]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/splice.c
Merge tag 'rproc-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[mirror_ubuntu-jammy-kernel.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37
38 #include "internal.h"
39
40 /*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48 {
49 struct page *page = buf->page;
50 struct address_space *mapping;
51
52 lock_page(page);
53
54 mapping = page_mapping(page);
55 if (mapping) {
56 WARN_ON(!PageUptodate(page));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this page, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * page, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 wait_on_page_writeback(page);
67
68 if (page_has_private(page) &&
69 !try_to_release_page(page, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, page)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove page from current
84 * address space, unlock and return failure.
85 */
86 out_unlock:
87 unlock_page(page);
88 return false;
89 }
90
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93 {
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97
98 /*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104 {
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135 error:
136 unlock_page(page);
137 return err;
138 }
139
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145 };
146
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149 {
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155 }
156
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222 out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251
252 /*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274 }
275
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283 }
284
285 /**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301 {
302 struct iov_iter to;
303 struct kiocb kiocb;
304 unsigned int i_head;
305 int ret;
306
307 iov_iter_pipe(&to, READ, pipe, len);
308 i_head = to.head;
309 init_sync_kiocb(&kiocb, in);
310 kiocb.ki_pos = *ppos;
311 ret = call_read_iter(in, &kiocb, &to);
312 if (ret > 0) {
313 *ppos = kiocb.ki_pos;
314 file_accessed(in);
315 } else if (ret < 0) {
316 to.head = i_head;
317 to.iov_offset = 0;
318 iov_iter_advance(&to, 0); /* to free what was emitted */
319 /*
320 * callers of ->splice_read() expect -EAGAIN on
321 * "can't put anything in there", rather than -EFAULT.
322 */
323 if (ret == -EFAULT)
324 ret = -EAGAIN;
325 }
326
327 return ret;
328 }
329 EXPORT_SYMBOL(generic_file_splice_read);
330
331 const struct pipe_buf_operations default_pipe_buf_ops = {
332 .release = generic_pipe_buf_release,
333 .try_steal = generic_pipe_buf_try_steal,
334 .get = generic_pipe_buf_get,
335 };
336
337 /* Pipe buffer operations for a socket and similar. */
338 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
339 .release = generic_pipe_buf_release,
340 .get = generic_pipe_buf_get,
341 };
342 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
343
344 /*
345 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
346 * using sendpage(). Return the number of bytes sent.
347 */
348 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
349 struct pipe_buffer *buf, struct splice_desc *sd)
350 {
351 struct file *file = sd->u.file;
352 loff_t pos = sd->pos;
353 int more;
354
355 if (!likely(file->f_op->sendpage))
356 return -EINVAL;
357
358 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
359
360 if (sd->len < sd->total_len &&
361 pipe_occupancy(pipe->head, pipe->tail) > 1)
362 more |= MSG_SENDPAGE_NOTLAST;
363
364 return file->f_op->sendpage(file, buf->page, buf->offset,
365 sd->len, &pos, more);
366 }
367
368 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
369 {
370 smp_mb();
371 if (waitqueue_active(&pipe->wr_wait))
372 wake_up_interruptible(&pipe->wr_wait);
373 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374 }
375
376 /**
377 * splice_from_pipe_feed - feed available data from a pipe to a file
378 * @pipe: pipe to splice from
379 * @sd: information to @actor
380 * @actor: handler that splices the data
381 *
382 * Description:
383 * This function loops over the pipe and calls @actor to do the
384 * actual moving of a single struct pipe_buffer to the desired
385 * destination. It returns when there's no more buffers left in
386 * the pipe or if the requested number of bytes (@sd->total_len)
387 * have been copied. It returns a positive number (one) if the
388 * pipe needs to be filled with more data, zero if the required
389 * number of bytes have been copied and -errno on error.
390 *
391 * This, together with splice_from_pipe_{begin,end,next}, may be
392 * used to implement the functionality of __splice_from_pipe() when
393 * locking is required around copying the pipe buffers to the
394 * destination.
395 */
396 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
397 splice_actor *actor)
398 {
399 unsigned int head = pipe->head;
400 unsigned int tail = pipe->tail;
401 unsigned int mask = pipe->ring_size - 1;
402 int ret;
403
404 while (!pipe_empty(head, tail)) {
405 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
406
407 sd->len = buf->len;
408 if (sd->len > sd->total_len)
409 sd->len = sd->total_len;
410
411 ret = pipe_buf_confirm(pipe, buf);
412 if (unlikely(ret)) {
413 if (ret == -ENODATA)
414 ret = 0;
415 return ret;
416 }
417
418 ret = actor(pipe, buf, sd);
419 if (ret <= 0)
420 return ret;
421
422 buf->offset += ret;
423 buf->len -= ret;
424
425 sd->num_spliced += ret;
426 sd->len -= ret;
427 sd->pos += ret;
428 sd->total_len -= ret;
429
430 if (!buf->len) {
431 pipe_buf_release(pipe, buf);
432 tail++;
433 pipe->tail = tail;
434 if (pipe->files)
435 sd->need_wakeup = true;
436 }
437
438 if (!sd->total_len)
439 return 0;
440 }
441
442 return 1;
443 }
444
445 /* We know we have a pipe buffer, but maybe it's empty? */
446 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
447 {
448 unsigned int tail = pipe->tail;
449 unsigned int mask = pipe->ring_size - 1;
450 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
451
452 if (unlikely(!buf->len)) {
453 pipe_buf_release(pipe, buf);
454 pipe->tail = tail+1;
455 return true;
456 }
457
458 return false;
459 }
460
461 /**
462 * splice_from_pipe_next - wait for some data to splice from
463 * @pipe: pipe to splice from
464 * @sd: information about the splice operation
465 *
466 * Description:
467 * This function will wait for some data and return a positive
468 * value (one) if pipe buffers are available. It will return zero
469 * or -errno if no more data needs to be spliced.
