]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
Merge branches 'fixes' and 'fixes2' into devel-late
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172
173 /**
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
177 *
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
182 *
183 */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
186 {
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 pipe_lock(pipe);
195
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
202 }
203
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
207
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
215
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
219
220 if (pipe->inode)
221 do_wakeup = 1;
222
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
227
228 break;
229 }
230
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
235 }
236
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
241 }
242
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
249 }
250
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
254 }
255
256 pipe_unlock(pipe);
257
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
260
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
263
264 return ret;
265 }
266
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 page_cache_release(spd->pages[i]);
270 }
271
272 /*
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
275 */
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
280
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283
284 if (spd->pages && spd->partial)
285 return 0;
286
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
290 }
291
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
294 {
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
297
298 kfree(spd->pages);
299 kfree(spd->partial);
300 }
301
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
306 {
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
321 };
322
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
325
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
330
331 /*
332 * Lookup the (hopefully) full range of pages we need.
333 */
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
336
337 /*
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
340 */
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
344
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
347 /*
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
350 */
351 page = find_get_page(mapping, index);
352 if (!page) {
353 /*
354 * page didn't exist, allocate one.
355 */
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
359
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
367 }
368 /*
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
371 */
372 unlock_page(page);
373 }
374
375 spd.pages[spd.nr_pages++] = page;
376 index++;
377 }
378
379 /*
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
382 */
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
388
389 if (!len)
390 break;
391
392 /*
393 * this_len is the max we'll use from this page
394 */
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
397
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
401
402 /*
403 * If the page isn't uptodate, we may need to start io on it
404 */
405 if (!PageUptodate(page)) {
406 lock_page(page);
407
408 /*
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
413 */
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
418
419 if (!page) {
420 error = -ENOMEM;
421 break;
422 }
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
425 }
426 /*
427 * page was already under io and is now done, great
428 */
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
432 }
433
434 /*
435 * need to read in the page
436 */
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
439 /*
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
444 */
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
447
448 break;
449 }
450 }
451 fill_it:
452 /*
453 * i_size must be checked after PageUptodate.
454 */
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
459
460 /*
461 * if this is the last page, see if we need to shrink
462 * the length and stop
463 */
464 if (end_index == index) {
465 unsigned int plen;
466
467 /*
468 * max good bytes in this page
469 */
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
473
474 /*
475 * force quit after adding this page
476 */
477 this_len = min(this_len, plen - loff);
478 len = this_len;
479 }
480
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
487 }
488
489 /*
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
492 */
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
499
500 splice_shrink_spd(pipe, &spd);
501 return error;
502 }
503
504 /**
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
511 *
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
516 *
517 */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
521 {
522 loff_t isize, left;
523 int ret;
524
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
528
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
532
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
537 }
538
539 return ret;
540 }
541 EXPORT_SYMBOL(generic_file_splice_read);
542
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
551 };
552
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
555 {
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
559
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
565
566 return res;
567 }
568
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
571 {
572 mm_segment_t old_fs;
573 ssize_t res;
574
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
580
581 return res;
582 }
583
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
587 {
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
604 };
605
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
608
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
615 }
616
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
622
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
627
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
635 }
636
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
641 }
642
643 error = 0;
644 if (!res)
645 goto err;
646
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
656 }
657 res -= this_len;
658 }
659 spd.nr_pages -= nr_freed;
660
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
664
665 shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
670
671 err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
674
675 res = error;
676 goto shrink_ret;
677 }
678 EXPORT_SYMBOL(default_file_splice_read);
679
680 /*
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
683 */
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
686 {
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
690
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
693
694 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
695 if (sd->len < sd->total_len)
696 more |= MSG_SENDPAGE_NOTLAST;
697 return file->f_op->sendpage(file, buf->page, buf->offset,
698 sd->len, &pos, more);
699 }
700
701 /*
702 * This is a little more tricky than the file -> pipe splicing. There are
703 * basically three cases:
704 *
705 * - Destination page already exists in the address space and there
706 * are users of it. For that case we have no other option that
707 * copying the data. Tough luck.
708 * - Destination page already exists in the address space, but there
709 * are no users of it. Make sure it's uptodate, then drop it. Fall
710 * through to last case.
711 * - Destination page does not exist, we can add the pipe page to
712 * the page cache and avoid the copy.
713 *
714 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
715 * sd->flags), we attempt to migrate pages from the pipe to the output
716 * file address space page cache. This is possible if no one else has
717 * the pipe page referenced outside of the pipe and page cache. If
718 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
719 * a new page in the output file page cache and fill/dirty that.
