULL;
790 ops->release(pipe, buf);
791 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
792 pipe->nrbufs--;
793 if (pipe->files)
794 sd->need_wakeup = true;
795 }
796
797 if (!sd->total_len)
798 return 0;
799 }
800
801 return 1;
802 }
803
804 /**
805 * splice_from_pipe_next - wait for some data to splice from
806 * @pipe: pipe to splice from
807 * @sd: information about the splice operation
808 *
809 * Description:
810 * This function will wait for some data and return a positive
811 * value (one) if pipe buffers are available. It will return zero
812 * or -errno if no more data needs to be spliced.
813 */
814 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
815 {
816 /*
817 * Check for signal early to make process killable when there are
818 * always buffers available
819 */
820 if (signal_pending(current))
821 return -ERESTARTSYS;
822
823 while (!pipe->nrbufs) {
824 if (!pipe->writers)
825 return 0;
826
827 if (!pipe->waiting_writers && sd->num_spliced)
828 return 0;
829
830 if (sd->flags & SPLICE_F_NONBLOCK)
831 return -EAGAIN;
832
833 if (signal_pending(current))
834 return -ERESTARTSYS;
835
836 if (sd->need_wakeup) {
837 wakeup_pipe_writers(pipe);
838 sd->need_wakeup = false;
839 }
840
841 pipe_wait(pipe);
842 }
843
844 return 1;
845 }
846
847 /**
848 * splice_from_pipe_begin - start splicing from pipe
849 * @sd: information about the splice operation
850 *
851 * Description:
852 * This function should be called before a loop containing
853 * splice_from_pipe_next() and splice_from_pipe_feed() to
854 * initialize the necessary fields of @sd.
855 */
856 static void splice_from_pipe_begin(struct splice_desc *sd)
857 {
858 sd->num_spliced = 0;
859 sd->need_wakeup = false;
860 }
861
862 /**
863 * splice_from_pipe_end - finish splicing from pipe
864 * @pipe: pipe to splice from
865 * @sd: information about the splice operation
866 *
867 * Description:
868 * This function will wake up pipe writers if necessary. It should
869 * be called after a loop containing splice_from_pipe_next() and
870 * splice_from_pipe_feed().
871 */
872 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
873 {
874 if (sd->need_wakeup)
875 wakeup_pipe_writers(pipe);
876 }
877
878 /**
879 * __splice_from_pipe - splice data from a pipe to given actor
880 * @pipe: pipe to splice from
881 * @sd: information to @actor
882 * @actor: handler that splices the data
883 *
884 * Description:
885 * This function does little more than loop over the pipe and call
886 * @actor to do the actual moving of a single struct pipe_buffer to
887 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
888 * pipe_to_user.
889 *
890 */
891 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
892 splice_actor *actor)
893 {
894 int ret;
895
896 splice_from_pipe_begin(sd);
897 do {
898 cond_resched();
899 ret = splice_from_pipe_next(pipe, sd);
900 if (ret > 0)
901 ret = splice_from_pipe_feed(pipe, sd, actor);
902 } while (ret > 0);
903 splice_from_pipe_end(pipe, sd);
904
905 return sd->num_spliced ? sd->num_spliced : ret;
906 }
907 EXPORT_SYMBOL(__splice_from_pipe);
908
909 /**
910 * splice_from_pipe - splice data from a pipe to a file
911 * @pipe: pipe to splice from
912 * @out: file to splice to
913 * @ppos: position in @out
914 * @len: how many bytes to splice
915 * @flags: splice modifier flags
916 * @actor: handler that splices the data
917 *
918 * Description:
919 * See __splice_from_pipe. This function locks the pipe inode,
920 * otherwise it's identical to __splice_from_pipe().
921 *
922 */
923 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
924 loff_t *ppos, size_t len, unsigned int flags,
925 splice_actor *actor)
926 {
927 ssize_t ret;
928 struct splice_desc sd = {
929 .total_len = len,
930 .flags = flags,
931 .pos = *ppos,
932 .u.file = out,
933 };
934
935 pipe_lock(pipe);
936 ret = __splice_from_pipe(pipe, &sd, actor);
937 pipe_unlock(pipe);
938
939 return ret;
940 }
941
942 /**
943 * iter_file_splice_write - splice data from a pipe to a file
944 * @pipe: pipe info
945 * @out: file to write to
946 * @ppos: position in @out
947 * @len: number of bytes to splice
948 * @flags: splice modifier flags
949 *
950 * Description:
951 * Will either move or copy pages (determined by @flags options) from
952 * the given pipe inode to the given file.