470 */
471 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
472 {
473 /*
474 * Check for signal early to make process killable when there are
475 * always buffers available
476 */
477 if (signal_pending(current))
478 return -ERESTARTSYS;
479
480 repeat:
481 while (pipe_empty(pipe->head, pipe->tail)) {
482 if (!pipe->writers)
483 return 0;
484
485 if (sd->num_spliced)
486 return 0;
487
488 if (sd->flags & SPLICE_F_NONBLOCK)
489 return -EAGAIN;
490
491 if (signal_pending(current))
492 return -ERESTARTSYS;
493
494 if (sd->need_wakeup) {
495 wakeup_pipe_writers(pipe);
496 sd->need_wakeup = false;
497 }
498
499 pipe_wait_readable(pipe);
500 }
501
502 if (eat_empty_buffer(pipe))
503 goto repeat;
504
505 return 1;
506 }
507
508 /**
509 * splice_from_pipe_begin - start splicing from pipe
510 * @sd: information about the splice operation
511 *
512 * Description:
513 * This function should be called before a loop containing
514 * splice_from_pipe_next() and splice_from_pipe_feed() to
515 * initialize the necessary fields of @sd.
516 */
517 static void splice_from_pipe_begin(struct splice_desc *sd)
518 {
519 sd->num_spliced = 0;
520 sd->need_wakeup = false;
521 }
522
523 /**
524 * splice_from_pipe_end - finish splicing from pipe
525 * @pipe: pipe to splice from
526 * @sd: information about the splice operation
527 *
528 * Description:
529 * This function will wake up pipe writers if necessary. It should
530 * be called after a loop containing splice_from_pipe_next() and
531 * splice_from_pipe_feed().
532 */
533 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
534 {
535 if (sd->need_wakeup)
536 wakeup_pipe_writers(pipe);
537 }
538
539 /**
540 * __splice_from_pipe - splice data from a pipe to given actor
541 * @pipe: pipe to splice from
542 * @sd: information to @actor
543 * @actor: handler that splices the data
544 *
545 * Description:
546 * This function does little more than loop over the pipe and call
547 * @actor to do the actual moving of a single struct pipe_buffer to
548 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
549 * pipe_to_user.
550 *
551 */
552 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
553 splice_actor *actor)
554 {
555 int ret;
556
557 splice_from_pipe_begin(sd);
558 do {
559 cond_resched();
560 ret = splice_from_pipe_next(pipe, sd);
561 if (ret > 0)
562 ret = splice_from_pipe_feed(pipe, sd, actor);
563 } while (ret > 0);
564 splice_from_pipe_end(pipe, sd);
565
566 return sd->num_spliced ? sd->num_spliced : ret;
567 }
568 EXPORT_SYMBOL(__splice_from_pipe);
569
570 /**
571 * splice_from_pipe - splice data from a pipe to a file
572 * @pipe: pipe to splice from
573 * @out: file to splice to
574 * @ppos: position in @out
575 * @len: how many bytes to splice
576 * @flags: splice modifier flags
577 * @actor: handler that splices the data
578 *
579 * Description:
580 * See __splice_from_pipe. This function locks the pipe inode,
581 * otherwise it's identical to __splice_from_pipe().
582 *
583 */
584 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
585 loff_t *ppos, size_t len, unsigned int flags,
586 splice_actor *actor)
587 {
588 ssize_t ret;
589 struct splice_desc sd = {
590 .total_len = len,
591 .flags = flags,
592 .pos = *ppos,
593 .u.file = out,
594 };
595
596 pipe_lock(pipe);
597 ret = __splice_from_pipe(pipe, &sd, actor);
598 pipe_unlock(pipe);
599
600 return ret;
601 }
602
603 /**
604 * iter_file_splice_write - splice data from a pipe to a file
605 * @pipe: pipe info
606 * @out: file to write to
607 * @ppos: position in @out
608 * @len: number of bytes to splice
609 * @flags: splice modifier flags
610 *
611 * Description:
612 * Will either move or copy pages (determined by @flags options) from
613 * the given pipe inode to the given file.
614 * This one is ->write_iter-based.
