]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
new helper: iov_iter_bvec()
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
37
38 /*
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
43 */
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
46 {
47 struct page *page = buf->page;
48 struct address_space *mapping;
49
50 lock_page(page);
51
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
55
56 /*
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
63 */
64 wait_on_page_writeback(page);
65
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
69
70 /*
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
73 */
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
77 }
78 }
79
80 /*
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
83 */
84 out_unlock:
85 unlock_page(page);
86 return 1;
87 }
88
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
91 {
92 page_cache_release(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 }
95
96 /*
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
99 */
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
102 {
103 struct page *page = buf->page;
104 int err;
105
106 if (!PageUptodate(page)) {
107 lock_page(page);
108
109 /*
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
112 */
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
116 }
117
118 /*
119 * Uh oh, read-error from disk.
120 */
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
124 }
125
126 /*
127 * Page is ok afterall, we are done.
128 */
129 unlock_page(page);
130 }
131
132 return 0;
133 error:
134 unlock_page(page);
135 return err;
136 }
137
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
148 {
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
151
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171
172 /**
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
176 *
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
181 *
182 */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
185 {
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
188
189 ret = 0;
190 do_wakeup = 0;
191 page_nr = 0;
192
193 pipe_lock(pipe);
194
195 for (;;) {
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
198 if (!ret)
199 ret = -EPIPE;
200 break;
201 }
202
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
206
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
211 buf->ops = spd->ops;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
214
215 pipe->nrbufs++;
216 page_nr++;
217 ret += buf->len;
218
219 if (pipe->files)
220 do_wakeup = 1;
221
222 if (!--spd->nr_pages)
223 break;
224 if (pipe->nrbufs < pipe->buffers)
225 continue;
226
227 break;
228 }
229
230 if (spd->flags & SPLICE_F_NONBLOCK) {
231 if (!ret)
232 ret = -EAGAIN;
233 break;
234 }
235
236 if (signal_pending(current)) {
237 if (!ret)
238 ret = -ERESTARTSYS;
239 break;
240 }
241
242 if (do_wakeup) {
243 smp_mb();
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 do_wakeup = 0;
248 }
249
250 pipe->waiting_writers++;
251 pipe_wait(pipe);
252 pipe->waiting_writers--;
253 }
254
255 pipe_unlock(pipe);
256
257 if (do_wakeup)
258 wakeup_pipe_readers(pipe);
259
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
262
263 return ret;
264 }
265
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 page_cache_release(spd->pages[i]);
269 }
270
271 /*
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
274 */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
282
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285
286 if (spd->pages && spd->partial)
287 return 0;
288
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
292 }
293
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
298
299 kfree(spd->pages);
300 kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
307 {
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
323 };
324
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
327
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
332
333 /*
334 * Lookup the (hopefully) full range of pages we need.
335 */
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
338
339 /*
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
342 */
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
346
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
349 /*
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
352 */
353 page = find_get_page(mapping, index);
354 if (!page) {
355 /*
356 * page didn't exist, allocate one.
357 */
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
361
362 error = add_to_page_cache_lru(page, mapping, index,
363 GFP_KERNEL);
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
369 }
370 /*
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
373 */
374 unlock_page(page);
375 }
376
377 spd.pages[spd.nr_pages++] = page;
378 index++;
379 }
380
381 /*
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
384 */
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
390
391 if (!len)
392 break;
393
394 /*
395 * this_len is the max we'll use from this page
396 */
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
399
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
403
404 /*
405 * If the page isn't uptodate, we may need to start io on it
406 */
407 if (!PageUptodate(page)) {
408 lock_page(page);
409
410 /*
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
415 */
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
420
421 if (!page) {
422 error = -ENOMEM;
423 break;
424 }
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
427 }
428 /*
429 * page was already under io and is now done, great
430 */
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
434 }
435
436 /*
437 * need to read in the page
438 */
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
441 /*
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
446 */
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
449
450 break;
451 }
452 }
453 fill_it:
454 /*
455 * i_size must be checked after PageUptodate.