953 * This one is ->write_iter-based.
954 *
955 */
956 ssize_t
957 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
958 loff_t *ppos, size_t len, unsigned int flags)
959 {
960 struct splice_desc sd = {
961 .total_len = len,
962 .flags = flags,
963 .pos = *ppos,
964 .u.file = out,
965 };
966 int nbufs = pipe->buffers;
967 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
968 GFP_KERNEL);
969 ssize_t ret;
970
971 if (unlikely(!array))
972 return -ENOMEM;
973
974 pipe_lock(pipe);
975
976 splice_from_pipe_begin(&sd);
977 while (sd.total_len) {
978 struct iov_iter from;
979 size_t left;
980 int n, idx;
981
982 ret = splice_from_pipe_next(pipe, &sd);
983 if (ret <= 0)
984 break;
985
986 if (unlikely(nbufs < pipe->buffers)) {
987 kfree(array);
988 nbufs = pipe->buffers;
989 array = kcalloc(nbufs, sizeof(struct bio_vec),
990 GFP_KERNEL);
991 if (!array) {
992 ret = -ENOMEM;
993 break;
994 }
995 }
996
997 /* build the vector */
998 left = sd.total_len;
999 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
1000 struct pipe_buffer *buf = pipe->bufs + idx;
1001 size_t this_len = buf->len;
1002
1003 if (this_len > left)
1004 this_len = left;
1005
1006 if (idx == pipe->buffers - 1)
1007 idx = -1;
1008
1009 ret = buf->ops->confirm(pipe, buf);
1010 if (unlikely(ret)) {
1011 if (ret == -ENODATA)
1012 ret = 0;
1013 goto done;
1014 }
1015
1016 array[n].bv_page = buf->page;
1017 array[n].bv_len = this_len;
1018 array[n].bv_offset = buf->offset;
1019 left -= this_len;
1020 }
1021
1022 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1023 sd.total_len - left);
1024 ret = vfs_iter_write(out, &from, &sd.pos);
1025 if (ret <= 0)
1026 break;
1027
1028 sd.num_spliced += ret;
1029 sd.total_len -= ret;
1030 *ppos = sd.pos;
1031
1032 /* dismiss the fully eaten buffers, adjust the partial one */
1033 while (ret) {
1034 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1035 if (ret >= buf->len) {
1036 const struct pipe_buf_operations *ops = buf->ops;
1037 ret -= buf->len;
1038 buf->len = 0;
1039 buf->ops = NULL;
1040 ops->release(pipe, buf);
1041 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1042 pipe->nrbufs--;
1043 if (pipe->files)
1044 sd.need_wakeup = true;
1045 } else {
1046 buf->offset += ret;
1047 buf->len -= ret;
1048 ret = 0;
1049 }
1050 }
1051 }
1052 done:
1053 kfree(array);
1054 splice_from_pipe_end(pipe, &sd);
1055
1056 pipe_unlock(pipe);
1057
1058 if (sd.num_spliced)
1059 ret = sd.num_spliced;
1060
1061 return ret;
1062 }
1063
1064 EXPORT_SYMBOL(iter_file_splice_write);
1065
1066 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1067 struct splice_desc *sd)
1068 {
1069 int ret;
1070 void *data;
1071 loff_t tmp = sd->pos;
1072
1073 data = kmap(buf->page);
1074 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1075 kunmap(buf->page);
1076
1077 return ret;
1078 }
1079
1080 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1081 struct file *out, loff_t *ppos,
1082 size_t len, unsigned int flags)
1083 {
1084 ssize_t ret;
1085
1086 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1087 if (ret > 0)
1088 *ppos += ret;
1089
1090 return ret;
1091 }
1092
1093 /**
1094 * generic_splice_sendpage - splice data from a pipe to a socket
1095 * @pipe: pipe to splice from
1096 * @out: socket to write to
1097 * @ppos: position in @out
1098 * @len: number of bytes to splice
1099 * @flags: splice modifier flags
1100 *
1101 * Description:
1102 * Will send @len bytes from the pipe to a network socket. No data copying
1103 * is involved.
1104 *
1105 */
1106 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1107 loff_t *ppos, size_t len, unsigned int flags)
1108 {
1109 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1110 }
1111
1112 EXPORT_SYMBOL(generic_splice_sendpage);
1113
1114 /*
1115 * Attempt to initiate a splice from pipe to file.