615 *
616 */
617 ssize_t
618 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
619 loff_t *ppos, size_t len, unsigned int flags)
620 {
621 struct splice_desc sd = {
622 .total_len = len,
623 .flags = flags,
624 .pos = *ppos,
625 .u.file = out,
626 };
627 int nbufs = pipe->max_usage;
628 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
629 GFP_KERNEL);
630 ssize_t ret;
631
632 if (unlikely(!array))
633 return -ENOMEM;
634
635 pipe_lock(pipe);
636
637 splice_from_pipe_begin(&sd);
638 while (sd.total_len) {
639 struct iov_iter from;
640 unsigned int head, tail, mask;
641 size_t left;
642 int n;
643
644 ret = splice_from_pipe_next(pipe, &sd);
645 if (ret <= 0)
646 break;
647
648 if (unlikely(nbufs < pipe->max_usage)) {
649 kfree(array);
650 nbufs = pipe->max_usage;
651 array = kcalloc(nbufs, sizeof(struct bio_vec),
652 GFP_KERNEL);
653 if (!array) {
654 ret = -ENOMEM;
655 break;
656 }
657 }
658
659 head = pipe->head;
660 tail = pipe->tail;
661 mask = pipe->ring_size - 1;
662
663 /* build the vector */
664 left = sd.total_len;
665 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
666 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
667 size_t this_len = buf->len;
668
669 /* zero-length bvecs are not supported, skip them */
670 if (!this_len)
671 continue;
672 this_len = min(this_len, left);
673
674 ret = pipe_buf_confirm(pipe, buf);
675 if (unlikely(ret)) {
676 if (ret == -ENODATA)
677 ret = 0;
678 goto done;
679 }
680
681 array[n].bv_page = buf->page;
682 array[n].bv_len = this_len;
683 array[n].bv_offset = buf->offset;
684 left -= this_len;
685 n++;
686 }
687
688 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
689 ret = vfs_iter_write(out, &from, &sd.pos, 0);
690 if (ret <= 0)
691 break;
692
693 sd.num_spliced += ret;
694 sd.total_len -= ret;
695 *ppos = sd.pos;
696
697 /* dismiss the fully eaten buffers, adjust the partial one */
698 tail = pipe->tail;
699 while (ret) {
700 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
701 if (ret >= buf->len) {
702 ret -= buf->len;
703 buf->len = 0;
704 pipe_buf_release(pipe, buf);
705 tail++;
706 pipe->tail = tail;
707 if (pipe->files)
708 sd.need_wakeup = true;
709 } else {
710 buf->offset += ret;
711 buf->len -= ret;
712 ret = 0;
713 }
714 }
715 }
716 done:
717 kfree(array);
718 splice_from_pipe_end(pipe, &sd);
719
720 pipe_unlock(pipe);
721
722 if (sd.num_spliced)
723 ret = sd.num_spliced;
724
725 return ret;
726 }
727
728 EXPORT_SYMBOL(iter_file_splice_write);
729
730 /**
731 * generic_splice_sendpage - splice data from a pipe to a socket
732 * @pipe: pipe to splice from
733 * @out: socket to write to
734 * @ppos: position in @out
735 * @len: number of bytes to splice
736 * @flags: splice modifier flags
737 *
738 * Description:
739 * Will send @len bytes from the pipe to a network socket. No data copying
740 * is involved.
741 *
742 */
743 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
744 loff_t *ppos, size_t len, unsigned int flags)
745 {
746 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
747 }
748
749 EXPORT_SYMBOL(generic_splice_sendpage);
750
751 static int warn_unsupported(struct file *file, const char *op)
752 {
753 pr_debug_ratelimited(
754 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
755 op, file, current->pid, current->comm);
756 return -EINVAL;
757 }
758
759 /*
760 * Attempt to initiate a splice from pipe to file.
761 */
762 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
763 loff_t *ppos, size_t len, unsigned int flags)
764 {
765 if (unlikely(!out->f_op->splice_write))
766 return warn_unsupported(out, "write");
767 return out->f_op->splice_write(pipe, out, ppos, len, flags);
768 }
769
770 /*
771 * Attempt to initiate a splice from a file to a pipe.
772 */
773 static long do_splice_to(struct file *in, loff_t *ppos,
774 struct pipe_inode_info *pipe, size_t len,
775 unsigned int flags)
776 {
777 unsigned int p_space;
778 int ret;
779
780 if (unlikely(!(in->f_mode & FMODE_READ)))
781 return -EBADF;
782
783 /* Don't try to read more the pipe has space for. */
784 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
785 len = min_t(size_t, len, p_space << PAGE_SHIFT);
786
787 ret = rw_verify_area(READ, in, ppos, len);
788 if (unlikely(ret < 0))
789 return ret;
790
791 if (unlikely(len > MAX_RW_COUNT))
792 len = MAX_RW_COUNT;
793
794 if (unlikely(!in->f_op->splice_read))
795 return warn_unsupported(in, "read");
796 return in->f_op->splice_read(in, ppos, pipe, len, flags);
797 }
798
799 /**
800 * splice_direct_to_actor - splices data directly between two non-pipes
801 * @in: file to splice from
802 * @sd: actor information on where to splice to
803 * @actor: handles the data splicing
804 *
805 * Description:
806 * This is a special case helper to splice directly between two
807 * points, without requiring an explicit pipe. Internally an allocated
808 * pipe is cached in the process, and reused during the lifetime of
809 * that process.
