]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/splice.c
security: revalidate rw permissions for sys_splice and sys_vmsplice
[mirror_ubuntu-zesty-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32
33 /*
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
38 */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
41 {
42 struct page *page = buf->page;
43 struct address_space *mapping;
44
45 lock_page(page);
46
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
50
51 /*
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
58 */
59 wait_on_page_writeback(page);
60
61 if (PagePrivate(page))
62 try_to_release_page(page, GFP_KERNEL);
63
64 /*
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
67 */
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
71 }
72 }
73
74 /*
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
77 */
78 unlock_page(page);
79 return 1;
80 }
81
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 page_cache_release(buf->page);
86 buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88
89 /*
90 * Check whether the contents of buf is OK to access. Since the content
91 * is a page cache page, IO may be in flight.
92 */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 struct pipe_buffer *buf)
95 {
96 struct page *page = buf->page;
97 int err;
98
99 if (!PageUptodate(page)) {
100 lock_page(page);
101
102 /*
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
105 */
106 if (!page->mapping) {
107 err = -ENODATA;
108 goto error;
109 }
110
111 /*
112 * Uh oh, read-error from disk.
113 */
114 if (!PageUptodate(page)) {
115 err = -EIO;
116 goto error;
117 }
118
119 /*
120 * Page is ok afterall, we are done.
121 */
122 unlock_page(page);
123 }
124
125 return 0;
126 error:
127 unlock_page(page);
128 return err;
129 }
130
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 .can_merge = 0,
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .confirm = page_cache_pipe_buf_confirm,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
139 };
140
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143 {
144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 return 1;
146
147 buf->flags |= PIPE_BUF_FLAG_LRU;
148 return generic_pipe_buf_steal(pipe, buf);
149 }
150
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 .can_merge = 0,
153 .map = generic_pipe_buf_map,
154 .unmap = generic_pipe_buf_unmap,
155 .confirm = generic_pipe_buf_confirm,
156 .release = page_cache_pipe_buf_release,
157 .steal = user_page_pipe_buf_steal,
158 .get = generic_pipe_buf_get,
159 };
160
161 /**
162 * splice_to_pipe - fill passed data into a pipe
163 * @pipe: pipe to fill
164 * @spd: data to fill
165 *
166 * Description:
167 * @spd contains a map of pages and len/offset tupples, a long with
168 * the struct pipe_buf_operations associated with these pages. This
169 * function will link that data to the pipe.
170 *
171 */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 struct splice_pipe_desc *spd)
174 {
175 unsigned int spd_pages = spd->nr_pages;
176 int ret, do_wakeup, page_nr;
177
178 ret = 0;
179 do_wakeup = 0;
180 page_nr = 0;
181
182 if (pipe->inode)
183 mutex_lock(&pipe->inode->i_mutex);
184
185 for (;;) {
186 if (!pipe->readers) {
187 send_sig(SIGPIPE, current, 0);
188 if (!ret)
189 ret = -EPIPE;
190 break;
191 }
192
193 if (pipe->nrbufs < PIPE_BUFFERS) {
194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 struct pipe_buffer *buf = pipe->bufs + newbuf;
196
197 buf->page = spd->pages[page_nr];
198 buf->offset = spd->partial[page_nr].offset;
199 buf->len = spd->partial[page_nr].len;
200 buf->private = spd->partial[page_nr].private;
201 buf->ops = spd->ops;
202 if (spd->flags & SPLICE_F_GIFT)
203 buf->flags |= PIPE_BUF_FLAG_GIFT;
204
205 pipe->nrbufs++;
206 page_nr++;
207 ret += buf->len;
208
209 if (pipe->inode)
210 do_wakeup = 1;
211
212 if (!--spd->nr_pages)
213 break;
214 if (pipe->nrbufs < PIPE_BUFFERS)
215 continue;
216
217 break;
218 }
219
220 if (spd->flags & SPLICE_F_NONBLOCK) {
221 if (!ret)
222 ret = -EAGAIN;
223 break;
224 }
225
226 if (signal_pending(current)) {
227 if (!ret)
228 ret = -ERESTARTSYS;
229 break;
230 }
231
232 if (do_wakeup) {
233 smp_mb();
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible_sync(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 do_wakeup = 0;
238 }
239
240 pipe->waiting_writers++;
241 pipe_wait(pipe);
242 pipe->waiting_writers--;
243 }
244
245 if (pipe->inode) {
246 mutex_unlock(&pipe->inode->i_mutex);
247
248 if (do_wakeup) {
249 smp_mb();
250 if (waitqueue_active(&pipe->wait))
251 wake_up_interruptible(&pipe->wait);
252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 }
254 }
255
256 while (page_nr < spd_pages)
257 page_cache_release(spd->pages[page_nr++]);
258
259 return ret;
260 }
261
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 struct pipe_inode_info *pipe, size_t len,
265 unsigned int flags)
266 {
267 struct address_space *mapping = in->f_mapping;
268 unsigned int loff, nr_pages;
269 struct page *pages[PIPE_BUFFERS];
270 struct partial_page partial[PIPE_BUFFERS];
271 struct page *page;
272 pgoff_t index, end_index;
273 loff_t isize;
274 int error, page_nr;
275 struct splice_pipe_desc spd = {
276 .pages = pages,
277 .partial = partial,
278 .flags = flags,
279 .ops = &page_cache_pipe_buf_ops,
280 };
281
282 index = *ppos >> PAGE_CACHE_SHIFT;
283 loff = *ppos & ~PAGE_CACHE_MASK;
284 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285
286 if (nr_pages > PIPE_BUFFERS)
287 nr_pages = PIPE_BUFFERS;
288
289 /*
290 * Don't try to 2nd guess the read-ahead logic, call into
291 * page_cache_readahead() like the page cache reads would do.
292 */
293 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
294
295 /*
296 * Lookup the (hopefully) full range of pages we need.
