]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/splice.c
Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 pipe_lock(pipe);
186
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
193 }
194
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 pipe_unlock(pipe);
248
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 }
255
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
258
259 return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
271 {
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
286 };
287
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293 /*
294 * Lookup the (hopefully) full range of pages we need.
295 */
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
298
299 /*
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
302 */
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
306
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
309 /*
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
312 */
313 page = find_get_page(mapping, index);
314 if (!page) {
315 /*
316 * page didn't exist, allocate one.
317 */
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
321
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
329 }
330 /*
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
333 */
334 unlock_page(page);
335 }
336
337 pages[spd.nr_pages++] = page;
338 index++;
339 }
340
341 /*
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
344 */
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
350
351 if (!len)
352 break;
353
354 /*
355 * this_len is the max we'll use from this page
356 */
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
359
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
363
364 /*
365 * If the page isn't uptodate, we may need to start io on it
366 */
367 if (!PageUptodate(page)) {
368 /*
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
371 */
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
376 }
377 } else
378 lock_page(page);
379
380 /*
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
385 */
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
390
391 if (!page) {
392 error = -ENOMEM;
393 break;
394 }
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
397 }
398 /*
399 * page was already under io and is now done, great
400 */
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
404 }
405
406 /*
407 * need to read in the page
408 */
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
411 /*
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
416 */
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
419
420 break;
421 }
422 }
423 fill_it:
424 /*
425 * i_size must be checked after PageUptodate.
426 */
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
431
432 /*
433 * if this is the last page, see if we need to shrink
434 * the length and stop
435 */
436 if (end_index == index) {
437 unsigned int plen;
438
439 /*
440 * max good bytes in this page
441 */
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
445
446 /*
447 * force quit after adding this page
448 */
449 this_len = min(this_len, plen - loff);
450 len = this_len;
451 }
452
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
459 }
460
461 /*
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
464 */
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
471
472 return error;
473 }
474
475 /**
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
482 *
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
487 *
488 */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
492 {
493 loff_t isize, left;
494 int ret;
495
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
499
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
503
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0) {
506 *ppos += ret;
507 file_accessed(in);
508 }
509
510 return ret;
511 }
512 EXPORT_SYMBOL(generic_file_splice_read);
513
514 static const struct pipe_buf_operations default_pipe_buf_ops = {
515 .can_merge = 0,
516 .map = generic_pipe_buf_map,
517 .unmap = generic_pipe_buf_unmap,
518 .confirm = generic_pipe_buf_confirm,
519 .release = generic_pipe_buf_release,
520 .steal = generic_pipe_buf_steal,
521 .get = generic_pipe_buf_get,
522 };
523
524 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
525 unsigned long vlen, loff_t offset)
526 {
527 mm_segment_t old_fs;
528 loff_t pos = offset;
529 ssize_t res;
530
531 old_fs = get_fs();
532 set_fs(get_ds());
533 /* The cast to a user pointer is valid due to the set_fs() */
534 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
535 set_fs(old_fs);
536
537 return res;
538 }
539
540 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
541 loff_t pos)
542 {
543 mm_segment_t old_fs;
544 ssize_t res;
545
546 old_fs = get_fs();
547 set_fs(get_ds());
548 /* The cast to a user pointer is valid due to the set_fs() */
549 res = vfs_write(file, (const char __user *)buf, count, &pos);
550 set_fs(old_fs);
551
552 return res;
553 }
554
555 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
556 struct pipe_inode_info *pipe, size_t len,
557 unsigned int flags)
558 {
559 unsigned int nr_pages;
560 unsigned int nr_freed;
561 size_t offset;
562 struct page *pages[PIPE_BUFFERS];
563 struct partial_page partial[PIPE_BUFFERS];
564 struct iovec vec[PIPE_BUFFERS];
565 pgoff_t index;
566 ssize_t res;
567 size_t this_len;
568 int error;
569 int i;
570 struct splice_pipe_desc spd = {
571 .pages = pages,
572 .partial = partial,
573 .flags = flags,
574 .ops = &default_pipe_buf_ops,
575 .spd_release = spd_release_page,
576 };
577
578 index = *ppos >> PAGE_CACHE_SHIFT;
579 offset = *ppos & ~PAGE_CACHE_MASK;
580 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
581
582 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
583 struct page *page;
584
585 page = alloc_page(GFP_USER);
586 error = -ENOMEM;
587 if (!page)
588 goto err;
589
590 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
591 vec[i].iov_base = (void __user *) page_address(page);
592 vec[i].iov_len = this_len;
593 pages[i] = page;
594 spd.nr_pages++;
595 len -= this_len;
596 offset = 0;
597 }
598
599 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
600 if (res < 0) {
601 error = res;
602 goto err;
603 }
604
605 error = 0;
606 if (!res)
607 goto err;
608
609 nr_freed = 0;
610 for (i = 0; i < spd.nr_pages; i++) {
611 this_len = min_t(size_t, vec[i].iov_len, res);
612 partial[i].offset = 0;
613 partial[i].len = this_len;
614 if (!this_len) {
615 __free_page(pages[i]);
616 pages[i] = NULL;
617 nr_freed++;
618 }
619 res -= this_len;
620 }
621 spd.nr_pages -= nr_freed;
622
623 res = splice_to_pipe(pipe, &spd);
624 if (res > 0)
625 *ppos += res;
626
627 return res;
628
629 err:
630 for (i = 0; i < spd.nr_pages; i++)
631 __free_page(pages[i]);
632
633 return error;
634 }
635 EXPORT_SYMBOL(default_file_splice_read);
636
637 /*
638 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
639 * using sendpage(). Return the number of bytes sent.