810 *
811 */
812 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
813 splice_direct_actor *actor)
814 {
815 struct pipe_inode_info *pipe;
816 long ret, bytes;
817 umode_t i_mode;
818 size_t len;
819 int i, flags, more;
820
821 /*
822 * We require the input being a regular file, as we don't want to
823 * randomly drop data for eg socket -> socket splicing. Use the
824 * piped splicing for that!
825 */
826 i_mode = file_inode(in)->i_mode;
827 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
828 return -EINVAL;
829
830 /*
831 * neither in nor out is a pipe, setup an internal pipe attached to
832 * 'out' and transfer the wanted data from 'in' to 'out' through that
833 */
834 pipe = current->splice_pipe;
835 if (unlikely(!pipe)) {
836 pipe = alloc_pipe_info();
837 if (!pipe)
838 return -ENOMEM;
839
840 /*
841 * We don't have an immediate reader, but we'll read the stuff
842 * out of the pipe right after the splice_to_pipe(). So set
843 * PIPE_READERS appropriately.
844 */
845 pipe->readers = 1;
846
847 current->splice_pipe = pipe;
848 }
849
850 /*
851 * Do the splice.
852 */
853 ret = 0;
854 bytes = 0;
855 len = sd->total_len;
856 flags = sd->flags;
857
858 /*
859 * Don't block on output, we have to drain the direct pipe.
860 */
861 sd->flags &= ~SPLICE_F_NONBLOCK;
862 more = sd->flags & SPLICE_F_MORE;
863
864 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
865
866 while (len) {
867 size_t read_len;
868 loff_t pos = sd->pos, prev_pos = pos;
869
870 ret = do_splice_to(in, &pos, pipe, len, flags);
871 if (unlikely(ret <= 0))
872 goto out_release;
873
874 read_len = ret;
875 sd->total_len = read_len;
876
877 /*
878 * If more data is pending, set SPLICE_F_MORE
879 * If this is the last data and SPLICE_F_MORE was not set
880 * initially, clears it.
881 */
882 if (read_len < len)
883 sd->flags |= SPLICE_F_MORE;
884 else if (!more)
885 sd->flags &= ~SPLICE_F_MORE;
886 /*
887 * NOTE: nonblocking mode only applies to the input. We
888 * must not do the output in nonblocking mode as then we
889 * could get stuck data in the internal pipe:
890 */
891 ret = actor(pipe, sd);
892 if (unlikely(ret <= 0)) {
893 sd->pos = prev_pos;
894 goto out_release;
895 }
896
897 bytes += ret;
898 len -= ret;
899 sd->pos = pos;
900
901 if (ret < read_len) {
902 sd->pos = prev_pos + ret;
903 goto out_release;
904 }
905 }
906
907 done:
908 pipe->tail = pipe->head = 0;
909 file_accessed(in);
910 return bytes;
911
912 out_release:
913 /*
914 * If we did an incomplete transfer we must release
915 * the pipe buffers in question:
916 */
917 for (i = 0; i < pipe->ring_size; i++) {
918 struct pipe_buffer *buf = &pipe->bufs[i];
919
920 if (buf->ops)
921 pipe_buf_release(pipe, buf);
922 }
923
924 if (!bytes)
925 bytes = ret;
926
927 goto done;
928 }
929 EXPORT_SYMBOL(splice_direct_to_actor);
930
931 static int direct_splice_actor(struct pipe_inode_info *pipe,
932 struct splice_desc *sd)
933 {
934 struct file *file = sd->u.file;
935
936 return do_splice_from(pipe, file, sd->opos, sd->total_len,
937 sd->flags);
938 }
939
940 /**
941 * do_splice_direct - splices data directly between two files
942 * @in: file to splice from
943 * @ppos: input file offset
944 * @out: file to splice to
945 * @opos: output file offset
946 * @len: number of bytes to splice
947 * @flags: splice modifier flags
948 *
949 * Description:
950 * For use by do_sendfile(). splice can easily emulate sendfile, but
951 * doing it in the application would incur an extra system call
952 * (splice in + splice out, as compared to just sendfile()). So this helper
953 * can splice directly through a process-private pipe.
954 *
955 */
956 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
957 loff_t *opos, size_t len, unsigned int flags)
958 {
959 struct splice_desc sd = {
960 .len = len,
961 .total_len = len,
962 .flags = flags,
963 .pos = *ppos,
964 .u.file = out,
965 .opos = opos,
966 };
967 long ret;
968
969 if (unlikely(!(out->f_mode & FMODE_WRITE)))
970 return -EBADF;
971
972 if (unlikely(out->f_flags & O_APPEND))
973 return -EINVAL;
974
975 ret = rw_verify_area(WRITE, out, opos, len);
976 if (unlikely(ret < 0))
977 return ret;
978
979 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
980 if (ret > 0)
981 *ppos = sd.pos;
982
983 return ret;
984 }
985 EXPORT_SYMBOL(do_splice_direct);
986
987 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
988 {
989 for (;;) {
990 if (unlikely(!pipe->readers)) {
991 send_sig(SIGPIPE, current, 0);
992 return -EPIPE;
993 }
994 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
995 return 0;
996 if (flags & SPLICE_F_NONBLOCK)
997 return -EAGAIN;
998 if (signal_pending(current))
999 return -ERESTARTSYS;
1000 pipe_wait_writable(pipe);
1001 }
1002 }
1003
1004 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1005 struct pipe_inode_info *opipe,
1006 size_t len, unsigned int flags);
1007
1008 long splice_file_to_pipe(struct file *in,
1009 struct pipe_inode_info *opipe,
1010 loff_t *offset,
1011 size_t len, unsigned int flags)
1012 {
1013 long ret;
1014
1015 pipe_lock(opipe);
1016 ret = wait_for_space(opipe, flags);
1017 if (!ret)
1018 ret = do_splice_to(in, offset, opipe, len, flags);
1019 pipe_unlock(opipe);
1020 if (ret > 0)
1021 wakeup_pipe_readers(opipe);
1022 return ret;
1023 }
1024
1025 /*
1026 * Determine where to splice to/from.