720 */
721 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
722 struct splice_desc *sd)
723 {
724 struct file *file = sd->u.file;
725 struct address_space *mapping = file->f_mapping;
726 unsigned int offset, this_len;
727 struct page *page;
728 void *fsdata;
729 int ret;
730
731 offset = sd->pos & ~PAGE_CACHE_MASK;
732
733 this_len = sd->len;
734 if (this_len + offset > PAGE_CACHE_SIZE)
735 this_len = PAGE_CACHE_SIZE - offset;
736
737 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
738 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
739 if (unlikely(ret))
740 goto out;
741
742 if (buf->page != page) {
743 char *src = buf->ops->map(pipe, buf, 1);
744 char *dst = kmap_atomic(page);
745
746 memcpy(dst + offset, src + buf->offset, this_len);
747 flush_dcache_page(page);
748 kunmap_atomic(dst);
749 buf->ops->unmap(pipe, buf, src);
750 }
751 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
752 page, fsdata);
753 out:
754 return ret;
755 }
756 EXPORT_SYMBOL(pipe_to_file);
757
758 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
759 {
760 smp_mb();
761 if (waitqueue_active(&pipe->wait))
762 wake_up_interruptible(&pipe->wait);
763 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764 }
765
766 /**
767 * splice_from_pipe_feed - feed available data from a pipe to a file
768 * @pipe: pipe to splice from
769 * @sd: information to @actor
770 * @actor: handler that splices the data
771 *
772 * Description:
773 * This function loops over the pipe and calls @actor to do the
774 * actual moving of a single struct pipe_buffer to the desired
775 * destination. It returns when there's no more buffers left in
776 * the pipe or if the requested number of bytes (@sd->total_len)
777 * have been copied. It returns a positive number (one) if the
778 * pipe needs to be filled with more data, zero if the required
779 * number of bytes have been copied and -errno on error.
780 *
781 * This, together with splice_from_pipe_{begin,end,next}, may be
782 * used to implement the functionality of __splice_from_pipe() when
783 * locking is required around copying the pipe buffers to the
784 * destination.
785 */
786 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
787 splice_actor *actor)
788 {
789 int ret;
790
791 while (pipe->nrbufs) {
792 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
793 const struct pipe_buf_operations *ops = buf->ops;
794
795 sd->len = buf->len;
796 if (sd->len > sd->total_len)
797 sd->len = sd->total_len;
798
799 ret = buf->ops->confirm(pipe, buf);
800 if (unlikely(ret)) {
801 if (ret == -ENODATA)
802 ret = 0;
803 return ret;
804 }
805
806 ret = actor(pipe, buf, sd);
807 if (ret <= 0)
808 return ret;
809
810 buf->offset += ret;
811 buf->len -= ret;
812
813 sd->num_spliced += ret;
814 sd->len -= ret;
815 sd->pos += ret;
816 sd->total_len -= ret;
817
818 if (!buf->len) {
819 buf->ops = NULL;
820 ops->release(pipe, buf);
821 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
822 pipe->nrbufs--;
823 if (pipe->inode)
824 sd->need_wakeup = true;
825 }
826
827 if (!sd->total_len)
828 return 0;
829 }
830
831 return 1;
832 }
833 EXPORT_SYMBOL(splice_from_pipe_feed);
834
835 /**
836 * splice_from_pipe_next - wait for some data to splice from
837 * @pipe: pipe to splice from
838 * @sd: information about the splice operation
839 *
840 * Description:
841 * This function will wait for some data and return a positive
842 * value (one) if pipe buffers are available. It will return zero
843 * or -errno if no more data needs to be spliced.
844 */
845 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
846 {
847 while (!pipe->nrbufs) {
848 if (!pipe->writers)
849 return 0;
850
851 if (!pipe->waiting_writers && sd->num_spliced)
852 return 0;
853
854 if (sd->flags & SPLICE_F_NONBLOCK)
855 return -EAGAIN;
856
857 if (signal_pending(current))
858 return -ERESTARTSYS;
859
860 if (sd->need_wakeup) {
861 wakeup_pipe_writers(pipe);
862 sd->need_wakeup = false;
863 }
864
865 pipe_wait(pipe);
866 }
867
868 return 1;
869 }
870 EXPORT_SYMBOL(splice_from_pipe_next);
871
872 /**
873 * splice_from_pipe_begin - start splicing from pipe
874 * @sd: information about the splice operation
875 *
876 * Description:
877 * This function should be called before a loop containing
878 * splice_from_pipe_next() and splice_from_pipe_feed() to
879 * initialize the necessary fields of @sd.
880 */
881 void splice_from_pipe_begin(struct splice_desc *sd)
882 {
883 sd->num_spliced = 0;
884 sd->need_wakeup = false;
885 }
886 EXPORT_SYMBOL(splice_from_pipe_begin);
887
888 /**
889 * splice_from_pipe_end - finish splicing from pipe
890 * @pipe: pipe to splice from
891 * @sd: information about the splice operation
892 *
893 * Description:
894 * This function will wake up pipe writers if necessary. It should
895 * be called after a loop containing splice_from_pipe_next() and
896 * splice_from_pipe_feed().
897 */
898 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
899 {
900 if (sd->need_wakeup)
901 wakeup_pipe_writers(pipe);
902 }
903 EXPORT_SYMBOL(splice_from_pipe_end);
904
905 /**
906 * __splice_from_pipe - splice data from a pipe to given actor
907 * @pipe: pipe to splice from
908 * @sd: information to @actor
909 * @actor: handler that splices the data
910 *
911 * Description:
912 * This function does little more than loop over the pipe and call
913 * @actor to do the actual moving of a single struct pipe_buffer to
914 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
915 * pipe_to_user.