297 */
298 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
299
300 /*
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * allocate the rest and fill in the holes.
303 */
304 error = 0;
305 index += spd.nr_pages;
306 while (spd.nr_pages < nr_pages) {
307 /*
308 * Page could be there, find_get_pages_contig() breaks on
309 * the first hole.
310 */
311 page = find_get_page(mapping, index);
312 if (!page) {
313 /*
314 * Make sure the read-ahead engine is notified
315 * about this failure.
316 */
317 handle_ra_miss(mapping, &in->f_ra, index);
318
319 /*
320 * page didn't exist, allocate one.
321 */
322 page = page_cache_alloc_cold(mapping);
323 if (!page)
324 break;
325
326 error = add_to_page_cache_lru(page, mapping, index,
327 GFP_KERNEL);
328 if (unlikely(error)) {
329 page_cache_release(page);
330 if (error == -EEXIST)
331 continue;
332 break;
333 }
334 /*
335 * add_to_page_cache() locks the page, unlock it
336 * to avoid convoluting the logic below even more.
337 */
338 unlock_page(page);
339 }
340
341 pages[spd.nr_pages++] = page;
342 index++;
343 }
344
345 /*
346 * Now loop over the map and see if we need to start IO on any
347 * pages, fill in the partial map, etc.
348 */
349 index = *ppos >> PAGE_CACHE_SHIFT;
350 nr_pages = spd.nr_pages;
351 spd.nr_pages = 0;
352 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
353 unsigned int this_len;
354
355 if (!len)
356 break;
357
358 /*
359 * this_len is the max we'll use from this page
360 */
361 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
362 page = pages[page_nr];
363
364 /*
365 * If the page isn't uptodate, we may need to start io on it
366 */
367 if (!PageUptodate(page)) {
368 /*
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
371 */
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (TestSetPageLocked(page))
374 break;
375 } else
376 lock_page(page);
377
378 /*
379 * page was truncated, stop here. if this isn't the
380 * first page, we'll just complete what we already
381 * added
382 */
383 if (!page->mapping) {
384 unlock_page(page);
385 break;
386 }
387 /*
388 * page was already under io and is now done, great
389 */
390 if (PageUptodate(page)) {
391 unlock_page(page);
392 goto fill_it;
393 }
394
395 /*
396 * need to read in the page
397 */
398 error = mapping->a_ops->readpage(in, page);
399 if (unlikely(error)) {
400 /*
401 * We really should re-lookup the page here,
402 * but it complicates things a lot. Instead
403 * lets just do what we already stored, and
404 * we'll get it the next time we are called.
405 */
406 if (error == AOP_TRUNCATED_PAGE)
407 error = 0;
408
409 break;
410 }
411 }
412 fill_it:
413 /*
414 * i_size must be checked after PageUptodate.
415 */
416 isize = i_size_read(mapping->host);
417 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
418 if (unlikely(!isize || index > end_index))
419 break;
420
421 /*
422 * if this is the last page, see if we need to shrink
423 * the length and stop
424 */
425 if (end_index == index) {
426 unsigned int plen;
427
428 /*
429 * max good bytes in this page
430 */
431 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
432 if (plen <= loff)
433 break;
434
435 /*
436 * force quit after adding this page
437 */
438 this_len = min(this_len, plen - loff);
439 len = this_len;
440 }
441
442 partial[page_nr].offset = loff;
443 partial[page_nr].len = this_len;
444 len -= this_len;
445 loff = 0;
446 spd.nr_pages++;
447 index++;
448 }
449
450 /*
451 * Release any pages at the end, if we quit early. 'page_nr' is how far
452 * we got, 'nr_pages' is how many pages are in the map.
453 */
454 while (page_nr < nr_pages)
455 page_cache_release(pages[page_nr++]);
456
457 if (spd.nr_pages)
458 return splice_to_pipe(pipe, &spd);
459
460 return error;
461 }
462
463 /**
464 * generic_file_splice_read - splice data from file to a pipe
465 * @in: file to splice from
466 * @ppos: position in @in
467 * @pipe: pipe to splice to
468 * @len: number of bytes to splice
469 * @flags: splice modifier flags
470 *
471 * Description:
472 * Will read pages from given file and fill them into a pipe. Can be
473 * used as long as the address_space operations for the source implements
474 * a readpage() hook.
475 *
476 */
477 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
478 struct pipe_inode_info *pipe, size_t len,
479 unsigned int flags)
480 {
481 ssize_t spliced;
482 int ret;
483 loff_t isize, left;
484
485 isize = i_size_read(in->f_mapping->host);
486 if (unlikely(*ppos >= isize))
487 return 0;
488
489 left = isize - *ppos;
490 if (unlikely(left < len))
491 len = left;
492
493 ret = 0;
494 spliced = 0;
495 while (len) {
496 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
497
498 if (ret < 0)
499 break;
500 else if (!ret) {
501 if (spliced)
502 break;
503 if (flags & SPLICE_F_NONBLOCK) {
504 ret = -EAGAIN;
505 break;
506 }
507 }
508
509 *ppos += ret;
510 len -= ret;
511 spliced += ret;
512 }
513
514 if (spliced)
515 return spliced;
516
517 return ret;
518 }
519
520 EXPORT_SYMBOL(generic_file_splice_read);
521
522 /*
523 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
524 * using sendpage(). Return the number of bytes sent.
525 */
526 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
527 struct pipe_buffer *buf, struct splice_desc *sd)
528 {
529 struct file *file = sd->u.file;
530 loff_t pos = sd->pos;
531 int ret, more;
532
533 ret = buf->ops->confirm(pipe, buf);
534 if (!ret) {
535 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
536
537 ret = file->f_op->sendpage(file, buf->page, buf->offset,
538 sd->len, &pos, more);
539 }
540
541 return ret;
542 }
543
544 /*
545 * This is a little more tricky than the file -> pipe splicing. There are
546 * basically three cases:
547 *
548 * - Destination page already exists in the address space and there
549 * are users of it. For that case we have no other option that
550 * copying the data. Tough luck.