640 */
641 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
642 struct pipe_buffer *buf, struct splice_desc *sd)
643 {
644 struct file *file = sd->u.file;
645 loff_t pos = sd->pos;
646 int ret, more;
647
648 ret = buf->ops->confirm(pipe, buf);
649 if (!ret) {
650 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
651 if (file->f_op && file->f_op->sendpage)
652 ret = file->f_op->sendpage(file, buf->page, buf->offset,
653 sd->len, &pos, more);
654 else
655 ret = -EINVAL;
656 }
657
658 return ret;
659 }
660
661 /*
662 * This is a little more tricky than the file -> pipe splicing. There are
663 * basically three cases:
664 *
665 * - Destination page already exists in the address space and there
666 * are users of it. For that case we have no other option that
667 * copying the data. Tough luck.
668 * - Destination page already exists in the address space, but there
669 * are no users of it. Make sure it's uptodate, then drop it. Fall
670 * through to last case.
671 * - Destination page does not exist, we can add the pipe page to
672 * the page cache and avoid the copy.
673 *
674 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
675 * sd->flags), we attempt to migrate pages from the pipe to the output
676 * file address space page cache. This is possible if no one else has
677 * the pipe page referenced outside of the pipe and page cache. If
678 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
679 * a new page in the output file page cache and fill/dirty that.
680 */
681 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
682 struct splice_desc *sd)
683 {
684 struct file *file = sd->u.file;
685 struct address_space *mapping = file->f_mapping;
686 unsigned int offset, this_len;
687 struct page *page;
688 void *fsdata;
689 int ret;
690
691 /*
692 * make sure the data in this buffer is uptodate
693 */
694 ret = buf->ops->confirm(pipe, buf);
695 if (unlikely(ret))
696 return ret;
697
698 offset = sd->pos & ~PAGE_CACHE_MASK;
699
700 this_len = sd->len;
701 if (this_len + offset > PAGE_CACHE_SIZE)
702 this_len = PAGE_CACHE_SIZE - offset;
703
704 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
705 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
706 if (unlikely(ret))
707 goto out;
708
709 if (buf->page != page) {
710 /*
711 * Careful, ->map() uses KM_USER0!
712 */
713 char *src = buf->ops->map(pipe, buf, 1);
714 char *dst = kmap_atomic(page, KM_USER1);
715
716 memcpy(dst + offset, src + buf->offset, this_len);
717 flush_dcache_page(page);
718 kunmap_atomic(dst, KM_USER1);
719 buf->ops->unmap(pipe, buf, src);
720 }
721 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
722 page, fsdata);
723 out:
724 return ret;
725 }
726 EXPORT_SYMBOL(pipe_to_file);
727
728 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
729 {
730 smp_mb();
731 if (waitqueue_active(&pipe->wait))
732 wake_up_interruptible(&pipe->wait);
733 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734 }
735
736 /**
737 * splice_from_pipe_feed - feed available data from a pipe to a file
738 * @pipe: pipe to splice from
739 * @sd: information to @actor
740 * @actor: handler that splices the data
741 *
742 * Description:
743 * This function loops over the pipe and calls @actor to do the
744 * actual moving of a single struct pipe_buffer to the desired
745 * destination. It returns when there's no more buffers left in
746 * the pipe or if the requested number of bytes (@sd->total_len)
747 * have been copied. It returns a positive number (one) if the
748 * pipe needs to be filled with more data, zero if the required
749 * number of bytes have been copied and -errno on error.
750 *
751 * This, together with splice_from_pipe_{begin,end,next}, may be
752 * used to implement the functionality of __splice_from_pipe() when
753 * locking is required around copying the pipe buffers to the
754 * destination.
755 */
756 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
757 splice_actor *actor)
758 {
759 int ret;
760
761 while (pipe->nrbufs) {
762 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
763 const struct pipe_buf_operations *ops = buf->ops;
764
765 sd->len = buf->len;
766 if (sd->len > sd->total_len)
767 sd->len = sd->total_len;
768
769 ret = actor(pipe, buf, sd);
770 if (ret <= 0) {
771 if (ret == -ENODATA)
772 ret = 0;
773 return ret;
774 }
775 buf->offset += ret;
776 buf->len -= ret;
777
778 sd->num_spliced += ret;
779 sd->len -= ret;
780 sd->pos += ret;
781 sd->total_len -= ret;
782
783 if (!buf->len) {
784 buf->ops = NULL;
785 ops->release(pipe, buf);
786 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
787 pipe->nrbufs--;
788 if (pipe->inode)
789 sd->need_wakeup = true;
790 }
791
792 if (!sd->total_len)
793 return 0;
794 }
795
796 return 1;
797 }
798 EXPORT_SYMBOL(splice_from_pipe_feed);
799
800 /**
801 * splice_from_pipe_next - wait for some data to splice from
802 * @pipe: pipe to splice from
803 * @sd: information about the splice operation
804 *
805 * Description:
806 * This function will wait for some data and return a positive
807 * value (one) if pipe buffers are available. It will return zero
808 * or -errno if no more data needs to be spliced.
809 */
810 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 {
812 while (!pipe->nrbufs) {
813 if (!pipe->writers)
814 return 0;
815
816 if (!pipe->waiting_writers && sd->num_spliced)
817 return 0;
818
819 if (sd->flags & SPLICE_F_NONBLOCK)
820 return -EAGAIN;
821
822 if (signal_pending(current))
823 return -ERESTARTSYS;
824
825 if (sd->need_wakeup) {
826 wakeup_pipe_writers(pipe);
827 sd->need_wakeup = false;
828 }
829
830 pipe_wait(pipe);
831 }
832
833 return 1;
834 }
835 EXPORT_SYMBOL(splice_from_pipe_next);
836
837 /**
838 * splice_from_pipe_begin - start splicing from pipe
839 * @sd: information about the splice operation
840 *
841 * Description:
842 * This function should be called before a loop containing
843 * splice_from_pipe_next() and splice_from_pipe_feed() to
844 * initialize the necessary fields of @sd.