916 *
917 */
918 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
919 splice_actor *actor)
920 {
921 int ret;
922
923 splice_from_pipe_begin(sd);
924 do {
925 ret = splice_from_pipe_next(pipe, sd);
926 if (ret > 0)
927 ret = splice_from_pipe_feed(pipe, sd, actor);
928 } while (ret > 0);
929 splice_from_pipe_end(pipe, sd);
930
931 return sd->num_spliced ? sd->num_spliced : ret;
932 }
933 EXPORT_SYMBOL(__splice_from_pipe);
934
935 /**
936 * splice_from_pipe - splice data from a pipe to a file
937 * @pipe: pipe to splice from
938 * @out: file to splice to
939 * @ppos: position in @out
940 * @len: how many bytes to splice
941 * @flags: splice modifier flags
942 * @actor: handler that splices the data
943 *
944 * Description:
945 * See __splice_from_pipe. This function locks the pipe inode,
946 * otherwise it's identical to __splice_from_pipe().
947 *
948 */
949 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
950 loff_t *ppos, size_t len, unsigned int flags,
951 splice_actor *actor)
952 {
953 ssize_t ret;
954 struct splice_desc sd = {
955 .total_len = len,
956 .flags = flags,
957 .pos = *ppos,
958 .u.file = out,
959 };
960
961 pipe_lock(pipe);
962 ret = __splice_from_pipe(pipe, &sd, actor);
963 pipe_unlock(pipe);
964
965 return ret;
966 }
967
968 /**
969 * generic_file_splice_write - splice data from a pipe to a file
970 * @pipe: pipe info
971 * @out: file to write to
972 * @ppos: position in @out
973 * @len: number of bytes to splice
974 * @flags: splice modifier flags
975 *
976 * Description:
977 * Will either move or copy pages (determined by @flags options) from
978 * the given pipe inode to the given file.
979 *
980 */
981 ssize_t
982 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
983 loff_t *ppos, size_t len, unsigned int flags)
984 {
985 struct address_space *mapping = out->f_mapping;
986 struct inode *inode = mapping->host;
987 struct splice_desc sd = {
988 .total_len = len,
989 .flags = flags,
990 .pos = *ppos,
991 .u.file = out,
992 };
993 ssize_t ret;
994
995 pipe_lock(pipe);
996
997 splice_from_pipe_begin(&sd);
998 do {
999 ret = splice_from_pipe_next(pipe, &sd);
1000 if (ret <= 0)
1001 break;
1002
1003 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1004 ret = file_remove_suid(out);
1005 if (!ret) {
1006 file_update_time(out);
1007 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1008 }
1009 mutex_unlock(&inode->i_mutex);
1010 } while (ret > 0);
1011 splice_from_pipe_end(pipe, &sd);
1012
1013 pipe_unlock(pipe);
1014
1015 if (sd.num_spliced)
1016 ret = sd.num_spliced;
1017
1018 if (ret > 0) {
1019 unsigned long nr_pages;
1020 int err;
1021
1022 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1023
1024 err = generic_write_sync(out, *ppos, ret);
1025 if (err)
1026 ret = err;
1027 else
1028 *ppos += ret;
1029 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1030 }
1031
1032 return ret;
1033 }
1034
1035 EXPORT_SYMBOL(generic_file_splice_write);
1036
1037 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1038 struct splice_desc *sd)
1039 {
1040 int ret;
1041 void *data;
1042
1043 data = buf->ops->map(pipe, buf, 0);
1044 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1045 buf->ops->unmap(pipe, buf, data);
1046
1047 return ret;
1048 }
1049
1050 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1051 struct file *out, loff_t *ppos,
1052 size_t len, unsigned int flags)
1053 {
1054 ssize_t ret;
1055
1056 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1057 if (ret > 0)
1058 *ppos += ret;
1059
1060 return ret;
1061 }
1062
1063 /**
1064 * generic_splice_sendpage - splice data from a pipe to a socket
1065 * @pipe: pipe to splice from
1066 * @out: socket to write to
1067 * @ppos: position in @out
1068 * @len: number of bytes to splice
1069 * @flags: splice modifier flags
1070 *
1071 * Description:
1072 * Will send @len bytes from the pipe to a network socket. No data copying
1073 * is involved.
1074 *
1075 */
1076 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1077 loff_t *ppos, size_t len, unsigned int flags)
1078 {
1079 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1080 }
1081
1082 EXPORT_SYMBOL(generic_splice_sendpage);
1083
1084 /*
1085 * Attempt to initiate a splice from pipe to file.
1086 */
1087 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1088 loff_t *ppos, size_t len, unsigned int flags)
1089 {
1090 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1091 loff_t *, size_t, unsigned int);
1092 int ret;
1093
1094 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1095 return -EBADF;
1096
1097 if (unlikely(out->f_flags & O_APPEND))
1098 return -EINVAL;
1099
1100 ret = rw_verify_area(WRITE, out, ppos, len);
1101 if (unlikely(ret < 0))
1102 return ret;
1103
1104 if (out->f_op && out->f_op->splice_write)
1105 splice_write = out->f_op->splice_write;
1106 else
1107 splice_write = default_file_splice_write;
1108
1109 return splice_write(pipe, out, ppos, len, flags);
1110 }
1111
1112 /*
1113 * Attempt to initiate a splice from a file to a pipe.