1116 */
1117 long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1118 loff_t *ppos, size_t len, unsigned int flags)
1119 {
1120 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1121 loff_t *, size_t, unsigned int);
1122
1123 if (out->f_op->splice_write)
1124 splice_write = out->f_op->splice_write;
1125 else
1126 splice_write = default_file_splice_write;
1127
1128 return splice_write(pipe, out, ppos, len, flags);
1129 }
1130 EXPORT_SYMBOL(do_splice_from);
1131
1132 /*
1133 * Attempt to initiate a splice from a file to a pipe.
1134 */
1135 long do_splice_to(struct file *in, loff_t *ppos,
1136 struct pipe_inode_info *pipe, size_t len,
1137 unsigned int flags)
1138 {
1139 ssize_t (*splice_read)(struct file *, loff_t *,
1140 struct pipe_inode_info *, size_t, unsigned int);
1141 int ret;
1142
1143 if (unlikely(!(in->f_mode & FMODE_READ)))
1144 return -EBADF;
1145
1146 ret = rw_verify_area(READ, in, ppos, len);
1147 if (unlikely(ret < 0))
1148 return ret;
1149
1150 if (in->f_op->splice_read)
1151 splice_read = in->f_op->splice_read;
1152 else
1153 splice_read = default_file_splice_read;
1154
1155 return splice_read(in, ppos, pipe, len, flags);
1156 }
1157 EXPORT_SYMBOL(do_splice_to);
1158
1159 /**
1160 * splice_direct_to_actor - splices data directly between two non-pipes
1161 * @in: file to splice from
1162 * @sd: actor information on where to splice to
1163 * @actor: handles the data splicing
1164 *
1165 * Description:
1166 * This is a special case helper to splice directly between two
1167 * points, without requiring an explicit pipe. Internally an allocated
1168 * pipe is cached in the process, and reused during the lifetime of
1169 * that process.
1170 *
1171 */
1172 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1173 splice_direct_actor *actor)
1174 {
1175 struct pipe_inode_info *pipe;
1176 long ret, bytes;
1177 umode_t i_mode;
1178 size_t len;
1179 int i, flags, more;
1180
1181 /*
1182 * We require the input being a regular file, as we don't want to
1183 * randomly drop data for eg socket -> socket splicing. Use the
1184 * piped splicing for that!
1185 */
1186 i_mode = file_inode(in)->i_mode;
1187 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1188 return -EINVAL;
1189
1190 /*
1191 * neither in nor out is a pipe, setup an internal pipe attached to
1192 * 'out' and transfer the wanted data from 'in' to 'out' through that
1193 */
1194 pipe = current->splice_pipe;
1195 if (unlikely(!pipe)) {
1196 pipe = alloc_pipe_info();
1197 if (!pipe)
1198 return -ENOMEM;
1199
1200 /*
1201 * We don't have an immediate reader, but we'll read the stuff
1202 * out of the pipe right after the splice_to_pipe(). So set
1203 * PIPE_READERS appropriately.
1204 */
1205 pipe->readers = 1;
1206
1207 current->splice_pipe = pipe;
1208 }
1209
1210 /*
1211 * Do the splice.
1212 */
1213 ret = 0;
1214 bytes = 0;
1215 len = sd->total_len;
1216 flags = sd->flags;
1217
1218 /*
1219 * Don't block on output, we have to drain the direct pipe.
1220 */
1221 sd->flags &= ~SPLICE_F_NONBLOCK;
1222 more = sd->flags & SPLICE_F_MORE;
1223
1224 while (len) {
1225 size_t read_len;
1226 loff_t pos = sd->pos, prev_pos = pos;
1227
1228 ret = do_splice_to(in, &pos, pipe, len, flags);
1229 if (unlikely(ret <= 0))
1230 goto out_release;
1231
1232 read_len = ret;
1233 sd->total_len = read_len;
1234
1235 /*
1236 * If more data is pending, set SPLICE_F_MORE
1237 * If this is the last data and SPLICE_F_MORE was not set
1238 * initially, clears it.