1027 */
1028 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1029 loff_t *off_out, size_t len, unsigned int flags)
1030 {
1031 struct pipe_inode_info *ipipe;
1032 struct pipe_inode_info *opipe;
1033 loff_t offset;
1034 long ret;
1035
1036 if (unlikely(!(in->f_mode & FMODE_READ) ||
1037 !(out->f_mode & FMODE_WRITE)))
1038 return -EBADF;
1039
1040 ipipe = get_pipe_info(in, true);
1041 opipe = get_pipe_info(out, true);
1042
1043 if (ipipe && opipe) {
1044 if (off_in || off_out)
1045 return -ESPIPE;
1046
1047 /* Splicing to self would be fun, but... */
1048 if (ipipe == opipe)
1049 return -EINVAL;
1050
1051 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1052 flags |= SPLICE_F_NONBLOCK;
1053
1054 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1055 }
1056
1057 if (ipipe) {
1058 if (off_in)
1059 return -ESPIPE;
1060 if (off_out) {
1061 if (!(out->f_mode & FMODE_PWRITE))
1062 return -EINVAL;
1063 offset = *off_out;
1064 } else {
1065 offset = out->f_pos;
1066 }
1067
1068 if (unlikely(out->f_flags & O_APPEND))
1069 return -EINVAL;
1070
1071 ret = rw_verify_area(WRITE, out, &offset, len);
1072 if (unlikely(ret < 0))
1073 return ret;
1074
1075 if (in->f_flags & O_NONBLOCK)
1076 flags |= SPLICE_F_NONBLOCK;
1077
1078 file_start_write(out);
1079 ret = do_splice_from(ipipe, out, &offset, len, flags);
1080 file_end_write(out);
1081
1082 if (!off_out)
1083 out->f_pos = offset;
1084 else
1085 *off_out = offset;
1086
1087 return ret;
1088 }
1089
1090 if (opipe) {
1091 if (off_out)
1092 return -ESPIPE;
1093 if (off_in) {
1094 if (!(in->f_mode & FMODE_PREAD))
1095 return -EINVAL;
1096 offset = *off_in;
1097 } else {
1098 offset = in->f_pos;
1099 }
1100
1101 if (out->f_flags & O_NONBLOCK)
1102 flags |= SPLICE_F_NONBLOCK;
1103
1104 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1105 if (!off_in)
1106 in->f_pos = offset;
1107 else
1108 *off_in = offset;
1109
1110 return ret;
1111 }
1112
1113 return -EINVAL;
1114 }
1115
1116 static long __do_splice(struct file *in, loff_t __user *off_in,
1117 struct file *out, loff_t __user *off_out,
1118 size_t len, unsigned int flags)
1119 {
1120 struct pipe_inode_info *ipipe;
1121 struct pipe_inode_info *opipe;
1122 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1123 long ret;
1124
1125 ipipe = get_pipe_info(in, true);
1126 opipe = get_pipe_info(out, true);
1127
1128 if (ipipe && off_in)
1129 return -ESPIPE;
1130 if (opipe && off_out)
1131 return -ESPIPE;
1132
1133 if (off_out) {
1134 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1135 return -EFAULT;
1136 __off_out = &offset;
1137 }
1138 if (off_in) {
1139 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1140 return -EFAULT;
1141 __off_in = &offset;
1142 }
1143
1144 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1145 if (ret < 0)
1146 return ret;
1147
1148 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1149 return -EFAULT;
1150 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1151 return -EFAULT;
1152
1153 return ret;
1154 }
1155
1156 static int iter_to_pipe(struct iov_iter *from,
1157 struct pipe_inode_info *pipe,
1158 unsigned flags)
1159 {
1160 struct pipe_buffer buf = {
1161 .ops = &user_page_pipe_buf_ops,
1162 .flags = flags
1163 };
1164 size_t total = 0;
1165 int ret = 0;
1166 bool failed = false;
1167
1168 while (iov_iter_count(from) && !failed) {
1169 struct page *pages[16];
1170 ssize_t copied;
1171 size_t start;
1172 int n;
1173
1174 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1175 if (copied <= 0) {
1176 ret = copied;
1177 break;
1178 }
1179
1180 for (n = 0; copied; n++, start = 0) {
1181 int size = min_t(int, copied, PAGE_SIZE - start);
1182 if (!failed) {
1183 buf.page = pages[n];
1184 buf.offset = start;
1185 buf.len = size;
1186 ret = add_to_pipe(pipe, &buf);
1187 if (unlikely(ret < 0)) {
1188 failed = true;
1189 } else {
1190 iov_iter_advance(from, ret);
1191 total += ret;
1192 }
1193 } else {
1194 put_page(pages[n]);
1195 }
1196 copied -= size;
1197 }
1198 }
1199 return total ? total : ret;
1200 }
1201
1202 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1203 struct splice_desc *sd)
1204 {
1205 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1206 return n == sd->len ? n : -EFAULT;
1207 }
1208
1209 /*
1210 * For lack of a better implementation, implement vmsplice() to userspace
1211 * as a simple copy of the pipes pages to the user iov.