1114 */
1115 static long do_splice_to(struct file *in, loff_t *ppos,
1116 struct pipe_inode_info *pipe, size_t len,
1117 unsigned int flags)
1118 {
1119 ssize_t (*splice_read)(struct file *, loff_t *,
1120 struct pipe_inode_info *, size_t, unsigned int);
1121 int ret;
1122
1123 if (unlikely(!(in->f_mode & FMODE_READ)))
1124 return -EBADF;
1125
1126 ret = rw_verify_area(READ, in, ppos, len);
1127 if (unlikely(ret < 0))
1128 return ret;
1129
1130 if (in->f_op && in->f_op->splice_read)
1131 splice_read = in->f_op->splice_read;
1132 else
1133 splice_read = default_file_splice_read;
1134
1135 return splice_read(in, ppos, pipe, len, flags);
1136 }
1137
1138 /**
1139 * splice_direct_to_actor - splices data directly between two non-pipes
1140 * @in: file to splice from
1141 * @sd: actor information on where to splice to
1142 * @actor: handles the data splicing
1143 *
1144 * Description:
1145 * This is a special case helper to splice directly between two
1146 * points, without requiring an explicit pipe. Internally an allocated
1147 * pipe is cached in the process, and reused during the lifetime of
1148 * that process.
1149 *
1150 */
1151 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1152 splice_direct_actor *actor)
1153 {
1154 struct pipe_inode_info *pipe;
1155 long ret, bytes;
1156 umode_t i_mode;
1157 size_t len;
1158 int i, flags;
1159
1160 /*
1161 * We require the input being a regular file, as we don't want to
1162 * randomly drop data for eg socket -> socket splicing. Use the
1163 * piped splicing for that!
1164 */
1165 i_mode = in->f_path.dentry->d_inode->i_mode;
1166 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1167 return -EINVAL;
1168
1169 /*
1170 * neither in nor out is a pipe, setup an internal pipe attached to
1171 * 'out' and transfer the wanted data from 'in' to 'out' through that
1172 */
1173 pipe = current->splice_pipe;
1174 if (unlikely(!pipe)) {
1175 pipe = alloc_pipe_info(NULL);
1176 if (!pipe)
1177 return -ENOMEM;
1178
1179 /*
1180 * We don't have an immediate reader, but we'll read the stuff
1181 * out of the pipe right after the splice_to_pipe(). So set
1182 * PIPE_READERS appropriately.
1183 */
1184 pipe->readers = 1;
1185
1186 current->splice_pipe = pipe;
1187 }
1188
1189 /*
1190 * Do the splice.
1191 */
1192 ret = 0;
1193 bytes = 0;
1194 len = sd->total_len;
1195 flags = sd->flags;
1196
1197 /*
1198 * Don't block on output, we have to drain the direct pipe.
1199 */
1200 sd->flags &= ~SPLICE_F_NONBLOCK;
1201
1202 while (len) {
1203 size_t read_len;
1204 loff_t pos = sd->pos, prev_pos = pos;
1205
1206 ret = do_splice_to(in, &pos, pipe, len, flags);
1207 if (unlikely(ret <= 0))
1208 goto out_release;
1209
1210 read_len = ret;
1211 sd->total_len = read_len;
1212
1213 /*
1214 * NOTE: nonblocking mode only applies to the input. We
1215 * must not do the output in nonblocking mode as then we
1216 * could get stuck data in the internal pipe:
1217 */
1218 ret = actor(pipe, sd);
1219 if (unlikely(ret <= 0)) {
1220 sd->pos = prev_pos;
1221 goto out_release;
1222 }
1223
1224 bytes += ret;
1225 len -= ret;
1226 sd->pos = pos;
1227
1228 if (ret < read_len) {
1229 sd->pos = prev_pos + ret;
1230 goto out_release;
1231 }
1232 }
1233
1234 done:
1235 pipe->nrbufs = pipe->curbuf = 0;
1236 file_accessed(in);
1237 return bytes;
1238
1239 out_release:
1240 /*
1241 * If we did an incomplete transfer we must release
1242 * the pipe buffers in question:
1243 */
1244 for (i = 0; i < pipe->buffers; i++) {
1245 struct pipe_buffer *buf = pipe->bufs + i;
1246
1247 if (buf->ops) {
1248 buf->ops->release(pipe, buf);
1249 buf->ops = NULL;
1250 }
1251 }
1252
1253 if (!bytes)
1254 bytes = ret;
1255
1256 goto done;
1257 }
1258 EXPORT_SYMBOL(splice_direct_to_actor);
1259
1260 static int direct_splice_actor(struct pipe_inode_info *pipe,
1261 struct splice_desc *sd)
1262 {
1263 struct file *file = sd->u.file;
1264
1265 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1266 sd->flags);
1267 }
1268
1269 /**
1270 * do_splice_direct - splices data directly between two files
1271 * @in: file to splice from
1272 * @ppos: input file offset
1273 * @out: file to splice to
1274 * @len: number of bytes to splice
1275 * @flags: splice modifier flags
1276 *
1277 * Description:
1278 * For use by do_sendfile(). splice can easily emulate sendfile, but
1279 * doing it in the application would incur an extra system call
1280 * (splice in + splice out, as compared to just sendfile()). So this helper
1281 * can splice directly through a process-private pipe.