456 */
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
461
462 /*
463 * if this is the last page, see if we need to shrink
464 * the length and stop
465 */
466 if (end_index == index) {
467 unsigned int plen;
468
469 /*
470 * max good bytes in this page
471 */
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
475
476 /*
477 * force quit after adding this page
478 */
479 this_len = min(this_len, plen - loff);
480 len = this_len;
481 }
482
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
489 }
490
491 /*
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
494 */
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
501
502 splice_shrink_spd(&spd);
503 return error;
504 }
505
506 /**
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
513 *
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
518 *
519 */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
523 {
524 loff_t isize, left;
525 int ret;
526
527 isize = i_size_read(in->f_mapping->host);
528 if (unlikely(*ppos >= isize))
529 return 0;
530
531 left = isize - *ppos;
532 if (unlikely(left < len))
533 len = left;
534
535 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 if (ret > 0) {
537 *ppos += ret;
538 file_accessed(in);
539 }
540
541 return ret;
542 }
543 EXPORT_SYMBOL(generic_file_splice_read);
544
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 .can_merge = 0,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551 };
552
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 struct pipe_buffer *buf)
555 {
556 return 1;
557 }
558
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 .can_merge = 0,
562 .confirm = generic_pipe_buf_confirm,
563 .release = generic_pipe_buf_release,
564 .steal = generic_pipe_buf_nosteal,
565 .get = generic_pipe_buf_get,
566 };
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
568
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 unsigned long vlen, loff_t offset)
571 {
572 mm_segment_t old_fs;
573 loff_t pos = offset;
574 ssize_t res;
575
576 old_fs = get_fs();
577 set_fs(get_ds());
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 set_fs(old_fs);
581
582 return res;
583 }
584
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 loff_t pos)
587 {
588 mm_segment_t old_fs;
589 ssize_t res;
590
591 old_fs = get_fs();
592 set_fs(get_ds());
593 /* The cast to a user pointer is valid due to the set_fs() */
594 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 set_fs(old_fs);
596
597 return res;
598 }
599 EXPORT_SYMBOL(kernel_write);
600
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 struct pipe_inode_info *pipe, size_t len,
603 unsigned int flags)
604 {
605 unsigned int nr_pages;
606 unsigned int nr_freed;
607 size_t offset;
608 struct page *pages[PIPE_DEF_BUFFERS];
609 struct partial_page partial[PIPE_DEF_BUFFERS];
610 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 ssize_t res;
612 size_t this_len;
613 int error;
614 int i;
615 struct splice_pipe_desc spd = {
616 .pages = pages,
617 .partial = partial,
618 .nr_pages_max = PIPE_DEF_BUFFERS,
619 .flags = flags,
620 .ops = &default_pipe_buf_ops,
621 .spd_release = spd_release_page,
622 };
623
624 if (splice_grow_spd(pipe, &spd))
625 return -ENOMEM;
626
627 res = -ENOMEM;
628 vec = __vec;
629 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 if (!vec)
632 goto shrink_ret;
633 }
634
635 offset = *ppos & ~PAGE_CACHE_MASK;
636 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
637
638 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 struct page *page;
640
641 page = alloc_page(GFP_USER);
642 error = -ENOMEM;
643 if (!page)
644 goto err;
645
646 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 vec[i].iov_base = (void __user *) page_address(page);
648 vec[i].iov_len = this_len;
649 spd.pages[i] = page;
650 spd.nr_pages++;
651 len -= this_len;
652 offset = 0;
653 }
654
655 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 if (res < 0) {
657 error = res;
658 goto err;
659 }
660
661 error = 0;
662 if (!res)
663 goto err;
664
665 nr_freed = 0;
666 for (i = 0; i < spd.nr_pages; i++) {
667 this_len = min_t(size_t, vec[i].iov_len, res);
668 spd.partial[i].offset = 0;
669 spd.partial[i].len = this_len;
670 if (!this_len) {
671 __free_page(spd.pages[i]);
672 spd.pages[i] = NULL;
673 nr_freed++;
674 }
675 res -= this_len;
676 }
677 spd.nr_pages -= nr_freed;
678
679 res = splice_to_pipe(pipe, &spd);
680 if (res > 0)
681 *ppos += res;
682
683 shrink_ret:
684 if (vec != __vec)
685 kfree(vec);
686 splice_shrink_spd(&spd);
687 return res;
688
689 err:
690 for (i = 0; i < spd.nr_pages; i++)
691 __free_page(spd.pages[i]);
692
693 res = error;
694 goto shrink_ret;
695 }
696 EXPORT_SYMBOL(default_file_splice_read);
697
698 /*
699 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700 * using sendpage(). Return the number of bytes sent.
701 */
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 struct pipe_buffer *buf, struct splice_desc *sd)
704 {
705 struct file *file = sd->u.file;
706 loff_t pos = sd->pos;
707 int more;
708
709 if (!likely(file->f_op->sendpage))
710 return -EINVAL;
711
712 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
713
714 if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 more |= MSG_SENDPAGE_NOTLAST;
716
717 return file->f_op->sendpage(file, buf->page, buf->offset,
718 sd->len, &pos, more);
719 }
720
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
722 {
723 smp_mb();
724 if (waitqueue_active(&pipe->wait))
725 wake_up_interruptible(&pipe->wait);
726 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
727 }
728
729 /**
730 * splice_from_pipe_feed - feed available data from a pipe to a file
731 * @pipe: pipe to splice from
732 * @sd: information to @actor
733 * @actor: handler that splices the data
734 *
735 * Description:
736 * This function loops over the pipe and calls @actor to do the
737 * actual moving of a single struct pipe_buffer to the desired
738 * destination. It returns when there's no more buffers left in
739 * the pipe or if the requested number of bytes (@sd->total_len)
740 * have been copied. It returns a positive number (one) if the
741 * pipe needs to be filled with more data, zero if the required
742 * number of bytes have been copied and -errno on error.
743 *
744 * This, together with splice_from_pipe_{begin,end,next}, may be
745 * used to implement the functionality of __splice_from_pipe() when
746 * locking is required around copying the pipe buffers to the
747 * destination.
748 */
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 splice_actor *actor)
751 {
752 int ret;
753
754 while (pipe->nrbufs) {
755 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 const struct pipe_buf_operations *ops = buf->ops;
757
758 sd->len = buf->len;
759 if (sd->len > sd->total_len)
760 sd->len = sd->total_len;
761
762 ret = buf->ops->confirm(pipe, buf);
763 if (unlikely(ret)) {
764 if (ret == -ENODATA)
765 ret = 0;
766 return ret;
767 }
768
769 ret = actor(pipe, buf, sd);
770 if (ret <= 0)
771 return ret;
772
773 buf->offset += ret;
774 buf->len -= ret;
775
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
780
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 pipe->nrbufs--;
786 if (pipe->files)
787 sd->need_wakeup = true;
788 }
789
790 if (!sd->total_len)
791 return 0;
792 }
793
794 return 1;
795 }
796
797 /**
798 * splice_from_pipe_next - wait for some data to splice from
799 * @pipe: pipe to splice from
800 * @sd: information about the splice operation
801 *
802 * Description:
803 * This function will wait for some data and return a positive
804 * value (one) if pipe buffers are available. It will return zero
805 * or -errno if no more data needs to be spliced.