845 */
846 void splice_from_pipe_begin(struct splice_desc *sd)
847 {
848 sd->num_spliced = 0;
849 sd->need_wakeup = false;
850 }
851 EXPORT_SYMBOL(splice_from_pipe_begin);
852
853 /**
854 * splice_from_pipe_end - finish splicing from pipe
855 * @pipe: pipe to splice from
856 * @sd: information about the splice operation
857 *
858 * Description:
859 * This function will wake up pipe writers if necessary. It should
860 * be called after a loop containing splice_from_pipe_next() and
861 * splice_from_pipe_feed().
862 */
863 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
864 {
865 if (sd->need_wakeup)
866 wakeup_pipe_writers(pipe);
867 }
868 EXPORT_SYMBOL(splice_from_pipe_end);
869
870 /**
871 * __splice_from_pipe - splice data from a pipe to given actor
872 * @pipe: pipe to splice from
873 * @sd: information to @actor
874 * @actor: handler that splices the data
875 *
876 * Description:
877 * This function does little more than loop over the pipe and call
878 * @actor to do the actual moving of a single struct pipe_buffer to
879 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
880 * pipe_to_user.
881 *
882 */
883 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
884 splice_actor *actor)
885 {
886 int ret;
887
888 splice_from_pipe_begin(sd);
889 do {
890 ret = splice_from_pipe_next(pipe, sd);
891 if (ret > 0)
892 ret = splice_from_pipe_feed(pipe, sd, actor);
893 } while (ret > 0);
894 splice_from_pipe_end(pipe, sd);
895
896 return sd->num_spliced ? sd->num_spliced : ret;
897 }
898 EXPORT_SYMBOL(__splice_from_pipe);
899
900 /**
901 * splice_from_pipe - splice data from a pipe to a file
902 * @pipe: pipe to splice from
903 * @out: file to splice to
904 * @ppos: position in @out
905 * @len: how many bytes to splice
906 * @flags: splice modifier flags
907 * @actor: handler that splices the data
908 *
909 * Description:
910 * See __splice_from_pipe. This function locks the pipe inode,
911 * otherwise it's identical to __splice_from_pipe().
912 *
913 */
914 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
915 loff_t *ppos, size_t len, unsigned int flags,
916 splice_actor *actor)
917 {
918 ssize_t ret;
919 struct splice_desc sd = {
920 .total_len = len,
921 .flags = flags,
922 .pos = *ppos,
923 .u.file = out,
924 };
925
926 pipe_lock(pipe);
927 ret = __splice_from_pipe(pipe, &sd, actor);
928 pipe_unlock(pipe);
929
930 return ret;
931 }
932
933 /**
934 * generic_file_splice_write - splice data from a pipe to a file
935 * @pipe: pipe info
936 * @out: file to write to
937 * @ppos: position in @out
938 * @len: number of bytes to splice
939 * @flags: splice modifier flags
940 *
941 * Description:
942 * Will either move or copy pages (determined by @flags options) from
943 * the given pipe inode to the given file.
944 *
945 */
946 ssize_t
947 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
948 loff_t *ppos, size_t len, unsigned int flags)
949 {
950 struct address_space *mapping = out->f_mapping;
951 struct inode *inode = mapping->host;
952 struct splice_desc sd = {
953 .total_len = len,
954 .flags = flags,
955 .pos = *ppos,
956 .u.file = out,
957 };
958 ssize_t ret;
959
960 pipe_lock(pipe);
961
962 splice_from_pipe_begin(&sd);
963 do {
964 ret = splice_from_pipe_next(pipe, &sd);
965 if (ret <= 0)
966 break;
967
968 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
969 ret = file_remove_suid(out);
970 if (!ret) {
971 file_update_time(out);
972 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
973 }
974 mutex_unlock(&inode->i_mutex);
975 } while (ret > 0);
976 splice_from_pipe_end(pipe, &sd);
977
978 pipe_unlock(pipe);
979
980 if (sd.num_spliced)
981 ret = sd.num_spliced;
982
983 if (ret > 0) {
984 unsigned long nr_pages;
985 int err;
986
987 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
988
989 err = generic_write_sync(out, *ppos, ret);
990 if (err)
991 ret = err;
992 else
993 *ppos += ret;
994 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
995 }
996
997 return ret;
998 }
999
1000 EXPORT_SYMBOL(generic_file_splice_write);
1001
1002 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1003 struct splice_desc *sd)
1004 {
1005 int ret;
1006 void *data;
1007
1008 ret = buf->ops->confirm(pipe, buf);
1009 if (ret)
1010 return ret;
1011
1012 data = buf->ops->map(pipe, buf, 0);
1013 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1014 buf->ops->unmap(pipe, buf, data);
1015
1016 return ret;
1017 }
1018
1019 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1020 struct file *out, loff_t *ppos,
1021 size_t len, unsigned int flags)
1022 {
1023 ssize_t ret;
1024
1025 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1026 if (ret > 0)
1027 *ppos += ret;
1028
1029 return ret;
1030 }
1031
1032 /**
1033 * generic_splice_sendpage - splice data from a pipe to a socket
1034 * @pipe: pipe to splice from
1035 * @out: socket to write to
1036 * @ppos: position in @out
1037 * @len: number of bytes to splice
1038 * @flags: splice modifier flags
1039 *
1040 * Description:
1041 * Will send @len bytes from the pipe to a network socket. No data copying
1042 * is involved.