551 * - Destination page already exists in the address space, but there
552 * are no users of it. Make sure it's uptodate, then drop it. Fall
553 * through to last case.
554 * - Destination page does not exist, we can add the pipe page to
555 * the page cache and avoid the copy.
556 *
557 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
558 * sd->flags), we attempt to migrate pages from the pipe to the output
559 * file address space page cache. This is possible if no one else has
560 * the pipe page referenced outside of the pipe and page cache. If
561 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
562 * a new page in the output file page cache and fill/dirty that.
563 */
564 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
565 struct splice_desc *sd)
566 {
567 struct file *file = sd->u.file;
568 struct address_space *mapping = file->f_mapping;
569 unsigned int offset, this_len;
570 struct page *page;
571 pgoff_t index;
572 int ret;
573
574 /*
575 * make sure the data in this buffer is uptodate
576 */
577 ret = buf->ops->confirm(pipe, buf);
578 if (unlikely(ret))
579 return ret;
580
581 index = sd->pos >> PAGE_CACHE_SHIFT;
582 offset = sd->pos & ~PAGE_CACHE_MASK;
583
584 this_len = sd->len;
585 if (this_len + offset > PAGE_CACHE_SIZE)
586 this_len = PAGE_CACHE_SIZE - offset;
587
588 find_page:
589 page = find_lock_page(mapping, index);
590 if (!page) {
591 ret = -ENOMEM;
592 page = page_cache_alloc_cold(mapping);
593 if (unlikely(!page))
594 goto out_ret;
595
596 /*
597 * This will also lock the page
598 */
599 ret = add_to_page_cache_lru(page, mapping, index,
600 GFP_KERNEL);
601 if (unlikely(ret))
602 goto out;
603 }
604
605 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
606 if (unlikely(ret)) {
607 loff_t isize = i_size_read(mapping->host);
608
609 if (ret != AOP_TRUNCATED_PAGE)
610 unlock_page(page);
611 page_cache_release(page);
612 if (ret == AOP_TRUNCATED_PAGE)
613 goto find_page;
614
615 /*
616 * prepare_write() may have instantiated a few blocks
617 * outside i_size. Trim these off again.
618 */
619 if (sd->pos + this_len > isize)
620 vmtruncate(mapping->host, isize);
621
622 goto out_ret;
623 }
624
625 if (buf->page != page) {
626 /*
627 * Careful, ->map() uses KM_USER0!
628 */
629 char *src = buf->ops->map(pipe, buf, 1);
630 char *dst = kmap_atomic(page, KM_USER1);
631
632 memcpy(dst + offset, src + buf->offset, this_len);
633 flush_dcache_page(page);
634 kunmap_atomic(dst, KM_USER1);
635 buf->ops->unmap(pipe, buf, src);
636 }
637
638 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
639 if (ret) {
640 if (ret == AOP_TRUNCATED_PAGE) {
641 page_cache_release(page);
642 goto find_page;
643 }
644 if (ret < 0)
645 goto out;
646 /*
647 * Partial write has happened, so 'ret' already initialized by
648 * number of bytes written, Where is nothing we have to do here.
649 */
650 } else
651 ret = this_len;
652 /*
653 * Return the number of bytes written and mark page as
654 * accessed, we are now done!
655 */
656 mark_page_accessed(page);
657 out:
658 page_cache_release(page);
659 unlock_page(page);
660 out_ret:
661 return ret;
662 }
663
664 /**
665 * __splice_from_pipe - splice data from a pipe to given actor
666 * @pipe: pipe to splice from
667 * @sd: information to @actor
668 * @actor: handler that splices the data
669 *
670 * Description:
671 * This function does little more than loop over the pipe and call
672 * @actor to do the actual moving of a single struct pipe_buffer to
673 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
674 * pipe_to_user.
675 *
676 */
677 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
678 splice_actor *actor)
679 {
680 int ret, do_wakeup, err;
681
682 ret = 0;
683 do_wakeup = 0;
684
685 for (;;) {
686 if (pipe->nrbufs) {
687 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
688 const struct pipe_buf_operations *ops = buf->ops;
689
690 sd->len = buf->len;
691 if (sd->len > sd->total_len)
692 sd->len = sd->total_len;
693
694 err = actor(pipe, buf, sd);
695 if (err <= 0) {
696 if (!ret && err != -ENODATA)
697 ret = err;
698
699 break;
700 }
701
702 ret += err;
703 buf->offset += err;
704 buf->len -= err;
705
706 sd->len -= err;
707 sd->pos += err;
708 sd->total_len -= err;
709 if (sd->len)
710 continue;
711
712 if (!buf->len) {
713 buf->ops = NULL;
714 ops->release(pipe, buf);
715 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
716 pipe->nrbufs--;
717 if (pipe->inode)
718 do_wakeup = 1;
719 }
720
721 if (!sd->total_len)
722 break;
723 }
724
725 if (pipe->nrbufs)
726 continue;
727 if (!pipe->writers)
728 break;
729 if (!pipe->waiting_writers) {
730 if (ret)
731 break;
732 }
733
734 if (sd->flags & SPLICE_F_NONBLOCK) {
735 if (!ret)
736 ret = -EAGAIN;
737 break;
738 }
739
740 if (signal_pending(current)) {
741 if (!ret)
742 ret = -ERESTARTSYS;
743 break;
744 }
745
746 if (do_wakeup) {
747 smp_mb();
748 if (waitqueue_active(&pipe->wait))
749 wake_up_interruptible_sync(&pipe->wait);
750 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
751 do_wakeup = 0;
752 }
753
754 pipe_wait(pipe);
755 }
756
757 if (do_wakeup) {
758 smp_mb();
759 if (waitqueue_active(&pipe->wait))
760 wake_up_interruptible(&pipe->wait);
761 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
762 }
763
764 return ret;
765 }
766 EXPORT_SYMBOL(__splice_from_pipe);
767
768 /**
769 * splice_from_pipe - splice data from a pipe to a file
770 * @pipe: pipe to splice from
771 * @out: file to splice to
772 * @ppos: position in @out
773 * @len: how many bytes to splice
774 * @flags: splice modifier flags
775 * @actor: handler that splices the data
776 *
777 * Description:
778 * See __splice_from_pipe. This function locks the input and output inodes,
779 * otherwise it's identical to __splice_from_pipe().