806 */
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
808 {
809 while (!pipe->nrbufs) {
810 if (!pipe->writers)
811 return 0;
812
813 if (!pipe->waiting_writers && sd->num_spliced)
814 return 0;
815
816 if (sd->flags & SPLICE_F_NONBLOCK)
817 return -EAGAIN;
818
819 if (signal_pending(current))
820 return -ERESTARTSYS;
821
822 if (sd->need_wakeup) {
823 wakeup_pipe_writers(pipe);
824 sd->need_wakeup = false;
825 }
826
827 pipe_wait(pipe);
828 }
829
830 return 1;
831 }
832
833 /**
834 * splice_from_pipe_begin - start splicing from pipe
835 * @sd: information about the splice operation
836 *
837 * Description:
838 * This function should be called before a loop containing
839 * splice_from_pipe_next() and splice_from_pipe_feed() to
840 * initialize the necessary fields of @sd.
841 */
842 static void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844 sd->num_spliced = 0;
845 sd->need_wakeup = false;
846 }
847
848 /**
849 * splice_from_pipe_end - finish splicing from pipe
850 * @pipe: pipe to splice from
851 * @sd: information about the splice operation
852 *
853 * Description:
854 * This function will wake up pipe writers if necessary. It should
855 * be called after a loop containing splice_from_pipe_next() and
856 * splice_from_pipe_feed().
857 */
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
859 {
860 if (sd->need_wakeup)
861 wakeup_pipe_writers(pipe);
862 }
863
864 /**
865 * __splice_from_pipe - splice data from a pipe to given actor
866 * @pipe: pipe to splice from
867 * @sd: information to @actor
868 * @actor: handler that splices the data
869 *
870 * Description:
871 * This function does little more than loop over the pipe and call
872 * @actor to do the actual moving of a single struct pipe_buffer to
873 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
874 * pipe_to_user.
875 *
876 */
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878 splice_actor *actor)
879 {
880 int ret;
881
882 splice_from_pipe_begin(sd);
883 do {
884 ret = splice_from_pipe_next(pipe, sd);
885 if (ret > 0)
886 ret = splice_from_pipe_feed(pipe, sd, actor);
887 } while (ret > 0);
888 splice_from_pipe_end(pipe, sd);
889
890 return sd->num_spliced ? sd->num_spliced : ret;
891 }
892 EXPORT_SYMBOL(__splice_from_pipe);
893
894 /**
895 * splice_from_pipe - splice data from a pipe to a file
896 * @pipe: pipe to splice from
897 * @out: file to splice to
898 * @ppos: position in @out
899 * @len: how many bytes to splice
900 * @flags: splice modifier flags
901 * @actor: handler that splices the data
902 *
903 * Description:
904 * See __splice_from_pipe. This function locks the pipe inode,
905 * otherwise it's identical to __splice_from_pipe().
906 *
907 */
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags,
910 splice_actor *actor)
911 {
912 ssize_t ret;
913 struct splice_desc sd = {
914 .total_len = len,
915 .flags = flags,
916 .pos = *ppos,
917 .u.file = out,
918 };
919
920 pipe_lock(pipe);
921 ret = __splice_from_pipe(pipe, &sd, actor);
922 pipe_unlock(pipe);
923
924 return ret;
925 }
926
927 /**
928 * iter_file_splice_write - splice data from a pipe to a file
929 * @pipe: pipe info
930 * @out: file to write to
931 * @ppos: position in @out
932 * @len: number of bytes to splice
933 * @flags: splice modifier flags
934 *
935 * Description:
936 * Will either move or copy pages (determined by @flags options) from
937 * the given pipe inode to the given file.
938 * This one is ->write_iter-based.