1043 *
1044 */
1045 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1046 loff_t *ppos, size_t len, unsigned int flags)
1047 {
1048 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1049 }
1050
1051 EXPORT_SYMBOL(generic_splice_sendpage);
1052
1053 /*
1054 * Attempt to initiate a splice from pipe to file.
1055 */
1056 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1057 loff_t *ppos, size_t len, unsigned int flags)
1058 {
1059 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1060 loff_t *, size_t, unsigned int);
1061 int ret;
1062
1063 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1064 return -EBADF;
1065
1066 if (unlikely(out->f_flags & O_APPEND))
1067 return -EINVAL;
1068
1069 ret = rw_verify_area(WRITE, out, ppos, len);
1070 if (unlikely(ret < 0))
1071 return ret;
1072
1073 if (out->f_op && out->f_op->splice_write)
1074 splice_write = out->f_op->splice_write;
1075 else
1076 splice_write = default_file_splice_write;
1077
1078 return splice_write(pipe, out, ppos, len, flags);
1079 }
1080
1081 /*
1082 * Attempt to initiate a splice from a file to a pipe.
1083 */
1084 static long do_splice_to(struct file *in, loff_t *ppos,
1085 struct pipe_inode_info *pipe, size_t len,
1086 unsigned int flags)
1087 {
1088 ssize_t (*splice_read)(struct file *, loff_t *,
1089 struct pipe_inode_info *, size_t, unsigned int);
1090 int ret;
1091
1092 if (unlikely(!(in->f_mode & FMODE_READ)))
1093 return -EBADF;
1094
1095 ret = rw_verify_area(READ, in, ppos, len);
1096 if (unlikely(ret < 0))
1097 return ret;
1098
1099 if (in->f_op && in->f_op->splice_read)
1100 splice_read = in->f_op->splice_read;
1101 else
1102 splice_read = default_file_splice_read;
1103
1104 return splice_read(in, ppos, pipe, len, flags);
1105 }
1106
1107 /**
1108 * splice_direct_to_actor - splices data directly between two non-pipes
1109 * @in: file to splice from
1110 * @sd: actor information on where to splice to
1111 * @actor: handles the data splicing
1112 *
1113 * Description:
1114 * This is a special case helper to splice directly between two
1115 * points, without requiring an explicit pipe. Internally an allocated
1116 * pipe is cached in the process, and reused during the lifetime of
1117 * that process.
1118 *
1119 */
1120 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1121 splice_direct_actor *actor)
1122 {
1123 struct pipe_inode_info *pipe;
1124 long ret, bytes;
1125 umode_t i_mode;
1126 size_t len;
1127 int i, flags;
1128
1129 /*
1130 * We require the input being a regular file, as we don't want to
1131 * randomly drop data for eg socket -> socket splicing. Use the
1132 * piped splicing for that!
1133 */
1134 i_mode = in->f_path.dentry->d_inode->i_mode;
1135 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1136 return -EINVAL;
1137
1138 /*
1139 * neither in nor out is a pipe, setup an internal pipe attached to
1140 * 'out' and transfer the wanted data from 'in' to 'out' through that
1141 */
1142 pipe = current->splice_pipe;
1143 if (unlikely(!pipe)) {
1144 pipe = alloc_pipe_info(NULL);
1145 if (!pipe)
1146 return -ENOMEM;
1147
1148 /*
1149 * We don't have an immediate reader, but we'll read the stuff
1150 * out of the pipe right after the splice_to_pipe(). So set
1151 * PIPE_READERS appropriately.
1152 */
1153 pipe->readers = 1;
1154
1155 current->splice_pipe = pipe;
1156 }
1157
1158 /*
1159 * Do the splice.
1160 */
1161 ret = 0;
1162 bytes = 0;
1163 len = sd->total_len;
1164 flags = sd->flags;
1165
1166 /*
1167 * Don't block on output, we have to drain the direct pipe.
1168 */
1169 sd->flags &= ~SPLICE_F_NONBLOCK;
1170
1171 while (len) {
1172 size_t read_len;
1173 loff_t pos = sd->pos, prev_pos = pos;
1174
1175 ret = do_splice_to(in, &pos, pipe, len, flags);
1176 if (unlikely(ret <= 0))
1177 goto out_release;
1178
1179 read_len = ret;
1180 sd->total_len = read_len;
1181
1182 /*
1183 * NOTE: nonblocking mode only applies to the input. We
1184 * must not do the output in nonblocking mode as then we
1185 * could get stuck data in the internal pipe:
1186 */
1187 ret = actor(pipe, sd);
1188 if (unlikely(ret <= 0)) {
1189 sd->pos = prev_pos;
1190 goto out_release;
1191 }
1192
1193 bytes += ret;
1194 len -= ret;
1195 sd->pos = pos;
1196
1197 if (ret < read_len) {
1198 sd->pos = prev_pos + ret;
1199 goto out_release;
1200 }
1201 }
1202
1203 done:
1204 pipe->nrbufs = pipe->curbuf = 0;
1205 file_accessed(in);
1206 return bytes;
1207
1208 out_release:
1209 /*
1210 * If we did an incomplete transfer we must release
1211 * the pipe buffers in question:
1212 */
1213 for (i = 0; i < PIPE_BUFFERS; i++) {
1214 struct pipe_buffer *buf = pipe->bufs + i;
1215
1216 if (buf->ops) {
1217 buf->ops->release(pipe, buf);
1218 buf->ops = NULL;
1219 }
1220 }
1221
1222 if (!bytes)
1223 bytes = ret;
1224
1225 goto done;
1226 }
1227 EXPORT_SYMBOL(splice_direct_to_actor);
1228
1229 static int direct_splice_actor(struct pipe_inode_info *pipe,
1230 struct splice_desc *sd)
1231 {
1232 struct file *file = sd->u.file;
1233
1234 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1235 }
1236
1237 /**
1238 * do_splice_direct - splices data directly between two files
1239 * @in: file to splice from
1240 * @ppos: input file offset
1241 * @out: file to splice to
1242 * @len: number of bytes to splice
1243 * @flags: splice modifier flags
1244 *
1245 * Description:
1246 * For use by do_sendfile(). splice can easily emulate sendfile, but
1247 * doing it in the application would incur an extra system call
1248 * (splice in + splice out, as compared to just sendfile()). So this helper
1249 * can splice directly through a process-private pipe.