780 *
781 */
782 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
783 loff_t *ppos, size_t len, unsigned int flags,
784 splice_actor *actor)
785 {
786 ssize_t ret;
787 struct inode *inode = out->f_mapping->host;
788 struct splice_desc sd = {
789 .total_len = len,
790 .flags = flags,
791 .pos = *ppos,
792 .u.file = out,
793 };
794
795 /*
796 * The actor worker might be calling ->prepare_write and
797 * ->commit_write. Most of the time, these expect i_mutex to
798 * be held. Since this may result in an ABBA deadlock with
799 * pipe->inode, we have to order lock acquiry here.
800 */
801 inode_double_lock(inode, pipe->inode);
802 ret = __splice_from_pipe(pipe, &sd, actor);
803 inode_double_unlock(inode, pipe->inode);
804
805 return ret;
806 }
807
808 /**
809 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
810 * @pipe: pipe info
811 * @out: file to write to
812 * @ppos: position in @out
813 * @len: number of bytes to splice
814 * @flags: splice modifier flags
815 *
816 * Description:
817 * Will either move or copy pages (determined by @flags options) from
818 * the given pipe inode to the given file. The caller is responsible
819 * for acquiring i_mutex on both inodes.
820 *
821 */
822 ssize_t
823 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
824 loff_t *ppos, size_t len, unsigned int flags)
825 {
826 struct address_space *mapping = out->f_mapping;
827 struct inode *inode = mapping->host;
828 struct splice_desc sd = {
829 .total_len = len,
830 .flags = flags,
831 .pos = *ppos,
832 .u.file = out,
833 };
834 ssize_t ret;
835 int err;
836
837 err = remove_suid(out->f_path.dentry);
838 if (unlikely(err))
839 return err;
840
841 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
842 if (ret > 0) {
843 unsigned long nr_pages;
844
845 *ppos += ret;
846 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
847
848 /*
849 * If file or inode is SYNC and we actually wrote some data,
850 * sync it.
851 */
852 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
853 err = generic_osync_inode(inode, mapping,
854 OSYNC_METADATA|OSYNC_DATA);
855
856 if (err)
857 ret = err;
858 }
859 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
860 }
861
862 return ret;
863 }
864
865 EXPORT_SYMBOL(generic_file_splice_write_nolock);
866
867 /**
868 * generic_file_splice_write - splice data from a pipe to a file
869 * @pipe: pipe info
870 * @out: file to write to
871 * @ppos: position in @out
872 * @len: number of bytes to splice
873 * @flags: splice modifier flags
874 *
875 * Description:
876 * Will either move or copy pages (determined by @flags options) from
877 * the given pipe inode to the given file.
878 *
879 */
880 ssize_t
881 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
882 loff_t *ppos, size_t len, unsigned int flags)
883 {
884 struct address_space *mapping = out->f_mapping;
885 struct inode *inode = mapping->host;
886 ssize_t ret;
887 int err;
888
889 err = should_remove_suid(out->f_path.dentry);
890 if (unlikely(err)) {
891 mutex_lock(&inode->i_mutex);
892 err = __remove_suid(out->f_path.dentry, err);
893 mutex_unlock(&inode->i_mutex);
894 if (err)
895 return err;
896 }
897
898 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
899 if (ret > 0) {
900 unsigned long nr_pages;
901
902 *ppos += ret;
903 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
904
905 /*
906 * If file or inode is SYNC and we actually wrote some data,
907 * sync it.
908 */
909 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
910 mutex_lock(&inode->i_mutex);
911 err = generic_osync_inode(inode, mapping,
912 OSYNC_METADATA|OSYNC_DATA);
913 mutex_unlock(&inode->i_mutex);
914
915 if (err)
916 ret = err;
917 }
918 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
919 }
920
921 return ret;
922 }
923
924 EXPORT_SYMBOL(generic_file_splice_write);
925
926 /**
927 * generic_splice_sendpage - splice data from a pipe to a socket
928 * @pipe: pipe to splice from
929 * @out: socket to write to
930 * @ppos: position in @out
931 * @len: number of bytes to splice
932 * @flags: splice modifier flags
933 *
934 * Description:
935 * Will send @len bytes from the pipe to a network socket. No data copying
936 * is involved.
937 *
938 */
939 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
940 loff_t *ppos, size_t len, unsigned int flags)
941 {
942 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
943 }
944
945 EXPORT_SYMBOL(generic_splice_sendpage);
946
947 /*
948 * Attempt to initiate a splice from pipe to file.
949 */
950 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags)
952 {
953 int ret;
954
955 if (unlikely(!out->f_op || !out->f_op->splice_write))
956 return -EINVAL;
957
958 if (unlikely(!(out->f_mode & FMODE_WRITE)))
959 return -EBADF;
960
961 ret = rw_verify_area(WRITE, out, ppos, len);
962 if (unlikely(ret < 0))
963 return ret;
964
965 ret = security_file_permission(out, MAY_WRITE);
966 if (unlikely(ret < 0))
967 return ret;
968
969 return out->f_op->splice_write(pipe, out, ppos, len, flags);
970 }
971
972 /*
973 * Attempt to initiate a splice from a file to a pipe.