939 *
940 */
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943 loff_t *ppos, size_t len, unsigned int flags)
944 {
945 struct splice_desc sd = {
946 .total_len = len,
947 .flags = flags,
948 .pos = *ppos,
949 .u.file = out,
950 };
951 int nbufs = pipe->buffers;
952 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953 GFP_KERNEL);
954 ssize_t ret;
955
956 if (unlikely(!array))
957 return -ENOMEM;
958
959 pipe_lock(pipe);
960
961 splice_from_pipe_begin(&sd);
962 while (sd.total_len) {
963 struct iov_iter from;
964 struct kiocb kiocb;
965 size_t left;
966 int n, idx;
967
968 ret = splice_from_pipe_next(pipe, &sd);
969 if (ret <= 0)
970 break;
971
972 if (unlikely(nbufs < pipe->buffers)) {
973 kfree(array);
974 nbufs = pipe->buffers;
975 array = kcalloc(nbufs, sizeof(struct bio_vec),
976 GFP_KERNEL);
977 if (!array) {
978 ret = -ENOMEM;
979 break;
980 }
981 }
982
983 /* build the vector */
984 left = sd.total_len;
985 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
986 struct pipe_buffer *buf = pipe->bufs + idx;
987 size_t this_len = buf->len;
988
989 if (this_len > left)
990 this_len = left;
991
992 if (idx == pipe->buffers - 1)
993 idx = -1;
994
995 ret = buf->ops->confirm(pipe, buf);
996 if (unlikely(ret)) {
997 if (ret == -ENODATA)
998 ret = 0;
999 goto done;
1000 }
1001
1002 array[n].bv_page = buf->page;
1003 array[n].bv_len = this_len;
1004 array[n].bv_offset = buf->offset;
1005 left -= this_len;
1006 }
1007
1008 /* ... iov_iter */
1009 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1010 sd.total_len - left);
1011
1012 /* ... and iocb */
1013 init_sync_kiocb(&kiocb, out);
1014 kiocb.ki_pos = sd.pos;
1015 kiocb.ki_nbytes = sd.total_len - left;
1016
1017 /* now, send it */
1018 ret = out->f_op->write_iter(&kiocb, &from);
1019 if (-EIOCBQUEUED == ret)
1020 ret = wait_on_sync_kiocb(&kiocb);
1021
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos = kiocb.ki_pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049 done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059 }
1060
1061 EXPORT_SYMBOL(iter_file_splice_write);
1062
1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065 {
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075 }
1076
1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080 {
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088 }
1089
1090 /**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105 {
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107 }
1108
1109 EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111 /*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116 {
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126 }
1127
1128 /*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131 static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134 {
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (in->f_op->splice_read)
1147 splice_read = in->f_op->splice_read;
1148 else
1149 splice_read = default_file_splice_read;
1150
1151 return splice_read(in, ppos, pipe, len, flags);
1152 }
1153
1154 /**
1155 * splice_direct_to_actor - splices data directly between two non-pipes
1156 * @in: file to splice from
1157 * @sd: actor information on where to splice to
1158 * @actor: handles the data splicing
1159 *
1160 * Description:
1161 * This is a special case helper to splice directly between two
1162 * points, without requiring an explicit pipe. Internally an allocated
1163 * pipe is cached in the process, and reused during the lifetime of
1164 * that process.
1165 *
1166 */
1167 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1168 splice_direct_actor *actor)
1169 {
1170 struct pipe_inode_info *pipe;
1171 long ret, bytes;
1172 umode_t i_mode;
1173 size_t len;
1174 int i, flags;
1175
1176 /*
1177 * We require the input being a regular file, as we don't want to
1178 * randomly drop data for eg socket -> socket splicing. Use the
1179 * piped splicing for that!
1180 */
1181 i_mode = file_inode(in)->i_mode;
1182 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1183 return -EINVAL;
1184
1185 /*
1186 * neither in nor out is a pipe, setup an internal pipe attached to
1187 * 'out' and transfer the wanted data from 'in' to 'out' through that
1188 */
1189 pipe = current->splice_pipe;
1190 if (unlikely(!pipe)) {
1191 pipe = alloc_pipe_info();
1192 if (!pipe)
1193 return -ENOMEM;
1194
1195 /*
1196 * We don't have an immediate reader, but we'll read the stuff
1197 * out of the pipe right after the splice_to_pipe(). So set
1198 * PIPE_READERS appropriately.
1199 */
1200 pipe->readers = 1;
1201
1202 current->splice_pipe = pipe;
1203 }
1204
1205 /*
1206 * Do the splice.
1207 */
1208 ret = 0;
1209 bytes = 0;
1210 len = sd->total_len;
1211 flags = sd->flags;
1212
1213 /*
1214 * Don't block on output, we have to drain the direct pipe.
1215 */
1216 sd->flags &= ~SPLICE_F_NONBLOCK;
1217
1218 while (len) {
1219 size_t read_len;
1220 loff_t pos = sd->pos, prev_pos = pos;
1221
1222 ret = do_splice_to(in, &pos, pipe, len, flags);
1223 if (unlikely(ret <= 0))
1224 goto out_release;
1225
1226 read_len = ret;
1227 sd->total_len = read_len;
1228
1229 /*
1230 * NOTE: nonblocking mode only applies to the input. We
1231 * must not do the output in nonblocking mode as then we
1232 * could get stuck data in the internal pipe:
1233 */
1234 ret = actor(pipe, sd);
1235 if (unlikely(ret <= 0)) {
1236 sd->pos = prev_pos;
1237 goto out_release;
1238 }
1239
1240 bytes += ret;
1241 len -= ret;
1242 sd->pos = pos;
1243
1244 if (ret < read_len) {
1245 sd->pos = prev_pos + ret;
1246 goto out_release;
1247 }
1248 }
1249
1250 done:
1251 pipe->nrbufs = pipe->curbuf = 0;
1252 file_accessed(in);
1253 return bytes;
1254
1255 out_release:
1256 /*
1257 * If we did an incomplete transfer we must release
1258 * the pipe buffers in question:
1259 */
1260 for (i = 0; i < pipe->buffers; i++) {
1261 struct pipe_buffer *buf = pipe->bufs + i;
1262
1263 if (buf->ops) {
1264 buf->ops->release(pipe, buf);
1265 buf->ops = NULL;
1266 }
1267 }
1268
1269 if (!bytes)
1270 bytes = ret;
1271
1272 goto done;
1273 }
1274 EXPORT_SYMBOL(splice_direct_to_actor);
1275
1276 static int direct_splice_actor(struct pipe_inode_info *pipe,
1277 struct splice_desc *sd)
1278 {
1279 struct file *file = sd->u.file;
1280
1281 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 sd->flags);
1283 }
1284
1285 /**
1286 * do_splice_direct - splices data directly between two files
1287 * @in: file to splice from
1288 * @ppos: input file offset
1289 * @out: file to splice to
1290 * @opos: output file offset
1291 * @len: number of bytes to splice
1292 * @flags: splice modifier flags
1293 *
1294 * Description:
1295 * For use by do_sendfile(). splice can easily emulate sendfile, but
1296 * doing it in the application would incur an extra system call
1297 * (splice in + splice out, as compared to just sendfile()). So this helper
1298 * can splice directly through a process-private pipe.