1250 *
1251 */
1252 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1253 size_t len, unsigned int flags)
1254 {
1255 struct splice_desc sd = {
1256 .len = len,
1257 .total_len = len,
1258 .flags = flags,
1259 .pos = *ppos,
1260 .u.file = out,
1261 };
1262 long ret;
1263
1264 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1265 if (ret > 0)
1266 *ppos = sd.pos;
1267
1268 return ret;
1269 }
1270
1271 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1272 struct pipe_inode_info *opipe,
1273 size_t len, unsigned int flags);
1274 /*
1275 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1276 * location, so checking ->i_pipe is not enough to verify that this is a
1277 * pipe.
1278 */
1279 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1280 {
1281 if (S_ISFIFO(inode->i_mode))
1282 return inode->i_pipe;
1283
1284 return NULL;
1285 }
1286
1287 /*
1288 * Determine where to splice to/from.
1289 */
1290 static long do_splice(struct file *in, loff_t __user *off_in,
1291 struct file *out, loff_t __user *off_out,
1292 size_t len, unsigned int flags)
1293 {
1294 struct pipe_inode_info *ipipe;
1295 struct pipe_inode_info *opipe;
1296 loff_t offset, *off;
1297 long ret;
1298
1299 ipipe = pipe_info(in->f_path.dentry->d_inode);
1300 opipe = pipe_info(out->f_path.dentry->d_inode);
1301
1302 if (ipipe && opipe) {
1303 if (off_in || off_out)
1304 return -ESPIPE;
1305
1306 if (!(in->f_mode & FMODE_READ))
1307 return -EBADF;
1308
1309 if (!(out->f_mode & FMODE_WRITE))
1310 return -EBADF;
1311
1312 /* Splicing to self would be fun, but... */
1313 if (ipipe == opipe)
1314 return -EINVAL;
1315
1316 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1317 }
1318
1319 if (ipipe) {
1320 if (off_in)
1321 return -ESPIPE;
1322 if (off_out) {
1323 if (!out->f_op || !out->f_op->llseek ||
1324 out->f_op->llseek == no_llseek)
1325 return -EINVAL;
1326 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1327 return -EFAULT;
1328 off = &offset;
1329 } else
1330 off = &out->f_pos;
1331
1332 ret = do_splice_from(ipipe, out, off, len, flags);
1333
1334 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1335 ret = -EFAULT;
1336
1337 return ret;
1338 }
1339
1340 if (opipe) {
1341 if (off_out)
1342 return -ESPIPE;
1343 if (off_in) {
1344 if (!in->f_op || !in->f_op->llseek ||
1345 in->f_op->llseek == no_llseek)
1346 return -EINVAL;
1347 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1348 return -EFAULT;
1349 off = &offset;
1350 } else
1351 off = &in->f_pos;
1352
1353 ret = do_splice_to(in, off, opipe, len, flags);
1354
1355 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1356 ret = -EFAULT;
1357
1358 return ret;
1359 }
1360
1361 return -EINVAL;
1362 }
1363
1364 /*
1365 * Map an iov into an array of pages and offset/length tupples. With the
1366 * partial_page structure, we can map several non-contiguous ranges into
1367 * our ones pages[] map instead of splitting that operation into pieces.
1368 * Could easily be exported as a generic helper for other users, in which
1369 * case one would probably want to add a 'max_nr_pages' parameter as well.
1370 */
1371 static int get_iovec_page_array(const struct iovec __user *iov,
1372 unsigned int nr_vecs, struct page **pages,
1373 struct partial_page *partial, int aligned)
1374 {
1375 int buffers = 0, error = 0;
1376
1377 while (nr_vecs) {
1378 unsigned long off, npages;
1379 struct iovec entry;
1380 void __user *base;
1381 size_t len;
1382 int i;
1383
1384 error = -EFAULT;
1385 if (copy_from_user(&entry, iov, sizeof(entry)))
1386 break;
1387
1388 base = entry.iov_base;
1389 len = entry.iov_len;
1390
1391 /*
1392 * Sanity check this iovec. 0 read succeeds.
1393 */
1394 error = 0;
1395 if (unlikely(!len))
1396 break;
1397 error = -EFAULT;
1398 if (!access_ok(VERIFY_READ, base, len))
1399 break;
1400
1401 /*
1402 * Get this base offset and number of pages, then map
1403 * in the user pages.
1404 */
1405 off = (unsigned long) base & ~PAGE_MASK;
1406
1407 /*
1408 * If asked for alignment, the offset must be zero and the
1409 * length a multiple of the PAGE_SIZE.
1410 */
1411 error = -EINVAL;
1412 if (aligned && (off || len & ~PAGE_MASK))
1413 break;
1414
1415 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1416 if (npages > PIPE_BUFFERS - buffers)
1417 npages = PIPE_BUFFERS - buffers;
1418
1419 error = get_user_pages_fast((unsigned long)base, npages,
1420 0, &pages[buffers]);
1421
1422 if (unlikely(error <= 0))
1423 break;
1424
1425 /*
1426 * Fill this contiguous range into the partial page map.