1239 */
1240 if (read_len < len)
1241 sd->flags |= SPLICE_F_MORE;
1242 else if (!more)
1243 sd->flags &= ~SPLICE_F_MORE;
1244 /*
1245 * NOTE: nonblocking mode only applies to the input. We
1246 * must not do the output in nonblocking mode as then we
1247 * could get stuck data in the internal pipe:
1248 */
1249 ret = actor(pipe, sd);
1250 if (unlikely(ret <= 0)) {
1251 sd->pos = prev_pos;
1252 goto out_release;
1253 }
1254
1255 bytes += ret;
1256 len -= ret;
1257 sd->pos = pos;
1258
1259 if (ret < read_len) {
1260 sd->pos = prev_pos + ret;
1261 goto out_release;
1262 }
1263 }
1264
1265 done:
1266 pipe->nrbufs = pipe->curbuf = 0;
1267 file_accessed(in);
1268 return bytes;
1269
1270 out_release:
1271 /*
1272 * If we did an incomplete transfer we must release
1273 * the pipe buffers in question:
1274 */
1275 for (i = 0; i < pipe->buffers; i++) {
1276 struct pipe_buffer *buf = pipe->bufs + i;
1277
1278 if (buf->ops) {
1279 buf->ops->release(pipe, buf);
1280 buf->ops = NULL;
1281 }
1282 }
1283
1284 if (!bytes)
1285 bytes = ret;
1286
1287 goto done;
1288 }
1289 EXPORT_SYMBOL(splice_direct_to_actor);
1290
1291 static int direct_splice_actor(struct pipe_inode_info *pipe,
1292 struct splice_desc *sd)
1293 {
1294 struct file *file = sd->u.file;
1295
1296 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1297 sd->flags);
1298 }
1299
1300 /**
1301 * do_splice_direct - splices data directly between two files
1302 * @in: file to splice from
1303 * @ppos: input file offset
1304 * @out: file to splice to
1305 * @opos: output file offset
1306 * @len: number of bytes to splice
1307 * @flags: splice modifier flags
1308 *
1309 * Description:
1310 * For use by do_sendfile(). splice can easily emulate sendfile, but
1311 * doing it in the application would incur an extra system call
1312 * (splice in + splice out, as compared to just sendfile()). So this helper
1313 * can splice directly through a process-private pipe.
1314 *
1315 */
1316 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1317 loff_t *opos, size_t len, unsigned int flags)
1318 {
1319 struct splice_desc sd = {
1320 .len = len,
1321 .total_len = len,
1322 .flags = flags,
1323 .pos = *ppos,
1324 .u.file = out,
1325 .opos = opos,
1326 };
1327 long ret;
1328
1329 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1330 return -EBADF;
1331
1332 if (unlikely(out->f_flags & O_APPEND))
1333 return -EINVAL;
1334
1335 ret = rw_verify_area(WRITE, out, opos, len);
1336 if (unlikely(ret < 0))
1337 return ret;
1338
1339 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1340 if (ret > 0)
1341 *ppos = sd.pos;
1342
1343 return ret;
1344 }
1345 EXPORT_SYMBOL(do_splice_direct);
1346
1347 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1348 struct pipe_inode_info *opipe,
1349 size_t len, unsigned int flags);
1350
1351 /*
1352 * Determine where to splice to/from.
1353 */
1354 static long do_splice(struct file *in, loff_t __user *off_in,
1355 struct file *out, loff_t __user *off_out,
1356 size_t len, unsigned int flags)
1357 {
1358 struct pipe_inode_info *ipipe;
1359 struct pipe_inode_info *opipe;
1360 loff_t offset;
1361 long ret;
1362
1363 ipipe = get_pipe_info(in);
1364 opipe = get_pipe_info(out);
1365
1366 if (ipipe && opipe) {
1367 if (off_in || off_out)
1368 return -ESPIPE;
1369
1370 if (!(in->f_mode & FMODE_READ))
1371 return -EBADF;
1372
1373 if (!(out->f_mode & FMODE_WRITE))
1374 return -EBADF;
1375
1376 /* Splicing to self would be fun, but... */
1377 if (ipipe == opipe)
1378 return -EINVAL;
1379
1380 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1381 }
1382
1383 if (ipipe) {
1384 if (off_in)
1385 return -ESPIPE;
1386 if (off_out) {
1387 if (!(out->f_mode & FMODE_PWRITE))
1388 return -EINVAL;
1389 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1390 return -EFAULT;
1391 } else {
1392 offset = out->f_pos;
1393 }
1394
1395 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1396 return -EBADF;
1397
1398 if (unlikely(out->f_flags & O_APPEND))
1399 return -EINVAL;
1400
1401 ret = rw_verify_area(WRITE, out, &offset, len);
1402 if (unlikely(ret < 0))
1403 return ret;
1404
1405 file_start_write(out);
1406 ret = do_splice_from(ipipe, out, &offset, len, flags);
1407 file_end_write(out);
1408
1409 if (!off_out)
1410 out->f_pos = offset;
1411 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1412 ret = -EFAULT;
1413
1414 return ret;
1415 }
1416
1417 if (opipe) {
1418 if (off_out)
1419 return -ESPIPE;
1420 if (off_in) {
1421 if (!(in->f_mode & FMODE_PREAD))
1422 return -EINVAL;
1423 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1424 return -EFAULT;
1425 } else {
1426 offset = in->f_pos;
1427 }
1428
1429 ret = do_splice_to(in, &offset, opipe, len, flags);
1430
1431 if (!off_in)
1432 in->f_pos = offset;
1433 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1434 ret = -EFAULT;
1435
1436 return ret;
1437 }
1438
1439 return -EINVAL;
1440 }
1441
1442 /*
1443 * Map an iov into an array of pages and offset/length tupples. With the
1444 * partial_page structure, we can map several non-contiguous ranges into
1445 * our ones pages[] map instead of splitting that operation into pieces.