1282 *
1283 */
1284 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1285 size_t len, unsigned int flags)
1286 {
1287 struct splice_desc sd = {
1288 .len = len,
1289 .total_len = len,
1290 .flags = flags,
1291 .pos = *ppos,
1292 .u.file = out,
1293 };
1294 long ret;
1295
1296 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1297 if (ret > 0)
1298 *ppos = sd.pos;
1299
1300 return ret;
1301 }
1302
1303 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1304 struct pipe_inode_info *opipe,
1305 size_t len, unsigned int flags);
1306
1307 /*
1308 * Determine where to splice to/from.
1309 */
1310 static long do_splice(struct file *in, loff_t __user *off_in,
1311 struct file *out, loff_t __user *off_out,
1312 size_t len, unsigned int flags)
1313 {
1314 struct pipe_inode_info *ipipe;
1315 struct pipe_inode_info *opipe;
1316 loff_t offset, *off;
1317 long ret;
1318
1319 ipipe = get_pipe_info(in);
1320 opipe = get_pipe_info(out);
1321
1322 if (ipipe && opipe) {
1323 if (off_in || off_out)
1324 return -ESPIPE;
1325
1326 if (!(in->f_mode & FMODE_READ))
1327 return -EBADF;
1328
1329 if (!(out->f_mode & FMODE_WRITE))
1330 return -EBADF;
1331
1332 /* Splicing to self would be fun, but... */
1333 if (ipipe == opipe)
1334 return -EINVAL;
1335
1336 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1337 }
1338
1339 if (ipipe) {
1340 if (off_in)
1341 return -ESPIPE;
1342 if (off_out) {
1343 if (!(out->f_mode & FMODE_PWRITE))
1344 return -EINVAL;
1345 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1346 return -EFAULT;
1347 off = &offset;
1348 } else
1349 off = &out->f_pos;
1350
1351 ret = do_splice_from(ipipe, out, off, len, flags);
1352
1353 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1354 ret = -EFAULT;
1355
1356 return ret;
1357 }
1358
1359 if (opipe) {
1360 if (off_out)
1361 return -ESPIPE;
1362 if (off_in) {
1363 if (!(in->f_mode & FMODE_PREAD))
1364 return -EINVAL;
1365 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1366 return -EFAULT;
1367 off = &offset;
1368 } else
1369 off = &in->f_pos;
1370
1371 ret = do_splice_to(in, off, opipe, len, flags);
1372
1373 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1374 ret = -EFAULT;
1375
1376 return ret;
1377 }
1378
1379 return -EINVAL;
1380 }
1381
1382 /*
1383 * Map an iov into an array of pages and offset/length tupples. With the
1384 * partial_page structure, we can map several non-contiguous ranges into
1385 * our ones pages[] map instead of splitting that operation into pieces.
1386 * Could easily be exported as a generic helper for other users, in which
1387 * case one would probably want to add a 'max_nr_pages' parameter as well.
1388 */
1389 static int get_iovec_page_array(const struct iovec __user *iov,
1390 unsigned int nr_vecs, struct page **pages,
1391 struct partial_page *partial, bool aligned,
1392 unsigned int pipe_buffers)
1393 {
1394 int buffers = 0, error = 0;
1395
1396 while (nr_vecs) {
1397 unsigned long off, npages;
1398 struct iovec entry;
1399 void __user *base;
1400 size_t len;
1401 int i;
1402
1403 error = -EFAULT;
1404 if (copy_from_user(&entry, iov, sizeof(entry)))
1405 break;
1406
1407 base = entry.iov_base;
1408 len = entry.iov_len;
1409
1410 /*
1411 * Sanity check this iovec. 0 read succeeds.
1412 */
1413 error = 0;
1414 if (unlikely(!len))
1415 break;
1416 error = -EFAULT;
1417 if (!access_ok(VERIFY_READ, base, len))
1418 break;
1419
1420 /*
1421 * Get this base offset and number of pages, then map
1422 * in the user pages.
1423 */
1424 off = (unsigned long) base & ~PAGE_MASK;
1425
1426 /*
1427 * If asked for alignment, the offset must be zero and the
1428 * length a multiple of the PAGE_SIZE.
1429 */
1430 error = -EINVAL;
1431 if (aligned && (off || len & ~PAGE_MASK))
1432 break;
1433
1434 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1435 if (npages > pipe_buffers - buffers)
1436 npages = pipe_buffers - buffers;
1437
1438 error = get_user_pages_fast((unsigned long)base, npages,
1439 0, &pages[buffers]);
1440
1441 if (unlikely(error <= 0))
1442 break;
1443
1444 /*
1445 * Fill this contiguous range into the partial page map.
1446 */
1447 for (i = 0; i < error; i++) {
1448 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1449
1450 partial[buffers].offset = off;
1451 partial[buffers].len = plen;
1452
1453 off = 0;
1454 len -= plen;
1455 buffers++;
1456 }
1457
1458 /*
1459 * We didn't complete this iov, stop here since it probably
1460 * means we have to move some of this into a pipe to
1461 * be able to continue.
1462 */
1463 if (len)
1464 break;
1465
1466 /*
1467 * Don't continue if we mapped fewer pages than we asked for,
1468 * or if we mapped the max number of pages that we have
1469 * room for.