1212 */
1213 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1214 unsigned int flags)
1215 {
1216 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1217 struct splice_desc sd = {
1218 .total_len = iov_iter_count(iter),
1219 .flags = flags,
1220 .u.data = iter
1221 };
1222 long ret = 0;
1223
1224 if (!pipe)
1225 return -EBADF;
1226
1227 if (sd.total_len) {
1228 pipe_lock(pipe);
1229 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1230 pipe_unlock(pipe);
1231 }
1232
1233 return ret;
1234 }
1235
1236 /*
1237 * vmsplice splices a user address range into a pipe. It can be thought of
1238 * as splice-from-memory, where the regular splice is splice-from-file (or
1239 * to file). In both cases the output is a pipe, naturally.
1240 */
1241 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1242 unsigned int flags)
1243 {
1244 struct pipe_inode_info *pipe;
1245 long ret = 0;
1246 unsigned buf_flag = 0;
1247
1248 if (flags & SPLICE_F_GIFT)
1249 buf_flag = PIPE_BUF_FLAG_GIFT;
1250
1251 pipe = get_pipe_info(file, true);
1252 if (!pipe)
1253 return -EBADF;
1254
1255 pipe_lock(pipe);
1256 ret = wait_for_space(pipe, flags);
1257 if (!ret)
1258 ret = iter_to_pipe(iter, pipe, buf_flag);
1259 pipe_unlock(pipe);
1260 if (ret > 0)
1261 wakeup_pipe_readers(pipe);
1262 return ret;
1263 }
1264
1265 static int vmsplice_type(struct fd f, int *type)
1266 {
1267 if (!f.file)
1268 return -EBADF;
1269 if (f.file->f_mode & FMODE_WRITE) {
1270 *type = WRITE;
1271 } else if (f.file->f_mode & FMODE_READ) {
1272 *type = READ;
1273 } else {
1274 fdput(f);
1275 return -EBADF;
1276 }
1277 return 0;
1278 }
1279
1280 /*
1281 * Note that vmsplice only really supports true splicing _from_ user memory
1282 * to a pipe, not the other way around. Splicing from user memory is a simple
1283 * operation that can be supported without any funky alignment restrictions
1284 * or nasty vm tricks. We simply map in the user memory and fill them into
1285 * a pipe. The reverse isn't quite as easy, though. There are two possible
1286 * solutions for that:
1287 *
1288 * - memcpy() the data internally, at which point we might as well just
1289 * do a regular read() on the buffer anyway.
1290 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1291 * has restriction limitations on both ends of the pipe).
1292 *
1293 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1294 *
1295 */
1296 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1297 unsigned long, nr_segs, unsigned int, flags)
1298 {
1299 struct iovec iovstack[UIO_FASTIOV];
1300 struct iovec *iov = iovstack;
1301 struct iov_iter iter;
1302 ssize_t error;
1303 struct fd f;
1304 int type;
1305
1306 if (unlikely(flags & ~SPLICE_F_ALL))
1307 return -EINVAL;
1308
1309 f = fdget(fd);
1310 error = vmsplice_type(f, &type);
1311 if (error)
1312 return error;
1313
1314 error = import_iovec(type, uiov, nr_segs,
1315 ARRAY_SIZE(iovstack), &iov, &iter);
1316 if (error < 0)
1317 goto out_fdput;
1318
1319 if (!iov_iter_count(&iter))
1320 error = 0;
1321 else if (iov_iter_rw(&iter) == WRITE)
1322 error = vmsplice_to_pipe(f.file, &iter, flags);
1323 else
1324 error = vmsplice_to_user(f.file, &iter, flags);
1325
1326 kfree(iov);
1327 out_fdput:
1328 fdput(f);
1329 return error;
1330 }
1331
1332 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1333 int, fd_out, loff_t __user *, off_out,
1334 size_t, len, unsigned int, flags)
1335 {
1336 struct fd in, out;
1337 long error;
1338
1339 if (unlikely(!len))
1340 return 0;
1341
1342 if (unlikely(flags & ~SPLICE_F_ALL))
1343 return -EINVAL;
1344
1345 error = -EBADF;
1346 in = fdget(fd_in);
1347 if (in.file) {
1348 out = fdget(fd_out);
1349 if (out.file) {
1350 error = __do_splice(in.file, off_in, out.file, off_out,
1351 len, flags);
1352 fdput(out);
1353 }
1354 fdput(in);
1355 }
1356 return error;
1357 }
1358
1359 /*
1360 * Make sure there's data to read. Wait for input if we can, otherwise
1361 * return an appropriate error.