1446 * Could easily be exported as a generic helper for other users, in which
1447 * case one would probably want to add a 'max_nr_pages' parameter as well.
1448 */
1449 static int get_iovec_page_array(const struct iovec __user *iov,
1450 unsigned int nr_vecs, struct page **pages,
1451 struct partial_page *partial, bool aligned,
1452 unsigned int pipe_buffers)
1453 {
1454 int buffers = 0, error = 0;
1455
1456 while (nr_vecs) {
1457 unsigned long off, npages;
1458 struct iovec entry;
1459 void __user *base;
1460 size_t len;
1461 int i;
1462
1463 error = -EFAULT;
1464 if (copy_from_user(&entry, iov, sizeof(entry)))
1465 break;
1466
1467 base = entry.iov_base;
1468 len = entry.iov_len;
1469
1470 /*
1471 * Sanity check this iovec. 0 read succeeds.
1472 */
1473 error = 0;
1474 if (unlikely(!len))
1475 break;
1476 error = -EFAULT;
1477 if (!access_ok(VERIFY_READ, base, len))
1478 break;
1479
1480 /*
1481 * Get this base offset and number of pages, then map
1482 * in the user pages.
1483 */
1484 off = (unsigned long) base & ~PAGE_MASK;
1485
1486 /*
1487 * If asked for alignment, the offset must be zero and the
1488 * length a multiple of the PAGE_SIZE.
1489 */
1490 error = -EINVAL;
1491 if (aligned && (off || len & ~PAGE_MASK))
1492 break;
1493
1494 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1495 if (npages > pipe_buffers - buffers)
1496 npages = pipe_buffers - buffers;
1497
1498 error = get_user_pages_fast((unsigned long)base, npages,
1499 0, &pages[buffers]);
1500
1501 if (unlikely(error <= 0))
1502 break;
1503
1504 /*
1505 * Fill this contiguous range into the partial page map.
1506 */
1507 for (i = 0; i < error; i++) {
1508 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1509
1510 partial[buffers].offset = off;
1511 partial[buffers].len = plen;
1512
1513 off = 0;
1514 len -= plen;
1515 buffers++;
1516 }
1517
1518 /*
1519 * We didn't complete this iov, stop here since it probably
1520 * means we have to move some of this into a pipe to
1521 * be able to continue.
1522 */
1523 if (len)
1524 break;
1525
1526 /*
1527 * Don't continue if we mapped fewer pages than we asked for,
1528 * or if we mapped the max number of pages that we have
1529 * room for.
1530 */
1531 if (error < npages || buffers == pipe_buffers)
1532 break;
1533
1534 nr_vecs--;
1535 iov++;
1536 }
1537
1538 if (buffers)
1539 return buffers;
1540
1541 return error;
1542 }
1543
1544 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1545 struct splice_desc *sd)
1546 {
1547 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1548 return n == sd->len ? n : -EFAULT;
1549 }
1550
1551 /*
1552 * For lack of a better implementation, implement vmsplice() to userspace
1553 * as a simple copy of the pipes pages to the user iov.
1554 */
1555 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1556 unsigned long nr_segs, unsigned int flags)
1557 {
1558 struct pipe_inode_info *pipe;
1559 struct splice_desc sd;
1560 long ret;
1561 struct iovec iovstack[UIO_FASTIOV];
1562 struct iovec *iov = iovstack;
1563 struct iov_iter iter;
1564
1565 pipe = get_pipe_info(file);
1566 if (!pipe)
1567 return -EBADF;
1568
1569 ret = import_iovec(READ, uiov, nr_segs,
1570 ARRAY_SIZE(iovstack), &iov, &iter);
1571 if (ret < 0)
1572 return ret;
1573
1574 sd.total_len = iov_iter_count(&iter);
1575 sd.len = 0;
1576 sd.flags = flags;
1577 sd.u.data = &iter;
1578 sd.pos = 0;
1579
1580 if (sd.total_len) {
1581 pipe_lock(pipe);
1582 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1583 pipe_unlock(pipe);
1584 }
1585
1586 kfree(iov);
1587 return ret;
1588 }
1589
1590 /*
1591 * vmsplice splices a user address range into a pipe. It can be thought of
1592 * as splice-from-memory, where the regular splice is splice-from-file (or
1593 * to file). In both cases the output is a pipe, naturally.