1470 */
1471 if (error < npages || buffers == pipe_buffers)
1472 break;
1473
1474 nr_vecs--;
1475 iov++;
1476 }
1477
1478 if (buffers)
1479 return buffers;
1480
1481 return error;
1482 }
1483
1484 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1485 struct splice_desc *sd)
1486 {
1487 char *src;
1488 int ret;
1489
1490 /*
1491 * See if we can use the atomic maps, by prefaulting in the
1492 * pages and doing an atomic copy
1493 */
1494 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1495 src = buf->ops->map(pipe, buf, 1);
1496 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1497 sd->len);
1498 buf->ops->unmap(pipe, buf, src);
1499 if (!ret) {
1500 ret = sd->len;
1501 goto out;
1502 }
1503 }
1504
1505 /*
1506 * No dice, use slow non-atomic map and copy
1507 */
1508 src = buf->ops->map(pipe, buf, 0);
1509
1510 ret = sd->len;
1511 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1512 ret = -EFAULT;
1513
1514 buf->ops->unmap(pipe, buf, src);
1515 out:
1516 if (ret > 0)
1517 sd->u.userptr += ret;
1518 return ret;
1519 }
1520
1521 /*
1522 * For lack of a better implementation, implement vmsplice() to userspace
1523 * as a simple copy of the pipes pages to the user iov.
1524 */
1525 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1526 unsigned long nr_segs, unsigned int flags)
1527 {
1528 struct pipe_inode_info *pipe;
1529 struct splice_desc sd;
1530 ssize_t size;
1531 int error;
1532 long ret;
1533
1534 pipe = get_pipe_info(file);
1535 if (!pipe)
1536 return -EBADF;
1537
1538 pipe_lock(pipe);
1539
1540 error = ret = 0;
1541 while (nr_segs) {
1542 void __user *base;
1543 size_t len;
1544
1545 /*
1546 * Get user address base and length for this iovec.
1547 */
1548 error = get_user(base, &iov->iov_base);
1549 if (unlikely(error))
1550 break;
1551 error = get_user(len, &iov->iov_len);
1552 if (unlikely(error))
1553 break;
1554
1555 /*
1556 * Sanity check this iovec. 0 read succeeds.
1557 */
1558 if (unlikely(!len))
1559 break;
1560 if (unlikely(!base)) {
1561 error = -EFAULT;
1562 break;
1563 }
1564
1565 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1566 error = -EFAULT;
1567 break;
1568 }
1569
1570 sd.len = 0;
1571 sd.total_len = len;
1572 sd.flags = flags;
1573 sd.u.userptr = base;
1574 sd.pos = 0;
1575
1576 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1577 if (size < 0) {
1578 if (!ret)
1579 ret = size;
1580
1581 break;
1582 }
1583
1584 ret += size;
1585
1586 if (size < len)
1587 break;
1588
1589 nr_segs--;
1590 iov++;
1591 }
1592
1593 pipe_unlock(pipe);
1594
1595 if (!ret)
1596 ret = error;
1597
1598 return ret;
1599 }
1600
1601 /*
1602 * vmsplice splices a user address range into a pipe. It can be thought of
1603 * as splice-from-memory, where the regular splice is splice-from-file (or
1604 * to file). In both cases the output is a pipe, naturally.
1605 */
1606 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1607 unsigned long nr_segs, unsigned int flags)
1608 {
1609 struct pipe_inode_info *pipe;
1610 struct page *pages[PIPE_DEF_BUFFERS];
1611 struct partial_page partial[PIPE_DEF_BUFFERS];
1612 struct splice_pipe_desc spd = {
1613 .pages = pages,
1614 .partial = partial,
1615 .flags = flags,
1616 .ops = &user_page_pipe_buf_ops,
1617 .spd_release = spd_release_page,
1618 };
1619 long ret;
1620
1621 pipe = get_pipe_info(file);
1622 if (!pipe)
1623 return -EBADF;
1624
1625 if (splice_grow_spd(pipe, &spd))
1626 return -ENOMEM;
1627
1628 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1629 spd.partial, false,
1630 pipe->buffers);
1631 if (spd.nr_pages <= 0)
1632 ret = spd.nr_pages;
1633 else
1634 ret = splice_to_pipe(pipe, &spd);
1635
1636 splice_shrink_spd(pipe, &spd);
1637 return ret;
1638 }
1639
1640 /*
1641 * Note that vmsplice only really supports true splicing _from_ user memory
1642 * to a pipe, not the other way around. Splicing from user memory is a simple
1643 * operation that can be supported without any funky alignment restrictions
1644 * or nasty vm tricks. We simply map in the user memory and fill them into
1645 * a pipe. The reverse isn't quite as easy, though. There are two possible
1646 * solutions for that:
1647 *
1648 * - memcpy() the data internally, at which point we might as well just
1649 * do a regular read() on the buffer anyway.
1650 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1651 * has restriction limitations on both ends of the pipe).