1427 */
1428 for (i = 0; i < error; i++) {
1429 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1430
1431 partial[buffers].offset = off;
1432 partial[buffers].len = plen;
1433
1434 off = 0;
1435 len -= plen;
1436 buffers++;
1437 }
1438
1439 /*
1440 * We didn't complete this iov, stop here since it probably
1441 * means we have to move some of this into a pipe to
1442 * be able to continue.
1443 */
1444 if (len)
1445 break;
1446
1447 /*
1448 * Don't continue if we mapped fewer pages than we asked for,
1449 * or if we mapped the max number of pages that we have
1450 * room for.
1451 */
1452 if (error < npages || buffers == PIPE_BUFFERS)
1453 break;
1454
1455 nr_vecs--;
1456 iov++;
1457 }
1458
1459 if (buffers)
1460 return buffers;
1461
1462 return error;
1463 }
1464
1465 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1466 struct splice_desc *sd)
1467 {
1468 char *src;
1469 int ret;
1470
1471 ret = buf->ops->confirm(pipe, buf);
1472 if (unlikely(ret))
1473 return ret;
1474
1475 /*
1476 * See if we can use the atomic maps, by prefaulting in the
1477 * pages and doing an atomic copy
1478 */
1479 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1480 src = buf->ops->map(pipe, buf, 1);
1481 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1482 sd->len);
1483 buf->ops->unmap(pipe, buf, src);
1484 if (!ret) {
1485 ret = sd->len;
1486 goto out;
1487 }
1488 }
1489
1490 /*
1491 * No dice, use slow non-atomic map and copy
1492 */
1493 src = buf->ops->map(pipe, buf, 0);
1494
1495 ret = sd->len;
1496 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1497 ret = -EFAULT;
1498
1499 buf->ops->unmap(pipe, buf, src);
1500 out:
1501 if (ret > 0)
1502 sd->u.userptr += ret;
1503 return ret;
1504 }
1505
1506 /*
1507 * For lack of a better implementation, implement vmsplice() to userspace
1508 * as a simple copy of the pipes pages to the user iov.
1509 */
1510 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1511 unsigned long nr_segs, unsigned int flags)
1512 {
1513 struct pipe_inode_info *pipe;
1514 struct splice_desc sd;
1515 ssize_t size;
1516 int error;
1517 long ret;
1518
1519 pipe = pipe_info(file->f_path.dentry->d_inode);
1520 if (!pipe)
1521 return -EBADF;
1522
1523 pipe_lock(pipe);
1524
1525 error = ret = 0;
1526 while (nr_segs) {
1527 void __user *base;
1528 size_t len;
1529
1530 /*
1531 * Get user address base and length for this iovec.
1532 */
1533 error = get_user(base, &iov->iov_base);
1534 if (unlikely(error))
1535 break;
1536 error = get_user(len, &iov->iov_len);
1537 if (unlikely(error))
1538 break;
1539
1540 /*
1541 * Sanity check this iovec. 0 read succeeds.
1542 */
1543 if (unlikely(!len))
1544 break;
1545 if (unlikely(!base)) {
1546 error = -EFAULT;
1547 break;
1548 }
1549
1550 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1551 error = -EFAULT;
1552 break;
1553 }
1554
1555 sd.len = 0;
1556 sd.total_len = len;
1557 sd.flags = flags;
1558 sd.u.userptr = base;
1559 sd.pos = 0;
1560
1561 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1562 if (size < 0) {
1563 if (!ret)
1564 ret = size;
1565
1566 break;
1567 }
1568
1569 ret += size;
1570
1571 if (size < len)
1572 break;
1573
1574 nr_segs--;
1575 iov++;
1576 }
1577
1578 pipe_unlock(pipe);
1579
1580 if (!ret)
1581 ret = error;
1582
1583 return ret;
1584 }
1585
1586 /*
1587 * vmsplice splices a user address range into a pipe. It can be thought of
1588 * as splice-from-memory, where the regular splice is splice-from-file (or
1589 * to file). In both cases the output is a pipe, naturally.
1590 */
1591 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1592 unsigned long nr_segs, unsigned int flags)
1593 {
1594 struct pipe_inode_info *pipe;
1595 struct page *pages[PIPE_BUFFERS];
1596 struct partial_page partial[PIPE_BUFFERS];
1597 struct splice_pipe_desc spd = {
1598 .pages = pages,
1599 .partial = partial,
1600 .flags = flags,
1601 .ops = &user_page_pipe_buf_ops,
1602 .spd_release = spd_release_page,
1603 };
1604
1605 pipe = pipe_info(file->f_path.dentry->d_inode);
1606 if (!pipe)
1607 return -EBADF;
1608
1609 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1610 flags & SPLICE_F_GIFT);
1611 if (spd.nr_pages <= 0)
1612 return spd.nr_pages;
1613
1614 return splice_to_pipe(pipe, &spd);
1615 }
1616
1617 /*
1618 * Note that vmsplice only really supports true splicing _from_ user memory
1619 * to a pipe, not the other way around. Splicing from user memory is a simple
1620 * operation that can be supported without any funky alignment restrictions
1621 * or nasty vm tricks. We simply map in the user memory and fill them into
1622 * a pipe. The reverse isn't quite as easy, though. There are two possible
1623 * solutions for that:
1624 *
1625 * - memcpy() the data internally, at which point we might as well just
1626 * do a regular read() on the buffer anyway.