1594 */
1595 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1596 unsigned long nr_segs, unsigned int flags)
1597 {
1598 struct pipe_inode_info *pipe;
1599 struct page *pages[PIPE_DEF_BUFFERS];
1600 struct partial_page partial[PIPE_DEF_BUFFERS];
1601 struct splice_pipe_desc spd = {
1602 .pages = pages,
1603 .partial = partial,
1604 .nr_pages_max = PIPE_DEF_BUFFERS,
1605 .flags = flags,
1606 .ops = &user_page_pipe_buf_ops,
1607 .spd_release = spd_release_page,
1608 };
1609 long ret;
1610
1611 pipe = get_pipe_info(file);
1612 if (!pipe)
1613 return -EBADF;
1614
1615 if (splice_grow_spd(pipe, &spd))
1616 return -ENOMEM;
1617
1618 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1619 spd.partial, false,
1620 spd.nr_pages_max);
1621 if (spd.nr_pages <= 0)
1622 ret = spd.nr_pages;
1623 else
1624 ret = splice_to_pipe(pipe, &spd);
1625
1626 splice_shrink_spd(&spd);
1627 return ret;
1628 }
1629
1630 /*
1631 * Note that vmsplice only really supports true splicing _from_ user memory
1632 * to a pipe, not the other way around. Splicing from user memory is a simple
1633 * operation that can be supported without any funky alignment restrictions
1634 * or nasty vm tricks. We simply map in the user memory and fill them into
1635 * a pipe. The reverse isn't quite as easy, though. There are two possible
1636 * solutions for that:
1637 *
1638 * - memcpy() the data internally, at which point we might as well just
1639 * do a regular read() on the buffer anyway.
1640 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1641 * has restriction limitations on both ends of the pipe).
1642 *
1643 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1644 *
1645 */
1646 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1647 unsigned long, nr_segs, unsigned int, flags)
1648 {
1649 struct fd f;
1650 long error;
1651
1652 if (unlikely(nr_segs > UIO_MAXIOV))
1653 return -EINVAL;
1654 else if (unlikely(!nr_segs))
1655 return 0;
1656
1657 error = -EBADF;
1658 f = fdget(fd);
1659 if (f.file) {
1660 if (f.file->f_mode & FMODE_WRITE)
1661 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1662 else if (f.file->f_mode & FMODE_READ)
1663 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1664
1665 fdput(f);
1666 }
1667
1668 return error;
1669 }
1670
1671 #ifdef CONFIG_COMPAT
1672 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1673 unsigned int, nr_segs, unsigned int, flags)
1674 {
1675 unsigned i;
1676 struct iovec __user *iov;
1677 if (nr_segs > UIO_MAXIOV)
1678 return -EINVAL;
1679 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1680 for (i = 0; i < nr_segs; i++) {
1681 struct compat_iovec v;
1682 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1683 get_user(v.iov_len, &iov32[i].iov_len) ||
1684 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1685 put_user(v.iov_len, &iov[i].iov_len))
1686 return -EFAULT;
1687 }
1688 return sys_vmsplice(fd, iov, nr_segs, flags);
1689 }
1690 #endif
1691
1692 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1693 int, fd_out, loff_t __user *, off_out,
1694 size_t, len, unsigned int, flags)
1695 {
1696 struct fd in, out;
1697 long error;
1698
1699 if (unlikely(!len))
1700 return 0;
1701
1702 error = -EBADF;
1703 in = fdget(fd_in);
1704 if (in.file) {
1705 if (in.file->f_mode & FMODE_READ) {
1706 out = fdget(fd_out);
1707 if (out.file) {
1708 if (out.file->f_mode & FMODE_WRITE)
1709 error = do_splice(in.file, off_in,
1710 out.file, off_out,
1711 len, flags);
1712 fdput(out);
1713 }
1714 }
1715 fdput(in);
1716 }
1717 return error;
1718 }
1719
1720 /*
1721 * Make sure there's data to read. Wait for input if we can, otherwise
1722 * return an appropriate error.
1723 */
1724 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1725 {
1726 int ret;
1727
1728 /*
1729 * Check ->nrbufs without the inode lock first. This function
1730 * is speculative anyways, so missing one is ok.