1299 *
1300 */
1301 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1302 loff_t *opos, size_t len, unsigned int flags)
1303 {
1304 struct splice_desc sd = {
1305 .len = len,
1306 .total_len = len,
1307 .flags = flags,
1308 .pos = *ppos,
1309 .u.file = out,
1310 .opos = opos,
1311 };
1312 long ret;
1313
1314 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1316
1317 if (unlikely(out->f_flags & O_APPEND))
1318 return -EINVAL;
1319
1320 ret = rw_verify_area(WRITE, out, opos, len);
1321 if (unlikely(ret < 0))
1322 return ret;
1323
1324 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325 if (ret > 0)
1326 *ppos = sd.pos;
1327
1328 return ret;
1329 }
1330 EXPORT_SYMBOL(do_splice_direct);
1331
1332 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1333 struct pipe_inode_info *opipe,
1334 size_t len, unsigned int flags);
1335
1336 /*
1337 * Determine where to splice to/from.
1338 */
1339 static long do_splice(struct file *in, loff_t __user *off_in,
1340 struct file *out, loff_t __user *off_out,
1341 size_t len, unsigned int flags)
1342 {
1343 struct pipe_inode_info *ipipe;
1344 struct pipe_inode_info *opipe;
1345 loff_t offset;
1346 long ret;
1347
1348 ipipe = get_pipe_info(in);
1349 opipe = get_pipe_info(out);
1350
1351 if (ipipe && opipe) {
1352 if (off_in || off_out)
1353 return -ESPIPE;
1354
1355 if (!(in->f_mode & FMODE_READ))
1356 return -EBADF;
1357
1358 if (!(out->f_mode & FMODE_WRITE))
1359 return -EBADF;
1360
1361 /* Splicing to self would be fun, but... */
1362 if (ipipe == opipe)
1363 return -EINVAL;
1364
1365 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1366 }
1367
1368 if (ipipe) {
1369 if (off_in)
1370 return -ESPIPE;
1371 if (off_out) {
1372 if (!(out->f_mode & FMODE_PWRITE))
1373 return -EINVAL;
1374 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1375 return -EFAULT;
1376 } else {
1377 offset = out->f_pos;
1378 }
1379
1380 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1381 return -EBADF;
1382
1383 if (unlikely(out->f_flags & O_APPEND))
1384 return -EINVAL;
1385
1386 ret = rw_verify_area(WRITE, out, &offset, len);
1387 if (unlikely(ret < 0))
1388 return ret;
1389
1390 file_start_write(out);
1391 ret = do_splice_from(ipipe, out, &offset, len, flags);
1392 file_end_write(out);
1393
1394 if (!off_out)
1395 out->f_pos = offset;
1396 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1397 ret = -EFAULT;
1398
1399 return ret;
1400 }
1401
1402 if (opipe) {
1403 if (off_out)
1404 return -ESPIPE;
1405 if (off_in) {
1406 if (!(in->f_mode & FMODE_PREAD))
1407 return -EINVAL;
1408 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1409 return -EFAULT;
1410 } else {
1411 offset = in->f_pos;
1412 }
1413
1414 ret = do_splice_to(in, &offset, opipe, len, flags);
1415
1416 if (!off_in)
1417 in->f_pos = offset;
1418 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1419 ret = -EFAULT;
1420
1421 return ret;
1422 }
1423
1424 return -EINVAL;
1425 }
1426
1427 /*
1428 * Map an iov into an array of pages and offset/length tupples. With the
1429 * partial_page structure, we can map several non-contiguous ranges into
1430 * our ones pages[] map instead of splitting that operation into pieces.
1431 * Could easily be exported as a generic helper for other users, in which
1432 * case one would probably want to add a 'max_nr_pages' parameter as well.
1433 */
1434 static int get_iovec_page_array(const struct iovec __user *iov,
1435 unsigned int nr_vecs, struct page **pages,
1436 struct partial_page *partial, bool aligned,
1437 unsigned int pipe_buffers)
1438 {
1439 int buffers = 0, error = 0;
1440
1441 while (nr_vecs) {
1442 unsigned long off, npages;
1443 struct iovec entry;
1444 void __user *base;
1445 size_t len;
1446 int i;
1447
1448 error = -EFAULT;
1449 if (copy_from_user(&entry, iov, sizeof(entry)))
1450 break;
1451
1452 base = entry.iov_base;
1453 len = entry.iov_len;
1454
1455 /*
1456 * Sanity check this iovec. 0 read succeeds.
1457 */
1458 error = 0;
1459 if (unlikely(!len))
1460 break;
1461 error = -EFAULT;
1462 if (!access_ok(VERIFY_READ, base, len))
1463 break;
1464
1465 /*
1466 * Get this base offset and number of pages, then map
1467 * in the user pages.
1468 */
1469 off = (unsigned long) base & ~PAGE_MASK;
1470
1471 /*
1472 * If asked for alignment, the offset must be zero and the
1473 * length a multiple of the PAGE_SIZE.