974 */
975 static long do_splice_to(struct file *in, loff_t *ppos,
976 struct pipe_inode_info *pipe, size_t len,
977 unsigned int flags)
978 {
979 int ret;
980
981 if (unlikely(!in->f_op || !in->f_op->splice_read))
982 return -EINVAL;
983
984 if (unlikely(!(in->f_mode & FMODE_READ)))
985 return -EBADF;
986
987 ret = rw_verify_area(READ, in, ppos, len);
988 if (unlikely(ret < 0))
989 return ret;
990
991 ret = security_file_permission(in, MAY_READ);
992 if (unlikely(ret < 0))
993 return ret;
994
995 return in->f_op->splice_read(in, ppos, pipe, len, flags);
996 }
997
998 /**
999 * splice_direct_to_actor - splices data directly between two non-pipes
1000 * @in: file to splice from
1001 * @sd: actor information on where to splice to
1002 * @actor: handles the data splicing
1003 *
1004 * Description:
1005 * This is a special case helper to splice directly between two
1006 * points, without requiring an explicit pipe. Internally an allocated
1007 * pipe is cached in the process, and reused during the life time of
1008 * that process.
1009 *
1010 */
1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1012 splice_direct_actor *actor)
1013 {
1014 struct pipe_inode_info *pipe;
1015 long ret, bytes;
1016 umode_t i_mode;
1017 size_t len;
1018 int i, flags;
1019
1020 /*
1021 * We require the input being a regular file, as we don't want to
1022 * randomly drop data for eg socket -> socket splicing. Use the
1023 * piped splicing for that!
1024 */
1025 i_mode = in->f_path.dentry->d_inode->i_mode;
1026 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1027 return -EINVAL;
1028
1029 /*
1030 * neither in nor out is a pipe, setup an internal pipe attached to
1031 * 'out' and transfer the wanted data from 'in' to 'out' through that
1032 */
1033 pipe = current->splice_pipe;
1034 if (unlikely(!pipe)) {
1035 pipe = alloc_pipe_info(NULL);
1036 if (!pipe)
1037 return -ENOMEM;
1038
1039 /*
1040 * We don't have an immediate reader, but we'll read the stuff
1041 * out of the pipe right after the splice_to_pipe(). So set
1042 * PIPE_READERS appropriately.
1043 */
1044 pipe->readers = 1;
1045
1046 current->splice_pipe = pipe;
1047 }
1048
1049 /*
1050 * Do the splice.
1051 */
1052 ret = 0;
1053 bytes = 0;
1054 len = sd->total_len;
1055 flags = sd->flags;
1056
1057 /*
1058 * Don't block on output, we have to drain the direct pipe.
1059 */
1060 sd->flags &= ~SPLICE_F_NONBLOCK;
1061
1062 while (len) {
1063 size_t read_len, max_read_len;
1064
1065 /*
1066 * Do at most PIPE_BUFFERS pages worth of transfer:
1067 */
1068 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1069
1070 ret = do_splice_to(in, &sd->pos, pipe, max_read_len, flags);
1071 if (unlikely(ret < 0))
1072 goto out_release;
1073
1074 read_len = ret;
1075 sd->total_len = read_len;
1076
1077 /*
1078 * NOTE: nonblocking mode only applies to the input. We
1079 * must not do the output in nonblocking mode as then we
1080 * could get stuck data in the internal pipe:
1081 */
1082 ret = actor(pipe, sd);
1083 if (unlikely(ret < 0))
1084 goto out_release;
1085
1086 bytes += ret;
1087 len -= ret;
1088
1089 /*
1090 * In nonblocking mode, if we got back a short read then
1091 * that was due to either an IO error or due to the
1092 * pagecache entry not being there. In the IO error case
1093 * the _next_ splice attempt will produce a clean IO error
1094 * return value (not a short read), so in both cases it's
1095 * correct to break out of the loop here:
1096 */
1097 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1098 break;
1099 }
1100
1101 pipe->nrbufs = pipe->curbuf = 0;
1102
1103 return bytes;
1104
1105 out_release:
1106 /*
1107 * If we did an incomplete transfer we must release
1108 * the pipe buffers in question:
1109 */
1110 for (i = 0; i < PIPE_BUFFERS; i++) {
1111 struct pipe_buffer *buf = pipe->bufs + i;
1112
1113 if (buf->ops) {
1114 buf->ops->release(pipe, buf);
1115 buf->ops = NULL;
1116 }
1117 }
1118 pipe->nrbufs = pipe->curbuf = 0;
1119
1120 /*
1121 * If we transferred some data, return the number of bytes:
1122 */
1123 if (bytes > 0)
1124 return bytes;
1125
1126 return ret;
1127
1128 }
1129 EXPORT_SYMBOL(splice_direct_to_actor);
1130
1131 static int direct_splice_actor(struct pipe_inode_info *pipe,
1132 struct splice_desc *sd)
1133 {
1134 struct file *file = sd->u.file;
1135
1136 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1137 }
1138
1139 /**
1140 * do_splice_direct - splices data directly between two files
1141 * @in: file to splice from
1142 * @ppos: input file offset
1143 * @out: file to splice to
1144 * @len: number of bytes to splice
1145 * @flags: splice modifier flags
1146 *
1147 * Description:
1148 * For use by do_sendfile(). splice can easily emulate sendfile, but
1149 * doing it in the application would incur an extra system call
1150 * (splice in + splice out, as compared to just sendfile()). So this helper
1151 * can splice directly through a process-private pipe.
1152 *
1153 */
1154 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1155 size_t len, unsigned int flags)
1156 {
1157 struct splice_desc sd = {
1158 .len = len,
1159 .total_len = len,
1160 .flags = flags,
1161 .pos = *ppos,
1162 .u.file = out,
1163 };
1164 size_t ret;
1165
1166 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1167 *ppos = sd.pos;
1168 return ret;
1169 }
1170
1171 /*
1172 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1173 * location, so checking ->i_pipe is not enough to verify that this is a
1174 * pipe.