1627 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1628 * has restriction limitations on both ends of the pipe).
1629 *
1630 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1631 *
1632 */
1633 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1634 unsigned long, nr_segs, unsigned int, flags)
1635 {
1636 struct file *file;
1637 long error;
1638 int fput;
1639
1640 if (unlikely(nr_segs > UIO_MAXIOV))
1641 return -EINVAL;
1642 else if (unlikely(!nr_segs))
1643 return 0;
1644
1645 error = -EBADF;
1646 file = fget_light(fd, &fput);
1647 if (file) {
1648 if (file->f_mode & FMODE_WRITE)
1649 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1650 else if (file->f_mode & FMODE_READ)
1651 error = vmsplice_to_user(file, iov, nr_segs, flags);
1652
1653 fput_light(file, fput);
1654 }
1655
1656 return error;
1657 }
1658
1659 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1660 int, fd_out, loff_t __user *, off_out,
1661 size_t, len, unsigned int, flags)
1662 {
1663 long error;
1664 struct file *in, *out;
1665 int fput_in, fput_out;
1666
1667 if (unlikely(!len))
1668 return 0;
1669
1670 error = -EBADF;
1671 in = fget_light(fd_in, &fput_in);
1672 if (in) {
1673 if (in->f_mode & FMODE_READ) {
1674 out = fget_light(fd_out, &fput_out);
1675 if (out) {
1676 if (out->f_mode & FMODE_WRITE)
1677 error = do_splice(in, off_in,
1678 out, off_out,
1679 len, flags);
1680 fput_light(out, fput_out);
1681 }
1682 }
1683
1684 fput_light(in, fput_in);
1685 }
1686
1687 return error;
1688 }
1689
1690 /*
1691 * Make sure there's data to read. Wait for input if we can, otherwise
1692 * return an appropriate error.
1693 */
1694 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1695 {
1696 int ret;
1697
1698 /*
1699 * Check ->nrbufs without the inode lock first. This function
1700 * is speculative anyways, so missing one is ok.
1701 */
1702 if (pipe->nrbufs)
1703 return 0;
1704
1705 ret = 0;
1706 pipe_lock(pipe);
1707
1708 while (!pipe->nrbufs) {
1709 if (signal_pending(current)) {
1710 ret = -ERESTARTSYS;
1711 break;
1712 }
1713 if (!pipe->writers)
1714 break;
1715 if (!pipe->waiting_writers) {
1716 if (flags & SPLICE_F_NONBLOCK) {
1717 ret = -EAGAIN;
1718 break;
1719 }
1720 }
1721 pipe_wait(pipe);
1722 }
1723
1724 pipe_unlock(pipe);
1725 return ret;
1726 }
1727
1728 /*
1729 * Make sure there's writeable room. Wait for room if we can, otherwise
1730 * return an appropriate error.
1731 */
1732 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1733 {
1734 int ret;
1735
1736 /*
1737 * Check ->nrbufs without the inode lock first. This function
1738 * is speculative anyways, so missing one is ok.
1739 */
1740 if (pipe->nrbufs < PIPE_BUFFERS)
1741 return 0;
1742
1743 ret = 0;
1744 pipe_lock(pipe);
1745
1746 while (pipe->nrbufs >= PIPE_BUFFERS) {
1747 if (!pipe->readers) {
1748 send_sig(SIGPIPE, current, 0);
1749 ret = -EPIPE;
1750 break;
1751 }
1752 if (flags & SPLICE_F_NONBLOCK) {
1753 ret = -EAGAIN;
1754 break;
1755 }
1756 if (signal_pending(current)) {
1757 ret = -ERESTARTSYS;
1758 break;
1759 }
1760 pipe->waiting_writers++;
1761 pipe_wait(pipe);
1762 pipe->waiting_writers--;
1763 }
1764
1765 pipe_unlock(pipe);
1766 return ret;
1767 }
1768
1769 /*
1770 * Splice contents of ipipe to opipe.
1771 */
1772 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1773 struct pipe_inode_info *opipe,
1774 size_t len, unsigned int flags)
1775 {
1776 struct pipe_buffer *ibuf, *obuf;
1777 int ret = 0, nbuf;
1778 bool input_wakeup = false;
1779
1780
1781 retry:
1782 ret = ipipe_prep(ipipe, flags);
1783 if (ret)
1784 return ret;
1785
1786 ret = opipe_prep(opipe, flags);
1787 if (ret)
1788 return ret;
1789
1790 /*
1791 * Potential ABBA deadlock, work around it by ordering lock
1792 * grabbing by pipe info address. Otherwise two different processes
1793 * could deadlock (one doing tee from A -> B, the other from B -> A).
1794 */
1795 pipe_double_lock(ipipe, opipe);
1796
1797 do {
1798 if (!opipe->readers) {
1799 send_sig(SIGPIPE, current, 0);
1800 if (!ret)
1801 ret = -EPIPE;
1802 break;
1803 }
1804
1805 if (!ipipe->nrbufs && !ipipe->writers)
1806 break;
1807
1808 /*
1809 * Cannot make any progress, because either the input
1810 * pipe is empty or the output pipe is full.
1811 */
1812 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1813 /* Already processed some buffers, break */
1814 if (ret)
1815 break;
1816
1817 if (flags & SPLICE_F_NONBLOCK) {
1818 ret = -EAGAIN;
1819 break;
1820 }
1821
1822 /*
1823 * We raced with another reader/writer and haven't
1824 * managed to process any buffers. A zero return
1825 * value means EOF, so retry instead.