1652 *
1653 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1654 *
1655 */
1656 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1657 unsigned long, nr_segs, unsigned int, flags)
1658 {
1659 struct file *file;
1660 long error;
1661 int fput;
1662
1663 if (unlikely(nr_segs > UIO_MAXIOV))
1664 return -EINVAL;
1665 else if (unlikely(!nr_segs))
1666 return 0;
1667
1668 error = -EBADF;
1669 file = fget_light(fd, &fput);
1670 if (file) {
1671 if (file->f_mode & FMODE_WRITE)
1672 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1673 else if (file->f_mode & FMODE_READ)
1674 error = vmsplice_to_user(file, iov, nr_segs, flags);
1675
1676 fput_light(file, fput);
1677 }
1678
1679 return error;
1680 }
1681
1682 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1683 int, fd_out, loff_t __user *, off_out,
1684 size_t, len, unsigned int, flags)
1685 {
1686 long error;
1687 struct file *in, *out;
1688 int fput_in, fput_out;
1689
1690 if (unlikely(!len))
1691 return 0;
1692
1693 error = -EBADF;
1694 in = fget_light(fd_in, &fput_in);
1695 if (in) {
1696 if (in->f_mode & FMODE_READ) {
1697 out = fget_light(fd_out, &fput_out);
1698 if (out) {
1699 if (out->f_mode & FMODE_WRITE)
1700 error = do_splice(in, off_in,
1701 out, off_out,
1702 len, flags);
1703 fput_light(out, fput_out);
1704 }
1705 }
1706
1707 fput_light(in, fput_in);
1708 }
1709
1710 return error;
1711 }
1712
1713 /*
1714 * Make sure there's data to read. Wait for input if we can, otherwise
1715 * return an appropriate error.
1716 */
1717 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1718 {
1719 int ret;
1720
1721 /*
1722 * Check ->nrbufs without the inode lock first. This function
1723 * is speculative anyways, so missing one is ok.
1724 */
1725 if (pipe->nrbufs)
1726 return 0;
1727
1728 ret = 0;
1729 pipe_lock(pipe);
1730
1731 while (!pipe->nrbufs) {
1732 if (signal_pending(current)) {
1733 ret = -ERESTARTSYS;
1734 break;
1735 }
1736 if (!pipe->writers)
1737 break;
1738 if (!pipe->waiting_writers) {
1739 if (flags & SPLICE_F_NONBLOCK) {
1740 ret = -EAGAIN;
1741 break;
1742 }
1743 }
1744 pipe_wait(pipe);
1745 }
1746
1747 pipe_unlock(pipe);
1748 return ret;
1749 }
1750
1751 /*
1752 * Make sure there's writeable room. Wait for room if we can, otherwise
1753 * return an appropriate error.
1754 */
1755 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1756 {
1757 int ret;
1758
1759 /*
1760 * Check ->nrbufs without the inode lock first. This function
1761 * is speculative anyways, so missing one is ok.
1762 */
1763 if (pipe->nrbufs < pipe->buffers)
1764 return 0;
1765
1766 ret = 0;
1767 pipe_lock(pipe);
1768
1769 while (pipe->nrbufs >= pipe->buffers) {
1770 if (!pipe->readers) {
1771 send_sig(SIGPIPE, current, 0);
1772 ret = -EPIPE;
1773 break;
1774 }
1775 if (flags & SPLICE_F_NONBLOCK) {
1776 ret = -EAGAIN;
1777 break;
1778 }
1779 if (signal_pending(current)) {
1780 ret = -ERESTARTSYS;
1781 break;
1782 }
1783 pipe->waiting_writers++;
1784 pipe_wait(pipe);
1785 pipe->waiting_writers--;
1786 }
1787
1788 pipe_unlock(pipe);
1789 return ret;
1790 }
1791
1792 /*
1793 * Splice contents of ipipe to opipe.
1794 */
1795 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1796 struct pipe_inode_info *opipe,
1797 size_t len, unsigned int flags)
1798 {
1799 struct pipe_buffer *ibuf, *obuf;
1800 int ret = 0, nbuf;
1801 bool input_wakeup = false;
1802
1803
1804 retry:
1805 ret = ipipe_prep(ipipe, flags);
1806 if (ret)
1807 return ret;
1808
1809 ret = opipe_prep(opipe, flags);
1810 if (ret)
1811 return ret;
1812
1813 /*
1814 * Potential ABBA deadlock, work around it by ordering lock
1815 * grabbing by pipe info address. Otherwise two different processes
1816 * could deadlock (one doing tee from A -> B, the other from B -> A).
1817 */
1818 pipe_double_lock(ipipe, opipe);
1819
1820 do {
1821 if (!opipe->readers) {
1822 send_sig(SIGPIPE, current, 0);
1823 if (!ret)
1824 ret = -EPIPE;
1825 break;
1826 }
1827
1828 if (!ipipe->nrbufs && !ipipe->writers)
1829 break;
1830
1831 /*
1832 * Cannot make any progress, because either the input
1833 * pipe is empty or the output pipe is full.
1834 */
1835 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1836 /* Already processed some buffers, break */
1837 if (ret)
1838 break;
1839
1840 if (flags & SPLICE_F_NONBLOCK) {
1841 ret = -EAGAIN;
1842 break;
1843 }
1844
1845 /*
1846 * We raced with another reader/writer and haven't
1847 * managed to process any buffers. A zero return
1848 * value means EOF, so retry instead.