1175 */
1176 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1177 {
1178 if (S_ISFIFO(inode->i_mode))
1179 return inode->i_pipe;
1180
1181 return NULL;
1182 }
1183
1184 /*
1185 * Determine where to splice to/from.
1186 */
1187 static long do_splice(struct file *in, loff_t __user *off_in,
1188 struct file *out, loff_t __user *off_out,
1189 size_t len, unsigned int flags)
1190 {
1191 struct pipe_inode_info *pipe;
1192 loff_t offset, *off;
1193 long ret;
1194
1195 pipe = pipe_info(in->f_path.dentry->d_inode);
1196 if (pipe) {
1197 if (off_in)
1198 return -ESPIPE;
1199 if (off_out) {
1200 if (out->f_op->llseek == no_llseek)
1201 return -EINVAL;
1202 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1203 return -EFAULT;
1204 off = &offset;
1205 } else
1206 off = &out->f_pos;
1207
1208 ret = do_splice_from(pipe, out, off, len, flags);
1209
1210 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1211 ret = -EFAULT;
1212
1213 return ret;
1214 }
1215
1216 pipe = pipe_info(out->f_path.dentry->d_inode);
1217 if (pipe) {
1218 if (off_out)
1219 return -ESPIPE;
1220 if (off_in) {
1221 if (in->f_op->llseek == no_llseek)
1222 return -EINVAL;
1223 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1224 return -EFAULT;
1225 off = &offset;
1226 } else
1227 off = &in->f_pos;
1228
1229 ret = do_splice_to(in, off, pipe, len, flags);
1230
1231 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1232 ret = -EFAULT;
1233
1234 return ret;
1235 }
1236
1237 return -EINVAL;
1238 }
1239
1240 /*
1241 * Map an iov into an array of pages and offset/length tupples. With the
1242 * partial_page structure, we can map several non-contiguous ranges into
1243 * our ones pages[] map instead of splitting that operation into pieces.
1244 * Could easily be exported as a generic helper for other users, in which
1245 * case one would probably want to add a 'max_nr_pages' parameter as well.
1246 */
1247 static int get_iovec_page_array(const struct iovec __user *iov,
1248 unsigned int nr_vecs, struct page **pages,
1249 struct partial_page *partial, int aligned)
1250 {
1251 int buffers = 0, error = 0;
1252
1253 /*
1254 * It's ok to take the mmap_sem for reading, even
1255 * across a "get_user()".
1256 */
1257 down_read(&current->mm->mmap_sem);
1258
1259 while (nr_vecs) {
1260 unsigned long off, npages;
1261 void __user *base;
1262 size_t len;
1263 int i;
1264
1265 /*
1266 * Get user address base and length for this iovec.
1267 */
1268 error = get_user(base, &iov->iov_base);
1269 if (unlikely(error))
1270 break;
1271 error = get_user(len, &iov->iov_len);
1272 if (unlikely(error))
1273 break;
1274
1275 /*
1276 * Sanity check this iovec. 0 read succeeds.
1277 */
1278 if (unlikely(!len))
1279 break;
1280 error = -EFAULT;
1281 if (unlikely(!base))
1282 break;
1283
1284 /*
1285 * Get this base offset and number of pages, then map
1286 * in the user pages.
1287 */
1288 off = (unsigned long) base & ~PAGE_MASK;
1289
1290 /*
1291 * If asked for alignment, the offset must be zero and the
1292 * length a multiple of the PAGE_SIZE.
1293 */
1294 error = -EINVAL;
1295 if (aligned && (off || len & ~PAGE_MASK))
1296 break;
1297
1298 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1299 if (npages > PIPE_BUFFERS - buffers)
1300 npages = PIPE_BUFFERS - buffers;
1301
1302 error = get_user_pages(current, current->mm,
1303 (unsigned long) base, npages, 0, 0,
1304 &pages[buffers], NULL);
1305
1306 if (unlikely(error <= 0))
1307 break;
1308
1309 /*
1310 * Fill this contiguous range into the partial page map.
1311 */
1312 for (i = 0; i < error; i++) {
1313 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1314
1315 partial[buffers].offset = off;
1316 partial[buffers].len = plen;
1317
1318 off = 0;
1319 len -= plen;
1320 buffers++;
1321 }
1322
1323 /*
1324 * We didn't complete this iov, stop here since it probably
1325 * means we have to move some of this into a pipe to
1326 * be able to continue.
1327 */
1328 if (len)
1329 break;
1330
1331 /*
1332 * Don't continue if we mapped fewer pages than we asked for,
1333 * or if we mapped the max number of pages that we have
1334 * room for.
1335 */
1336 if (error < npages || buffers == PIPE_BUFFERS)
1337 break;
1338
1339 nr_vecs--;
1340 iov++;
1341 }
1342
1343 up_read(&current->mm->mmap_sem);
1344
1345 if (buffers)
1346 return buffers;
1347
1348 return error;
1349 }
1350
1351 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1352 struct splice_desc *sd)
1353 {
1354 char *src;
1355 int ret;
1356
1357 ret = buf->ops->confirm(pipe, buf);
1358 if (unlikely(ret))
1359 return ret;
1360
1361 /*
1362 * See if we can use the atomic maps, by prefaulting in the
1363 * pages and doing an atomic copy
1364 */
1365 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1366 src = buf->ops->map(pipe, buf, 1);
1367 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1368 sd->len);
1369 buf->ops->unmap(pipe, buf, src);
1370 if (!ret) {
1371 ret = sd->len;
1372 goto out;
1373 }
1374 }
1375
1376 /*
1377 * No dice, use slow non-atomic map and copy
1378 */
1379 src = buf->ops->map(pipe, buf, 0);
1380
1381 ret = sd->len;
1382 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1383 ret = -EFAULT;
1384
1385 out:
1386 if (ret > 0)
1387 sd->u.userptr += ret;
1388 buf->ops->unmap(pipe, buf, src);
1389 return ret;
1390 }
1391
1392 /*
1393 * For lack of a better implementation, implement vmsplice() to userspace
1394 * as a simple copy of the pipes pages to the user iov.