1474 */
1475 error = -EINVAL;
1476 if (aligned && (off || len & ~PAGE_MASK))
1477 break;
1478
1479 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1480 if (npages > pipe_buffers - buffers)
1481 npages = pipe_buffers - buffers;
1482
1483 error = get_user_pages_fast((unsigned long)base, npages,
1484 0, &pages[buffers]);
1485
1486 if (unlikely(error <= 0))
1487 break;
1488
1489 /*
1490 * Fill this contiguous range into the partial page map.
1491 */
1492 for (i = 0; i < error; i++) {
1493 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1494
1495 partial[buffers].offset = off;
1496 partial[buffers].len = plen;
1497
1498 off = 0;
1499 len -= plen;
1500 buffers++;
1501 }
1502
1503 /*
1504 * We didn't complete this iov, stop here since it probably
1505 * means we have to move some of this into a pipe to
1506 * be able to continue.
1507 */
1508 if (len)
1509 break;
1510
1511 /*
1512 * Don't continue if we mapped fewer pages than we asked for,
1513 * or if we mapped the max number of pages that we have
1514 * room for.
1515 */
1516 if (error < npages || buffers == pipe_buffers)
1517 break;
1518
1519 nr_vecs--;
1520 iov++;
1521 }
1522
1523 if (buffers)
1524 return buffers;
1525
1526 return error;
1527 }
1528
1529 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1530 struct splice_desc *sd)
1531 {
1532 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1533 return n == sd->len ? n : -EFAULT;
1534 }
1535
1536 /*
1537 * For lack of a better implementation, implement vmsplice() to userspace
1538 * as a simple copy of the pipes pages to the user iov.
1539 */
1540 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1541 unsigned long nr_segs, unsigned int flags)
1542 {
1543 struct pipe_inode_info *pipe;
1544 struct splice_desc sd;
1545 long ret;
1546 struct iovec iovstack[UIO_FASTIOV];
1547 struct iovec *iov = iovstack;
1548 struct iov_iter iter;
1549 ssize_t count;
1550
1551 pipe = get_pipe_info(file);
1552 if (!pipe)
1553 return -EBADF;
1554
1555 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1556 ARRAY_SIZE(iovstack), iovstack, &iov);
1557 if (ret <= 0)
1558 goto out;
1559
1560 count = ret;
1561 iov_iter_init(&iter, READ, iov, nr_segs, count);
1562
1563 sd.len = 0;
1564 sd.total_len = count;
1565 sd.flags = flags;
1566 sd.u.data = &iter;
1567 sd.pos = 0;
1568
1569 pipe_lock(pipe);
1570 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1571 pipe_unlock(pipe);
1572
1573 out:
1574 if (iov != iovstack)
1575 kfree(iov);
1576
1577 return ret;
1578 }
1579
1580 /*
1581 * vmsplice splices a user address range into a pipe. It can be thought of
1582 * as splice-from-memory, where the regular splice is splice-from-file (or
1583 * to file). In both cases the output is a pipe, naturally.
1584 */
1585 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1586 unsigned long nr_segs, unsigned int flags)
1587 {
1588 struct pipe_inode_info *pipe;
1589 struct page *pages[PIPE_DEF_BUFFERS];
1590 struct partial_page partial[PIPE_DEF_BUFFERS];
1591 struct splice_pipe_desc spd = {
1592 .pages = pages,
1593 .partial = partial,
1594 .nr_pages_max = PIPE_DEF_BUFFERS,
1595 .flags = flags,
1596 .ops = &user_page_pipe_buf_ops,
1597 .spd_release = spd_release_page,
1598 };
1599 long ret;
1600
1601 pipe = get_pipe_info(file);
1602 if (!pipe)
1603 return -EBADF;
1604
1605 if (splice_grow_spd(pipe, &spd))
1606 return -ENOMEM;
1607
1608 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1609 spd.partial, false,
1610 spd.nr_pages_max);
1611 if (spd.nr_pages <= 0)
1612 ret = spd.nr_pages;
1613 else
1614 ret = splice_to_pipe(pipe, &spd);
1615
1616 splice_shrink_spd(&spd);
1617 return ret;
1618 }
1619
1620 /*
1621 * Note that vmsplice only really supports true splicing _from_ user memory
1622 * to a pipe, not the other way around. Splicing from user memory is a simple
1623 * operation that can be supported without any funky alignment restrictions
1624 * or nasty vm tricks. We simply map in the user memory and fill them into
1625 * a pipe. The reverse isn't quite as easy, though. There are two possible
1626 * solutions for that:
1627 *
1628 * - memcpy() the data internally, at which point we might as well just
1629 * do a regular read() on the buffer anyway.
1630 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1631 * has restriction limitations on both ends of the pipe).