1362 */
1363 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1364 {
1365 int ret;
1366
1367 /*
1368 * Check the pipe occupancy without the inode lock first. This function
1369 * is speculative anyways, so missing one is ok.
1370 */
1371 if (!pipe_empty(pipe->head, pipe->tail))
1372 return 0;
1373
1374 ret = 0;
1375 pipe_lock(pipe);
1376
1377 while (pipe_empty(pipe->head, pipe->tail)) {
1378 if (signal_pending(current)) {
1379 ret = -ERESTARTSYS;
1380 break;
1381 }
1382 if (!pipe->writers)
1383 break;
1384 if (flags & SPLICE_F_NONBLOCK) {
1385 ret = -EAGAIN;
1386 break;
1387 }
1388 pipe_wait_readable(pipe);
1389 }
1390
1391 pipe_unlock(pipe);
1392 return ret;
1393 }
1394
1395 /*
1396 * Make sure there's writeable room. Wait for room if we can, otherwise
1397 * return an appropriate error.
1398 */
1399 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1400 {
1401 int ret;
1402
1403 /*
1404 * Check pipe occupancy without the inode lock first. This function
1405 * is speculative anyways, so missing one is ok.
1406 */
1407 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1408 return 0;
1409
1410 ret = 0;
1411 pipe_lock(pipe);
1412
1413 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1414 if (!pipe->readers) {
1415 send_sig(SIGPIPE, current, 0);
1416 ret = -EPIPE;
1417 break;
1418 }
1419 if (flags & SPLICE_F_NONBLOCK) {
1420 ret = -EAGAIN;
1421 break;
1422 }
1423 if (signal_pending(current)) {
1424 ret = -ERESTARTSYS;
1425 break;
1426 }
1427 pipe_wait_writable(pipe);
1428 }
1429
1430 pipe_unlock(pipe);
1431 return ret;
1432 }
1433
1434 /*
1435 * Splice contents of ipipe to opipe.
1436 */
1437 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1438 struct pipe_inode_info *opipe,
1439 size_t len, unsigned int flags)
1440 {
1441 struct pipe_buffer *ibuf, *obuf;
1442 unsigned int i_head, o_head;
1443 unsigned int i_tail, o_tail;
1444 unsigned int i_mask, o_mask;
1445 int ret = 0;
1446 bool input_wakeup = false;
1447
1448
1449 retry:
1450 ret = ipipe_prep(ipipe, flags);
1451 if (ret)
1452 return ret;
1453
1454 ret = opipe_prep(opipe, flags);
1455 if (ret)
1456 return ret;
1457
1458 /*
1459 * Potential ABBA deadlock, work around it by ordering lock
1460 * grabbing by pipe info address. Otherwise two different processes
1461 * could deadlock (one doing tee from A -> B, the other from B -> A).
1462 */
1463 pipe_double_lock(ipipe, opipe);
1464
1465 i_tail = ipipe->tail;
1466 i_mask = ipipe->ring_size - 1;
1467 o_head = opipe->head;
1468 o_mask = opipe->ring_size - 1;
1469
1470 do {
1471 size_t o_len;
1472
1473 if (!opipe->readers) {
1474 send_sig(SIGPIPE, current, 0);
1475 if (!ret)
1476 ret = -EPIPE;
1477 break;
1478 }
1479
1480 i_head = ipipe->head;
1481 o_tail = opipe->tail;
1482
1483 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1484 break;
1485
1486 /*
1487 * Cannot make any progress, because either the input
1488 * pipe is empty or the output pipe is full.
1489 */
1490 if (pipe_empty(i_head, i_tail) ||
1491 pipe_full(o_head, o_tail, opipe->max_usage)) {
1492 /* Already processed some buffers, break */
1493 if (ret)
1494 break;
1495
1496 if (flags & SPLICE_F_NONBLOCK) {
1497 ret = -EAGAIN;
1498 break;
1499 }
1500
1501 /*
1502 * We raced with another reader/writer and haven't
1503 * managed to process any buffers. A zero return
1504 * value means EOF, so retry instead.
1505 */
1506 pipe_unlock(ipipe);
1507 pipe_unlock(opipe);
1508 goto retry;
1509 }
1510
1511 ibuf = &ipipe->bufs[i_tail & i_mask];
1512 obuf = &opipe->bufs[o_head & o_mask];
1513
1514 if (len >= ibuf->len) {
1515 /*
1516 * Simply move the whole buffer from ipipe to opipe
1517 */
1518 *obuf = *ibuf;
1519 ibuf->ops = NULL;
1520 i_tail++;
1521 ipipe->tail = i_tail;
1522 input_wakeup = true;
1523 o_len = obuf->len;
1524 o_head++;
1525 opipe->head = o_head;
1526 } else {
1527 /*
1528 * Get a reference to this pipe buffer,
1529 * so we can copy the contents over.
1530 */
1531 if (!pipe_buf_get(ipipe, ibuf)) {
1532 if (ret == 0)
1533 ret = -EFAULT;
1534 break;
1535 }
1536 *obuf = *ibuf;
1537
1538 /*
1539 * Don't inherit the gift and merge flags, we need to
1540 * prevent multiple steals of this page.