1395 */
1396 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1397 unsigned long nr_segs, unsigned int flags)
1398 {
1399 struct pipe_inode_info *pipe;
1400 struct splice_desc sd;
1401 ssize_t size;
1402 int error;
1403 long ret;
1404
1405 pipe = pipe_info(file->f_path.dentry->d_inode);
1406 if (!pipe)
1407 return -EBADF;
1408
1409 if (pipe->inode)
1410 mutex_lock(&pipe->inode->i_mutex);
1411
1412 error = ret = 0;
1413 while (nr_segs) {
1414 void __user *base;
1415 size_t len;
1416
1417 /*
1418 * Get user address base and length for this iovec.
1419 */
1420 error = get_user(base, &iov->iov_base);
1421 if (unlikely(error))
1422 break;
1423 error = get_user(len, &iov->iov_len);
1424 if (unlikely(error))
1425 break;
1426
1427 /*
1428 * Sanity check this iovec. 0 read succeeds.
1429 */
1430 if (unlikely(!len))
1431 break;
1432 if (unlikely(!base)) {
1433 error = -EFAULT;
1434 break;
1435 }
1436
1437 sd.len = 0;
1438 sd.total_len = len;
1439 sd.flags = flags;
1440 sd.u.userptr = base;
1441 sd.pos = 0;
1442
1443 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1444 if (size < 0) {
1445 if (!ret)
1446 ret = size;
1447
1448 break;
1449 }
1450
1451 ret += size;
1452
1453 if (size < len)
1454 break;
1455
1456 nr_segs--;
1457 iov++;
1458 }
1459
1460 if (pipe->inode)
1461 mutex_unlock(&pipe->inode->i_mutex);
1462
1463 if (!ret)
1464 ret = error;
1465
1466 return ret;
1467 }
1468
1469 /*
1470 * vmsplice splices a user address range into a pipe. It can be thought of
1471 * as splice-from-memory, where the regular splice is splice-from-file (or
1472 * to file). In both cases the output is a pipe, naturally.
1473 */
1474 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1475 unsigned long nr_segs, unsigned int flags)
1476 {
1477 struct pipe_inode_info *pipe;
1478 struct page *pages[PIPE_BUFFERS];
1479 struct partial_page partial[PIPE_BUFFERS];
1480 struct splice_pipe_desc spd = {
1481 .pages = pages,
1482 .partial = partial,
1483 .flags = flags,
1484 .ops = &user_page_pipe_buf_ops,
1485 };
1486
1487 pipe = pipe_info(file->f_path.dentry->d_inode);
1488 if (!pipe)
1489 return -EBADF;
1490
1491 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1492 flags & SPLICE_F_GIFT);
1493 if (spd.nr_pages <= 0)
1494 return spd.nr_pages;
1495
1496 return splice_to_pipe(pipe, &spd);
1497 }
1498
1499 /*
1500 * Note that vmsplice only really supports true splicing _from_ user memory
1501 * to a pipe, not the other way around. Splicing from user memory is a simple
1502 * operation that can be supported without any funky alignment restrictions
1503 * or nasty vm tricks. We simply map in the user memory and fill them into
1504 * a pipe. The reverse isn't quite as easy, though. There are two possible
1505 * solutions for that:
1506 *
1507 * - memcpy() the data internally, at which point we might as well just
1508 * do a regular read() on the buffer anyway.
1509 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1510 * has restriction limitations on both ends of the pipe).
1511 *
1512 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1513 *
1514 */
1515 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1516 unsigned long nr_segs, unsigned int flags)
1517 {
1518 struct file *file;
1519 long error;
1520 int fput;
1521
1522 if (unlikely(nr_segs > UIO_MAXIOV))
1523 return -EINVAL;
1524 else if (unlikely(!nr_segs))
1525 return 0;
1526
1527 error = -EBADF;
1528 file = fget_light(fd, &fput);
1529 if (file) {
1530 if (file->f_mode & FMODE_WRITE)
1531 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1532 else if (file->f_mode & FMODE_READ)
1533 error = vmsplice_to_user(file, iov, nr_segs, flags);
1534
1535 fput_light(file, fput);
1536 }
1537
1538 return error;
1539 }
1540
1541 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1542 int fd_out, loff_t __user *off_out,
1543 size_t len, unsigned int flags)
1544 {
1545 long error;
1546 struct file *in, *out;
1547 int fput_in, fput_out;
1548
1549 if (unlikely(!len))
1550 return 0;
1551
1552 error = -EBADF;
1553 in = fget_light(fd_in, &fput_in);
1554 if (in) {
1555 if (in->f_mode & FMODE_READ) {
1556 out = fget_light(fd_out, &fput_out);
1557 if (out) {
1558 if (out->f_mode & FMODE_WRITE)
1559 error = do_splice(in, off_in,
1560 out, off_out,
1561 len, flags);
1562 fput_light(out, fput_out);
1563 }
1564 }
1565
1566 fput_light(in, fput_in);
1567 }
1568
1569 return error;
1570 }
1571
1572 /*
1573 * Make sure there's data to read. Wait for input if we can, otherwise
1574 * return an appropriate error.
1575 */
1576 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1577 {
1578 int ret;
1579
1580 /*
1581 * Check ->nrbufs without the inode lock first. This function
1582 * is speculative anyways, so missing one is ok.