1632 *
1633 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1634 *
1635 */
1636 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1637 unsigned long, nr_segs, unsigned int, flags)
1638 {
1639 struct fd f;
1640 long error;
1641
1642 if (unlikely(nr_segs > UIO_MAXIOV))
1643 return -EINVAL;
1644 else if (unlikely(!nr_segs))
1645 return 0;
1646
1647 error = -EBADF;
1648 f = fdget(fd);
1649 if (f.file) {
1650 if (f.file->f_mode & FMODE_WRITE)
1651 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1652 else if (f.file->f_mode & FMODE_READ)
1653 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1654
1655 fdput(f);
1656 }
1657
1658 return error;
1659 }
1660
1661 #ifdef CONFIG_COMPAT
1662 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1663 unsigned int, nr_segs, unsigned int, flags)
1664 {
1665 unsigned i;
1666 struct iovec __user *iov;
1667 if (nr_segs > UIO_MAXIOV)
1668 return -EINVAL;
1669 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1670 for (i = 0; i < nr_segs; i++) {
1671 struct compat_iovec v;
1672 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1673 get_user(v.iov_len, &iov32[i].iov_len) ||
1674 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1675 put_user(v.iov_len, &iov[i].iov_len))
1676 return -EFAULT;
1677 }
1678 return sys_vmsplice(fd, iov, nr_segs, flags);
1679 }
1680 #endif
1681
1682 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1683 int, fd_out, loff_t __user *, off_out,
1684 size_t, len, unsigned int, flags)
1685 {
1686 struct fd in, out;
1687 long error;
1688
1689 if (unlikely(!len))
1690 return 0;
1691
1692 error = -EBADF;
1693 in = fdget(fd_in);
1694 if (in.file) {
1695 if (in.file->f_mode & FMODE_READ) {
1696 out = fdget(fd_out);
1697 if (out.file) {
1698 if (out.file->f_mode & FMODE_WRITE)
1699 error = do_splice(in.file, off_in,
1700 out.file, off_out,
1701 len, flags);
1702 fdput(out);
1703 }
1704 }
1705 fdput(in);
1706 }
1707 return error;
1708 }
1709
1710 /*
1711 * Make sure there's data to read. Wait for input if we can, otherwise
1712 * return an appropriate error.
1713 */
1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1715 {
1716 int ret;
1717
1718 /*
1719 * Check ->nrbufs without the inode lock first. This function
1720 * is speculative anyways, so missing one is ok.
1721 */
1722 if (pipe->nrbufs)
1723 return 0;
1724
1725 ret = 0;
1726 pipe_lock(pipe);
1727
1728 while (!pipe->nrbufs) {
1729 if (signal_pending(current)) {
1730 ret = -ERESTARTSYS;
1731 break;
1732 }
1733 if (!pipe->writers)
1734 break;
1735 if (!pipe->waiting_writers) {
1736 if (flags & SPLICE_F_NONBLOCK) {
1737 ret = -EAGAIN;
1738 break;
1739 }
1740 }
1741 pipe_wait(pipe);
1742 }
1743
1744 pipe_unlock(pipe);
1745 return ret;
1746 }
1747
1748 /*
1749 * Make sure there's writeable room. Wait for room if we can, otherwise
1750 * return an appropriate error.
1751 */
1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1753 {
1754 int ret;
1755
1756 /*
1757 * Check ->nrbufs without the inode lock first. This function
1758 * is speculative anyways, so missing one is ok.
1759 */
1760 if (pipe->nrbufs < pipe->buffers)
1761 return 0;
1762
1763 ret = 0;
1764 pipe_lock(pipe);
1765
1766 while (pipe->nrbufs >= pipe->buffers) {
1767 if (!pipe->readers) {
1768 send_sig(SIGPIPE, current, 0);
1769 ret = -EPIPE;
1770 break;
1771 }
1772 if (flags & SPLICE_F_NONBLOCK) {
1773 ret = -EAGAIN;
1774 break;
1775 }
1776 if (signal_pending(current)) {
1777 ret = -ERESTARTSYS;
1778 break;
1779 }
1780 pipe->waiting_writers++;
1781 pipe_wait(pipe);
1782 pipe->waiting_writers--;
1783 }
1784
1785 pipe_unlock(pipe);
1786 return ret;
1787 }
1788
1789 /*
1790 * Splice contents of ipipe to opipe.
1791 */
1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793 struct pipe_inode_info *opipe,
1794 size_t len, unsigned int flags)
1795 {
1796 struct pipe_buffer *ibuf, *obuf;
1797 int ret = 0, nbuf;
1798 bool input_wakeup = false;
1799
1800
1801 retry:
1802 ret = ipipe_prep(ipipe, flags);
1803 if (ret)
1804 return ret;
1805
1806 ret = opipe_prep(opipe, flags);
1807 if (ret)
1808 return ret;
1809
1810 /*
1811 * Potential ABBA deadlock, work around it by ordering lock
1812 * grabbing by pipe info address. Otherwise two different processes
1813 * could deadlock (one doing tee from A -> B, the other from B -> A).
1814 */
1815 pipe_double_lock(ipipe, opipe);
1816
1817 do {
1818 if (!opipe->readers) {
1819 send_sig(SIGPIPE, current, 0);
1820 if (!ret)
1821 ret = -EPIPE;
1822 break;
1823 }
1824
1825 if (!ipipe->nrbufs && !ipipe->writers)
1826 break;
1827
1828 /*
1829 * Cannot make any progress, because either the input
1830 * pipe is empty or the output pipe is full.
1831 */
1832 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833 /* Already processed some buffers, break */
1834 if (ret)
1835 break;
1836
1837 if (flags & SPLICE_F_NONBLOCK) {
1838 ret = -EAGAIN;
1839 break;
1840 }
1841
1842 /*
1843 * We raced with another reader/writer and haven't
1844 * managed to process any buffers. A zero return
1845 * value means EOF, so retry instead.