1826 */
1827 pipe_unlock(ipipe);
1828 pipe_unlock(opipe);
1829 goto retry;
1830 }
1831
1832 ibuf = ipipe->bufs + ipipe->curbuf;
1833 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1834 obuf = opipe->bufs + nbuf;
1835
1836 if (len >= ibuf->len) {
1837 /*
1838 * Simply move the whole buffer from ipipe to opipe
1839 */
1840 *obuf = *ibuf;
1841 ibuf->ops = NULL;
1842 opipe->nrbufs++;
1843 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1844 ipipe->nrbufs--;
1845 input_wakeup = true;
1846 } else {
1847 /*
1848 * Get a reference to this pipe buffer,
1849 * so we can copy the contents over.
1850 */
1851 ibuf->ops->get(ipipe, ibuf);
1852 *obuf = *ibuf;
1853
1854 /*
1855 * Don't inherit the gift flag, we need to
1856 * prevent multiple steals of this page.
1857 */
1858 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1859
1860 obuf->len = len;
1861 opipe->nrbufs++;
1862 ibuf->offset += obuf->len;
1863 ibuf->len -= obuf->len;
1864 }
1865 ret += obuf->len;
1866 len -= obuf->len;
1867 } while (len);
1868
1869 pipe_unlock(ipipe);
1870 pipe_unlock(opipe);
1871
1872 /*
1873 * If we put data in the output pipe, wakeup any potential readers.
1874 */
1875 if (ret > 0) {
1876 smp_mb();
1877 if (waitqueue_active(&opipe->wait))
1878 wake_up_interruptible(&opipe->wait);
1879 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1880 }
1881 if (input_wakeup)
1882 wakeup_pipe_writers(ipipe);
1883
1884 return ret;
1885 }
1886
1887 /*
1888 * Link contents of ipipe to opipe.
1889 */
1890 static int link_pipe(struct pipe_inode_info *ipipe,
1891 struct pipe_inode_info *opipe,
1892 size_t len, unsigned int flags)
1893 {
1894 struct pipe_buffer *ibuf, *obuf;
1895 int ret = 0, i = 0, nbuf;
1896
1897 /*
1898 * Potential ABBA deadlock, work around it by ordering lock
1899 * grabbing by pipe info address. Otherwise two different processes
1900 * could deadlock (one doing tee from A -> B, the other from B -> A).
1901 */
1902 pipe_double_lock(ipipe, opipe);
1903
1904 do {
1905 if (!opipe->readers) {
1906 send_sig(SIGPIPE, current, 0);
1907 if (!ret)
1908 ret = -EPIPE;
1909 break;
1910 }
1911
1912 /*
1913 * If we have iterated all input buffers or ran out of
1914 * output room, break.
1915 */
1916 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1917 break;
1918
1919 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1920 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1921
1922 /*
1923 * Get a reference to this pipe buffer,
1924 * so we can copy the contents over.
1925 */
1926 ibuf->ops->get(ipipe, ibuf);
1927
1928 obuf = opipe->bufs + nbuf;
1929 *obuf = *ibuf;
1930
1931 /*
1932 * Don't inherit the gift flag, we need to
1933 * prevent multiple steals of this page.
1934 */
1935 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1936
1937 if (obuf->len > len)
1938 obuf->len = len;
1939
1940 opipe->nrbufs++;
1941 ret += obuf->len;
1942 len -= obuf->len;
1943 i++;
1944 } while (len);
1945
1946 /*
1947 * return EAGAIN if we have the potential of some data in the
1948 * future, otherwise just return 0
1949 */
1950 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1951 ret = -EAGAIN;
1952
1953 pipe_unlock(ipipe);
1954 pipe_unlock(opipe);
1955
1956 /*
1957 * If we put data in the output pipe, wakeup any potential readers.
1958 */
1959 if (ret > 0) {
1960 smp_mb();
1961 if (waitqueue_active(&opipe->wait))
1962 wake_up_interruptible(&opipe->wait);
1963 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1964 }
1965
1966 return ret;
1967 }
1968
1969 /*
1970 * This is a tee(1) implementation that works on pipes. It doesn't copy
1971 * any data, it simply references the 'in' pages on the 'out' pipe.
1972 * The 'flags' used are the SPLICE_F_* variants, currently the only
1973 * applicable one is SPLICE_F_NONBLOCK.
1974 */
1975 static long do_tee(struct file *in, struct file *out, size_t len,
1976 unsigned int flags)
1977 {
1978 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1979 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1980 int ret = -EINVAL;
1981
1982 /*
1983 * Duplicate the contents of ipipe to opipe without actually
1984 * copying the data.
1985 */
1986 if (ipipe && opipe && ipipe != opipe) {
1987 /*
1988 * Keep going, unless we encounter an error. The ipipe/opipe
1989 * ordering doesn't really matter.
1990 */
1991 ret = ipipe_prep(ipipe, flags);
1992 if (!ret) {
1993 ret = opipe_prep(opipe, flags);
1994 if (!ret)
1995 ret = link_pipe(ipipe, opipe, len, flags);
1996 }
1997 }
1998
1999 return ret;
2000 }
2001
2002 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2003 {
2004 struct file *in;
2005 int error, fput_in;
2006
2007 if (unlikely(!len))
2008 return 0;
2009
2010 error = -EBADF;
2011 in = fget_light(fdin, &fput_in);
2012 if (in) {
2013 if (in->f_mode & FMODE_READ) {
2014 int fput_out;
2015 struct file *out = fget_light(fdout, &fput_out);
2016
2017 if (out) {
2018 if (out->f_mode & FMODE_WRITE)
2019 error = do_tee(in, out, len, flags);
2020 fput_light(out, fput_out);
2021 }
2022 }
2023 fput_light(in, fput_in);
2024 }
2025
2026 return error;
2027 }