1731 */
1732 if (pipe->nrbufs)
1733 return 0;
1734
1735 ret = 0;
1736 pipe_lock(pipe);
1737
1738 while (!pipe->nrbufs) {
1739 if (signal_pending(current)) {
1740 ret = -ERESTARTSYS;
1741 break;
1742 }
1743 if (!pipe->writers)
1744 break;
1745 if (!pipe->waiting_writers) {
1746 if (flags & SPLICE_F_NONBLOCK) {
1747 ret = -EAGAIN;
1748 break;
1749 }
1750 }
1751 pipe_wait(pipe);
1752 }
1753
1754 pipe_unlock(pipe);
1755 return ret;
1756 }
1757
1758 /*
1759 * Make sure there's writeable room. Wait for room if we can, otherwise
1760 * return an appropriate error.
1761 */
1762 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1763 {
1764 int ret;
1765
1766 /*
1767 * Check ->nrbufs without the inode lock first. This function
1768 * is speculative anyways, so missing one is ok.
1769 */
1770 if (pipe->nrbufs < pipe->buffers)
1771 return 0;
1772
1773 ret = 0;
1774 pipe_lock(pipe);
1775
1776 while (pipe->nrbufs >= pipe->buffers) {
1777 if (!pipe->readers) {
1778 send_sig(SIGPIPE, current, 0);
1779 ret = -EPIPE;
1780 break;
1781 }
1782 if (flags & SPLICE_F_NONBLOCK) {
1783 ret = -EAGAIN;
1784 break;
1785 }
1786 if (signal_pending(current)) {
1787 ret = -ERESTARTSYS;
1788 break;
1789 }
1790 pipe->waiting_writers++;
1791 pipe_wait(pipe);
1792 pipe->waiting_writers--;
1793 }
1794
1795 pipe_unlock(pipe);
1796 return ret;
1797 }
1798
1799 /*
1800 * Splice contents of ipipe to opipe.
1801 */
1802 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1803 struct pipe_inode_info *opipe,
1804 size_t len, unsigned int flags)
1805 {
1806 struct pipe_buffer *ibuf, *obuf;
1807 int ret = 0, nbuf;
1808 bool input_wakeup = false;
1809
1810
1811 retry:
1812 ret = ipipe_prep(ipipe, flags);
1813 if (ret)
1814 return ret;
1815
1816 ret = opipe_prep(opipe, flags);
1817 if (ret)
1818 return ret;
1819
1820 /*
1821 * Potential ABBA deadlock, work around it by ordering lock
1822 * grabbing by pipe info address. Otherwise two different processes
1823 * could deadlock (one doing tee from A -> B, the other from B -> A).
1824 */
1825 pipe_double_lock(ipipe, opipe);
1826
1827 do {
1828 if (!opipe->readers) {
1829 send_sig(SIGPIPE, current, 0);
1830 if (!ret)
1831 ret = -EPIPE;
1832 break;
1833 }
1834
1835 if (!ipipe->nrbufs && !ipipe->writers)
1836 break;
1837
1838 /*
1839 * Cannot make any progress, because either the input
1840 * pipe is empty or the output pipe is full.
1841 */
1842 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1843 /* Already processed some buffers, break */
1844 if (ret)
1845 break;
1846
1847 if (flags & SPLICE_F_NONBLOCK) {
1848 ret = -EAGAIN;
1849 break;
1850 }
1851
1852 /*
1853 * We raced with another reader/writer and haven't
1854 * managed to process any buffers. A zero return
1855 * value means EOF, so retry instead.
1856 */
1857 pipe_unlock(ipipe);
1858 pipe_unlock(opipe);
1859 goto retry;
1860 }
1861
1862 ibuf = ipipe->bufs + ipipe->curbuf;
1863 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1864 obuf = opipe->bufs + nbuf;
1865
1866 if (len >= ibuf->len) {
1867 /*
1868 * Simply move the whole buffer from ipipe to opipe
1869 */
1870 *obuf = *ibuf;
1871 ibuf->ops = NULL;
1872 opipe->nrbufs++;
1873 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1874 ipipe->nrbufs--;
1875 input_wakeup = true;
1876 } else {
1877 /*
1878 * Get a reference to this pipe buffer,
1879 * so we can copy the contents over.
1880 */
1881 ibuf->ops->get(ipipe, ibuf);
1882 *obuf = *ibuf;
1883
1884 /*
1885 * Don't inherit the gift flag, we need to
1886 * prevent multiple steals of this page.