1846 */
1847 pipe_unlock(ipipe);
1848 pipe_unlock(opipe);
1849 goto retry;
1850 }
1851
1852 ibuf = ipipe->bufs + ipipe->curbuf;
1853 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854 obuf = opipe->bufs + nbuf;
1855
1856 if (len >= ibuf->len) {
1857 /*
1858 * Simply move the whole buffer from ipipe to opipe
1859 */
1860 *obuf = *ibuf;
1861 ibuf->ops = NULL;
1862 opipe->nrbufs++;
1863 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1864 ipipe->nrbufs--;
1865 input_wakeup = true;
1866 } else {
1867 /*
1868 * Get a reference to this pipe buffer,
1869 * so we can copy the contents over.
1870 */
1871 ibuf->ops->get(ipipe, ibuf);
1872 *obuf = *ibuf;
1873
1874 /*
1875 * Don't inherit the gift flag, we need to
1876 * prevent multiple steals of this page.
1877 */
1878 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1879
1880 obuf->len = len;
1881 opipe->nrbufs++;
1882 ibuf->offset += obuf->len;
1883 ibuf->len -= obuf->len;
1884 }
1885 ret += obuf->len;
1886 len -= obuf->len;
1887 } while (len);
1888
1889 pipe_unlock(ipipe);
1890 pipe_unlock(opipe);
1891
1892 /*
1893 * If we put data in the output pipe, wakeup any potential readers.
1894 */
1895 if (ret > 0)
1896 wakeup_pipe_readers(opipe);
1897
1898 if (input_wakeup)
1899 wakeup_pipe_writers(ipipe);
1900
1901 return ret;
1902 }
1903
1904 /*
1905 * Link contents of ipipe to opipe.
1906 */
1907 static int link_pipe(struct pipe_inode_info *ipipe,
1908 struct pipe_inode_info *opipe,
1909 size_t len, unsigned int flags)
1910 {
1911 struct pipe_buffer *ibuf, *obuf;
1912 int ret = 0, i = 0, nbuf;
1913
1914 /*
1915 * Potential ABBA deadlock, work around it by ordering lock
1916 * grabbing by pipe info address. Otherwise two different processes
1917 * could deadlock (one doing tee from A -> B, the other from B -> A).
1918 */
1919 pipe_double_lock(ipipe, opipe);
1920
1921 do {
1922 if (!opipe->readers) {
1923 send_sig(SIGPIPE, current, 0);
1924 if (!ret)
1925 ret = -EPIPE;
1926 break;
1927 }
1928
1929 /*
1930 * If we have iterated all input buffers or ran out of
1931 * output room, break.
1932 */
1933 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1934 break;
1935
1936 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1937 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1938
1939 /*
1940 * Get a reference to this pipe buffer,
1941 * so we can copy the contents over.
1942 */
1943 ibuf->ops->get(ipipe, ibuf);
1944
1945 obuf = opipe->bufs + nbuf;
1946 *obuf = *ibuf;
1947
1948 /*
1949 * Don't inherit the gift flag, we need to
1950 * prevent multiple steals of this page.
1951 */
1952 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1953
1954 if (obuf->len > len)
1955 obuf->len = len;
1956
1957 opipe->nrbufs++;
1958 ret += obuf->len;
1959 len -= obuf->len;
1960 i++;
1961 } while (len);
1962
1963 /*
1964 * return EAGAIN if we have the potential of some data in the
1965 * future, otherwise just return 0
1966 */
1967 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1968 ret = -EAGAIN;
1969
1970 pipe_unlock(ipipe);
1971 pipe_unlock(opipe);
1972
1973 /*
1974 * If we put data in the output pipe, wakeup any potential readers.
1975 */
1976 if (ret > 0)
1977 wakeup_pipe_readers(opipe);
1978
1979 return ret;
1980 }
1981
1982 /*
1983 * This is a tee(1) implementation that works on pipes. It doesn't copy
1984 * any data, it simply references the 'in' pages on the 'out' pipe.
1985 * The 'flags' used are the SPLICE_F_* variants, currently the only
1986 * applicable one is SPLICE_F_NONBLOCK.
1987 */
1988 static long do_tee(struct file *in, struct file *out, size_t len,
1989 unsigned int flags)
1990 {
1991 struct pipe_inode_info *ipipe = get_pipe_info(in);
1992 struct pipe_inode_info *opipe = get_pipe_info(out);
1993 int ret = -EINVAL;
1994
1995 /*
1996 * Duplicate the contents of ipipe to opipe without actually
1997 * copying the data.
1998 */
1999 if (ipipe && opipe && ipipe != opipe) {
2000 /*
2001 * Keep going, unless we encounter an error. The ipipe/opipe
2002 * ordering doesn't really matter.
2003 */
2004 ret = ipipe_prep(ipipe, flags);
2005 if (!ret) {
2006 ret = opipe_prep(opipe, flags);
2007 if (!ret)
2008 ret = link_pipe(ipipe, opipe, len, flags);
2009 }
2010 }
2011
2012 return ret;
2013 }
2014
2015 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2016 {
2017 struct fd in;
2018 int error;
2019
2020 if (unlikely(!len))
2021 return 0;
2022
2023 error = -EBADF;
2024 in = fdget(fdin);
2025 if (in.file) {
2026 if (in.file->f_mode & FMODE_READ) {
2027 struct fd out = fdget(fdout);
2028 if (out.file) {
2029 if (out.file->f_mode & FMODE_WRITE)
2030 error = do_tee(in.file, out.file,
2031 len, flags);
2032 fdput(out);
2033 }
2034 }
2035 fdput(in);
2036 }
2037
2038 return error;
2039 }