1849 */
1850 pipe_unlock(ipipe);
1851 pipe_unlock(opipe);
1852 goto retry;
1853 }
1854
1855 ibuf = ipipe->bufs + ipipe->curbuf;
1856 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1857 obuf = opipe->bufs + nbuf;
1858
1859 if (len >= ibuf->len) {
1860 /*
1861 * Simply move the whole buffer from ipipe to opipe
1862 */
1863 *obuf = *ibuf;
1864 ibuf->ops = NULL;
1865 opipe->nrbufs++;
1866 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1867 ipipe->nrbufs--;
1868 input_wakeup = true;
1869 } else {
1870 /*
1871 * Get a reference to this pipe buffer,
1872 * so we can copy the contents over.
1873 */
1874 ibuf->ops->get(ipipe, ibuf);
1875 *obuf = *ibuf;
1876
1877 /*
1878 * Don't inherit the gift flag, we need to
1879 * prevent multiple steals of this page.
1880 */
1881 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882
1883 obuf->len = len;
1884 opipe->nrbufs++;
1885 ibuf->offset += obuf->len;
1886 ibuf->len -= obuf->len;
1887 }
1888 ret += obuf->len;
1889 len -= obuf->len;
1890 } while (len);
1891
1892 pipe_unlock(ipipe);
1893 pipe_unlock(opipe);
1894
1895 /*
1896 * If we put data in the output pipe, wakeup any potential readers.
1897 */
1898 if (ret > 0)
1899 wakeup_pipe_readers(opipe);
1900
1901 if (input_wakeup)
1902 wakeup_pipe_writers(ipipe);
1903
1904 return ret;
1905 }
1906
1907 /*
1908 * Link contents of ipipe to opipe.
1909 */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 struct pipe_inode_info *opipe,
1912 size_t len, unsigned int flags)
1913 {
1914 struct pipe_buffer *ibuf, *obuf;
1915 int ret = 0, i = 0, nbuf;
1916
1917 /*
1918 * Potential ABBA deadlock, work around it by ordering lock
1919 * grabbing by pipe info address. Otherwise two different processes
1920 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 */
1922 pipe_double_lock(ipipe, opipe);
1923
1924 do {
1925 if (!opipe->readers) {
1926 send_sig(SIGPIPE, current, 0);
1927 if (!ret)
1928 ret = -EPIPE;
1929 break;
1930 }
1931
1932 /*
1933 * If we have iterated all input buffers or ran out of
1934 * output room, break.
1935 */
1936 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 break;
1938
1939 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941
1942 /*
1943 * Get a reference to this pipe buffer,
1944 * so we can copy the contents over.
1945 */
1946 ibuf->ops->get(ipipe, ibuf);
1947
1948 obuf = opipe->bufs + nbuf;
1949 *obuf = *ibuf;
1950
1951 /*
1952 * Don't inherit the gift flag, we need to
1953 * prevent multiple steals of this page.
1954 */
1955 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956
1957 if (obuf->len > len)
1958 obuf->len = len;
1959
1960 opipe->nrbufs++;
1961 ret += obuf->len;
1962 len -= obuf->len;
1963 i++;
1964 } while (len);
1965
1966 /*
1967 * return EAGAIN if we have the potential of some data in the
1968 * future, otherwise just return 0
1969 */
1970 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 ret = -EAGAIN;
1972
1973 pipe_unlock(ipipe);
1974 pipe_unlock(opipe);
1975
1976 /*
1977 * If we put data in the output pipe, wakeup any potential readers.
1978 */
1979 if (ret > 0)
1980 wakeup_pipe_readers(opipe);
1981
1982 return ret;
1983 }
1984
1985 /*
1986 * This is a tee(1) implementation that works on pipes. It doesn't copy
1987 * any data, it simply references the 'in' pages on the 'out' pipe.
1988 * The 'flags' used are the SPLICE_F_* variants, currently the only
1989 * applicable one is SPLICE_F_NONBLOCK.
1990 */
1991 static long do_tee(struct file *in, struct file *out, size_t len,
1992 unsigned int flags)
1993 {
1994 struct pipe_inode_info *ipipe = get_pipe_info(in);
1995 struct pipe_inode_info *opipe = get_pipe_info(out);
1996 int ret = -EINVAL;
1997
1998 /*
1999 * Duplicate the contents of ipipe to opipe without actually
2000 * copying the data.
2001 */
2002 if (ipipe && opipe && ipipe != opipe) {
2003 /*
2004 * Keep going, unless we encounter an error. The ipipe/opipe
2005 * ordering doesn't really matter.
2006 */
2007 ret = ipipe_prep(ipipe, flags);
2008 if (!ret) {
2009 ret = opipe_prep(opipe, flags);
2010 if (!ret)
2011 ret = link_pipe(ipipe, opipe, len, flags);
2012 }
2013 }
2014
2015 return ret;
2016 }
2017
2018 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2019 {
2020 struct file *in;
2021 int error, fput_in;
2022
2023 if (unlikely(!len))
2024 return 0;
2025
2026 error = -EBADF;
2027 in = fget_light(fdin, &fput_in);
2028 if (in) {
2029 if (in->f_mode & FMODE_READ) {
2030 int fput_out;
2031 struct file *out = fget_light(fdout, &fput_out);
2032
2033 if (out) {
2034 if (out->f_mode & FMODE_WRITE)
2035 error = do_tee(in, out, len, flags);
2036 fput_light(out, fput_out);
2037 }
2038 }
2039 fput_light(in, fput_in);
2040 }
2041
2042 return error;
2043 }