1541 */
1542 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1543 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1544
1545 obuf->len = len;
1546 ibuf->offset += len;
1547 ibuf->len -= len;
1548 o_len = len;
1549 o_head++;
1550 opipe->head = o_head;
1551 }
1552 ret += o_len;
1553 len -= o_len;
1554 } while (len);
1555
1556 pipe_unlock(ipipe);
1557 pipe_unlock(opipe);
1558
1559 /*
1560 * If we put data in the output pipe, wakeup any potential readers.
1561 */
1562 if (ret > 0)
1563 wakeup_pipe_readers(opipe);
1564
1565 if (input_wakeup)
1566 wakeup_pipe_writers(ipipe);
1567
1568 return ret;
1569 }
1570
1571 /*
1572 * Link contents of ipipe to opipe.
1573 */
1574 static int link_pipe(struct pipe_inode_info *ipipe,
1575 struct pipe_inode_info *opipe,
1576 size_t len, unsigned int flags)
1577 {
1578 struct pipe_buffer *ibuf, *obuf;
1579 unsigned int i_head, o_head;
1580 unsigned int i_tail, o_tail;
1581 unsigned int i_mask, o_mask;
1582 int ret = 0;
1583
1584 /*
1585 * Potential ABBA deadlock, work around it by ordering lock
1586 * grabbing by pipe info address. Otherwise two different processes
1587 * could deadlock (one doing tee from A -> B, the other from B -> A).
1588 */
1589 pipe_double_lock(ipipe, opipe);
1590
1591 i_tail = ipipe->tail;
1592 i_mask = ipipe->ring_size - 1;
1593 o_head = opipe->head;
1594 o_mask = opipe->ring_size - 1;
1595
1596 do {
1597 if (!opipe->readers) {
1598 send_sig(SIGPIPE, current, 0);
1599 if (!ret)
1600 ret = -EPIPE;
1601 break;
1602 }
1603
1604 i_head = ipipe->head;
1605 o_tail = opipe->tail;
1606
1607 /*
1608 * If we have iterated all input buffers or run out of
1609 * output room, break.
1610 */
1611 if (pipe_empty(i_head, i_tail) ||
1612 pipe_full(o_head, o_tail, opipe->max_usage))
1613 break;
1614
1615 ibuf = &ipipe->bufs[i_tail & i_mask];
1616 obuf = &opipe->bufs[o_head & o_mask];
1617
1618 /*
1619 * Get a reference to this pipe buffer,
1620 * so we can copy the contents over.
1621 */
1622 if (!pipe_buf_get(ipipe, ibuf)) {
1623 if (ret == 0)
1624 ret = -EFAULT;
1625 break;
1626 }
1627
1628 *obuf = *ibuf;
1629
1630 /*
1631 * Don't inherit the gift and merge flag, we need to prevent
1632 * multiple steals of this page.
1633 */
1634 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1635 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1636
1637 if (obuf->len > len)
1638 obuf->len = len;
1639 ret += obuf->len;
1640 len -= obuf->len;
1641
1642 o_head++;
1643 opipe->head = o_head;
1644 i_tail++;
1645 } while (len);
1646
1647 pipe_unlock(ipipe);
1648 pipe_unlock(opipe);
1649
1650 /*
1651 * If we put data in the output pipe, wakeup any potential readers.
1652 */
1653 if (ret > 0)
1654 wakeup_pipe_readers(opipe);
1655
1656 return ret;
1657 }
1658
1659 /*
1660 * This is a tee(1) implementation that works on pipes. It doesn't copy
1661 * any data, it simply references the 'in' pages on the 'out' pipe.
1662 * The 'flags' used are the SPLICE_F_* variants, currently the only
1663 * applicable one is SPLICE_F_NONBLOCK.
1664 */
1665 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1666 {
1667 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1668 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1669 int ret = -EINVAL;
1670
1671 if (unlikely(!(in->f_mode & FMODE_READ) ||
1672 !(out->f_mode & FMODE_WRITE)))
1673 return -EBADF;
1674
1675 /*
1676 * Duplicate the contents of ipipe to opipe without actually
1677 * copying the data.
1678 */
1679 if (ipipe && opipe && ipipe != opipe) {
1680 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1681 flags |= SPLICE_F_NONBLOCK;
1682
1683 /*
1684 * Keep going, unless we encounter an error. The ipipe/opipe
1685 * ordering doesn't really matter.
1686 */
1687 ret = ipipe_prep(ipipe, flags);
1688 if (!ret) {
1689 ret = opipe_prep(opipe, flags);
1690 if (!ret)
1691 ret = link_pipe(ipipe, opipe, len, flags);
1692 }
1693 }
1694
1695 return ret;
1696 }
1697
1698 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1699 {
1700 struct fd in, out;
1701 int error;
1702
1703 if (unlikely(flags & ~SPLICE_F_ALL))
1704 return -EINVAL;
1705
1706 if (unlikely(!len))
1707 return 0;
1708
1709 error = -EBADF;
1710 in = fdget(fdin);
1711 if (in.file) {
1712 out = fdget(fdout);
1713 if (out.file) {
1714 error = do_tee(in.file, out.file, len, flags);
1715 fdput(out);
1716 }
1717 fdput(in);
1718 }
1719
1720 return error;
1721 }