1583 */
1584 if (pipe->nrbufs)
1585 return 0;
1586
1587 ret = 0;
1588 mutex_lock(&pipe->inode->i_mutex);
1589
1590 while (!pipe->nrbufs) {
1591 if (signal_pending(current)) {
1592 ret = -ERESTARTSYS;
1593 break;
1594 }
1595 if (!pipe->writers)
1596 break;
1597 if (!pipe->waiting_writers) {
1598 if (flags & SPLICE_F_NONBLOCK) {
1599 ret = -EAGAIN;
1600 break;
1601 }
1602 }
1603 pipe_wait(pipe);
1604 }
1605
1606 mutex_unlock(&pipe->inode->i_mutex);
1607 return ret;
1608 }
1609
1610 /*
1611 * Make sure there's writeable room. Wait for room if we can, otherwise
1612 * return an appropriate error.
1613 */
1614 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1615 {
1616 int ret;
1617
1618 /*
1619 * Check ->nrbufs without the inode lock first. This function
1620 * is speculative anyways, so missing one is ok.
1621 */
1622 if (pipe->nrbufs < PIPE_BUFFERS)
1623 return 0;
1624
1625 ret = 0;
1626 mutex_lock(&pipe->inode->i_mutex);
1627
1628 while (pipe->nrbufs >= PIPE_BUFFERS) {
1629 if (!pipe->readers) {
1630 send_sig(SIGPIPE, current, 0);
1631 ret = -EPIPE;
1632 break;
1633 }
1634 if (flags & SPLICE_F_NONBLOCK) {
1635 ret = -EAGAIN;
1636 break;
1637 }
1638 if (signal_pending(current)) {
1639 ret = -ERESTARTSYS;
1640 break;
1641 }
1642 pipe->waiting_writers++;
1643 pipe_wait(pipe);
1644 pipe->waiting_writers--;
1645 }
1646
1647 mutex_unlock(&pipe->inode->i_mutex);
1648 return ret;
1649 }
1650
1651 /*
1652 * Link contents of ipipe to opipe.
1653 */
1654 static int link_pipe(struct pipe_inode_info *ipipe,
1655 struct pipe_inode_info *opipe,
1656 size_t len, unsigned int flags)
1657 {
1658 struct pipe_buffer *ibuf, *obuf;
1659 int ret = 0, i = 0, nbuf;
1660
1661 /*
1662 * Potential ABBA deadlock, work around it by ordering lock
1663 * grabbing by inode address. Otherwise two different processes
1664 * could deadlock (one doing tee from A -> B, the other from B -> A).
1665 */
1666 inode_double_lock(ipipe->inode, opipe->inode);
1667
1668 do {
1669 if (!opipe->readers) {
1670 send_sig(SIGPIPE, current, 0);
1671 if (!ret)
1672 ret = -EPIPE;
1673 break;
1674 }
1675
1676 /*
1677 * If we have iterated all input buffers or ran out of
1678 * output room, break.
1679 */
1680 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1681 break;
1682
1683 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1684 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1685
1686 /*
1687 * Get a reference to this pipe buffer,
1688 * so we can copy the contents over.
1689 */
1690 ibuf->ops->get(ipipe, ibuf);
1691
1692 obuf = opipe->bufs + nbuf;
1693 *obuf = *ibuf;
1694
1695 /*
1696 * Don't inherit the gift flag, we need to
1697 * prevent multiple steals of this page.
1698 */
1699 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1700
1701 if (obuf->len > len)
1702 obuf->len = len;
1703
1704 opipe->nrbufs++;
1705 ret += obuf->len;
1706 len -= obuf->len;
1707 i++;
1708 } while (len);
1709
1710 inode_double_unlock(ipipe->inode, opipe->inode);
1711
1712 /*
1713 * If we put data in the output pipe, wakeup any potential readers.
1714 */
1715 if (ret > 0) {
1716 smp_mb();
1717 if (waitqueue_active(&opipe->wait))
1718 wake_up_interruptible(&opipe->wait);
1719 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1720 }
1721
1722 return ret;
1723 }
1724
1725 /*
1726 * This is a tee(1) implementation that works on pipes. It doesn't copy
1727 * any data, it simply references the 'in' pages on the 'out' pipe.
1728 * The 'flags' used are the SPLICE_F_* variants, currently the only
1729 * applicable one is SPLICE_F_NONBLOCK.
1730 */
1731 static long do_tee(struct file *in, struct file *out, size_t len,
1732 unsigned int flags)
1733 {
1734 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1735 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1736 int ret = -EINVAL;
1737
1738 /*
1739 * Duplicate the contents of ipipe to opipe without actually
1740 * copying the data.
1741 */
1742 if (ipipe && opipe && ipipe != opipe) {
1743 /*
1744 * Keep going, unless we encounter an error. The ipipe/opipe
1745 * ordering doesn't really matter.
1746 */
1747 ret = link_ipipe_prep(ipipe, flags);
1748 if (!ret) {
1749 ret = link_opipe_prep(opipe, flags);
1750 if (!ret) {
1751 ret = link_pipe(ipipe, opipe, len, flags);
1752 if (!ret && (flags & SPLICE_F_NONBLOCK))
1753 ret = -EAGAIN;
1754 }
1755 }
1756 }
1757
1758 return ret;
1759 }
1760
1761 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1762 {
1763 struct file *in;
1764 int error, fput_in;
1765
1766 if (unlikely(!len))
1767 return 0;
1768
1769 error = -EBADF;
1770 in = fget_light(fdin, &fput_in);
1771 if (in) {
1772 if (in->f_mode & FMODE_READ) {
1773 int fput_out;
1774 struct file *out = fget_light(fdout, &fput_out);
1775
1776 if (out) {
1777 if (out->f_mode & FMODE_WRITE)
1778 error = do_tee(in, out, len, flags);
1779 fput_light(out, fput_out);
1780 }
1781 }
1782 fput_light(in, fput_in);
1783 }
1784
1785 return error;
1786 }