1887 */
1888 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1889
1890 obuf->len = len;
1891 opipe->nrbufs++;
1892 ibuf->offset += obuf->len;
1893 ibuf->len -= obuf->len;
1894 }
1895 ret += obuf->len;
1896 len -= obuf->len;
1897 } while (len);
1898
1899 pipe_unlock(ipipe);
1900 pipe_unlock(opipe);
1901
1902 /*
1903 * If we put data in the output pipe, wakeup any potential readers.
1904 */
1905 if (ret > 0)
1906 wakeup_pipe_readers(opipe);
1907
1908 if (input_wakeup)
1909 wakeup_pipe_writers(ipipe);
1910
1911 return ret;
1912 }
1913
1914 /*
1915 * Link contents of ipipe to opipe.
1916 */
1917 static int link_pipe(struct pipe_inode_info *ipipe,
1918 struct pipe_inode_info *opipe,
1919 size_t len, unsigned int flags)
1920 {
1921 struct pipe_buffer *ibuf, *obuf;
1922 int ret = 0, i = 0, nbuf;
1923
1924 /*
1925 * Potential ABBA deadlock, work around it by ordering lock
1926 * grabbing by pipe info address. Otherwise two different processes
1927 * could deadlock (one doing tee from A -> B, the other from B -> A).
1928 */
1929 pipe_double_lock(ipipe, opipe);
1930
1931 do {
1932 if (!opipe->readers) {
1933 send_sig(SIGPIPE, current, 0);
1934 if (!ret)
1935 ret = -EPIPE;
1936 break;
1937 }
1938
1939 /*
1940 * If we have iterated all input buffers or ran out of
1941 * output room, break.
1942 */
1943 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1944 break;
1945
1946 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1947 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1948
1949 /*
1950 * Get a reference to this pipe buffer,
1951 * so we can copy the contents over.
1952 */
1953 ibuf->ops->get(ipipe, ibuf);
1954
1955 obuf = opipe->bufs + nbuf;
1956 *obuf = *ibuf;
1957
1958 /*
1959 * Don't inherit the gift flag, we need to
1960 * prevent multiple steals of this page.
1961 */
1962 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1963
1964 if (obuf->len > len)
1965 obuf->len = len;
1966
1967 opipe->nrbufs++;
1968 ret += obuf->len;
1969 len -= obuf->len;
1970 i++;
1971 } while (len);
1972
1973 /*
1974 * return EAGAIN if we have the potential of some data in the
1975 * future, otherwise just return 0
1976 */
1977 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1978 ret = -EAGAIN;
1979
1980 pipe_unlock(ipipe);
1981 pipe_unlock(opipe);
1982
1983 /*
1984 * If we put data in the output pipe, wakeup any potential readers.
1985 */
1986 if (ret > 0)
1987 wakeup_pipe_readers(opipe);
1988
1989 return ret;
1990 }
1991
1992 /*
1993 * This is a tee(1) implementation that works on pipes. It doesn't copy
1994 * any data, it simply references the 'in' pages on the 'out' pipe.
1995 * The 'flags' used are the SPLICE_F_* variants, currently the only
1996 * applicable one is SPLICE_F_NONBLOCK.
1997 */
1998 static long do_tee(struct file *in, struct file *out, size_t len,
1999 unsigned int flags)
2000 {
2001 struct pipe_inode_info *ipipe = get_pipe_info(in);
2002 struct pipe_inode_info *opipe = get_pipe_info(out);
2003 int ret = -EINVAL;
2004
2005 /*
2006 * Duplicate the contents of ipipe to opipe without actually
2007 * copying the data.
2008 */
2009 if (ipipe && opipe && ipipe != opipe) {
2010 /*
2011 * Keep going, unless we encounter an error. The ipipe/opipe
2012 * ordering doesn't really matter.
2013 */
2014 ret = ipipe_prep(ipipe, flags);
2015 if (!ret) {
2016 ret = opipe_prep(opipe, flags);
2017 if (!ret)
2018 ret = link_pipe(ipipe, opipe, len, flags);
2019 }
2020 }
2021
2022 return ret;
2023 }
2024
2025 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2026 {
2027 struct fd in;
2028 int error;
2029
2030 if (unlikely(!len))
2031 return 0;
2032
2033 error = -EBADF;
2034 in = fdget(fdin);
2035 if (in.file) {
2036 if (in.file->f_mode & FMODE_READ) {
2037 struct fd out = fdget(fdout);
2038 if (out.file) {
2039 if (out.file->f_mode & FMODE_WRITE)
2040 error = do_tee(in.file, out.file,
2041 len, flags);
2042 fdput(out);
2043 }
2044 }
2045 fdput(in);
2046 }
2047
2048 return error;
2049 }