]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/splice.c
Merge branch 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block
[mirror_ubuntu-artful-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, mapping_gfp_mask(mapping));
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
259
260 return ret;
261 }
262
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
267 {
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
295 */
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298
299 /*
300 * Now fill in the holes:
301 */
302 error = 0;
303 total_len = 0;
304
305 /*
306 * Lookup the (hopefully) full range of pages we need.
307 */
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309
310 /*
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
313 */
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
316 /*
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
319 */
320 page = find_get_page(mapping, index);
321 if (!page) {
322 /*
323 * Make sure the read-ahead engine is notified
324 * about this failure.
325 */
326 handle_ra_miss(mapping, &in->f_ra, index);
327
328 /*
329 * page didn't exist, allocate one.
330 */
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
334
335 error = add_to_page_cache_lru(page, mapping, index,
336 mapping_gfp_mask(mapping));
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
342 }
343 /*
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
346 */
347 unlock_page(page);
348 }
349
350 pages[spd.nr_pages++] = page;
351 index++;
352 }
353
354 /*
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
357 */
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
363
364 if (!len)
365 break;
366
367 /*
368 * this_len is the max we'll use from this page
369 */
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
372
373 /*
374 * If the page isn't uptodate, we may need to start io on it
375 */
376 if (!PageUptodate(page)) {
377 /*
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
380 */
381 if (flags & SPLICE_F_NONBLOCK)
382 break;
383
384 lock_page(page);
385
386 /*
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
389 * added
390 */
391 if (!page->mapping) {
392 unlock_page(page);
393 break;
394 }
395 /*
396 * page was already under io and is now done, great
397 */
398 if (PageUptodate(page)) {
399 unlock_page(page);
400 goto fill_it;
401 }
402
403 /*
404 * need to read in the page
405 */
406 error = mapping->a_ops->readpage(in, page);
407 if (unlikely(error)) {
408 /*
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
413 */
414 if (error == AOP_TRUNCATED_PAGE)
415 error = 0;
416
417 break;
418 }
419
420 /*
421 * i_size must be checked after ->readpage().
422 */
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
427
428 /*
429 * if this is the last page, see if we need to shrink
430 * the length and stop
431 */
432 if (end_index == index) {
433 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 if (total_len + loff > isize)
435 break;
436 /*
437 * force quit after adding this page
438 */
439 len = this_len;
440 this_len = min(this_len, loff);
441 loff = 0;
442 }
443 }
444 fill_it:
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 total_len += this_len;
449 loff = 0;
450 spd.nr_pages++;
451 index++;
452 }
453
454 /*
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
457 */
458 while (page_nr < nr_pages)
459 page_cache_release(pages[page_nr++]);
460
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
463
464 return error;
465 }
466
467 /**
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
473 *
474 * Will read pages from given file and fill them into a pipe.
475 */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
479 {
480 ssize_t spliced;
481 int ret;
482
483 ret = 0;
484 spliced = 0;
485
486 while (len) {
487 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488
489 if (ret < 0)
490 break;
491 else if (!ret) {
492 if (spliced)
493 break;
494 if (flags & SPLICE_F_NONBLOCK) {
495 ret = -EAGAIN;
496 break;
497 }
498 }
499
500 *ppos += ret;
501 len -= ret;
502 spliced += ret;
503 }
504
505 if (spliced)
506 return spliced;
507
508 return ret;
509 }
510
511 EXPORT_SYMBOL(generic_file_splice_read);
512
513 /*
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
516 */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 struct file *file = sd->file;
521 loff_t pos = sd->pos;
522 int ret, more;
523
524 ret = buf->ops->pin(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
530 }
531
532 return ret;
533 }
534
535 /*
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
538 *
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
547 *
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
554 */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
557 {
558 struct file *file = sd->file;
559 struct address_space *mapping = file->f_mapping;
560 gfp_t gfp_mask = mapping_gfp_mask(mapping);
561 unsigned int offset, this_len;
562 struct page *page;
563 pgoff_t index;
564 int ret;
565
566 /*
567 * make sure the data in this buffer is uptodate
568 */
569 ret = buf->ops->pin(pipe, buf);
570 if (unlikely(ret))
571 return ret;
572
573 index = sd->pos >> PAGE_CACHE_SHIFT;
574 offset = sd->pos & ~PAGE_CACHE_MASK;
575
576 this_len = sd->len;
577 if (this_len + offset > PAGE_CACHE_SIZE)
578 this_len = PAGE_CACHE_SIZE - offset;
579
580 /*
581 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
582 * page.
583 */
584 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
585 /*
586 * If steal succeeds, buf->page is now pruned from the
587 * pagecache and we can reuse it. The page will also be
588 * locked on successful return.
589 */
590 if (buf->ops->steal(pipe, buf))
591 goto find_page;
592
593 page = buf->page;
594 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
595 unlock_page(page);
596 goto find_page;
597 }
598
599 page_cache_get(page);
600
601 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
602 lru_cache_add(page);
603 } else {
604 find_page:
605 page = find_lock_page(mapping, index);
606 if (!page) {
607 ret = -ENOMEM;
608 page = page_cache_alloc_cold(mapping);
609 if (unlikely(!page))
610 goto out_ret;
611
612 /*
613 * This will also lock the page
614 */
615 ret = add_to_page_cache_lru(page, mapping, index,
616 gfp_mask);
617 if (unlikely(ret))
618 goto out;
619 }
620
621 /*
622 * We get here with the page locked. If the page is also
623 * uptodate, we don't need to do more. If it isn't, we
624 * may need to bring it in if we are not going to overwrite
625 * the full page.
626 */
627 if (!PageUptodate(page)) {
628 if (this_len < PAGE_CACHE_SIZE) {
629 ret = mapping->a_ops->readpage(file, page);
630 if (unlikely(ret))
631 goto out;
632
633 lock_page(page);
634
635 if (!PageUptodate(page)) {
636 /*
637 * Page got invalidated, repeat.
638 */
639 if (!page->mapping) {
640 unlock_page(page);
641 page_cache_release(page);
642 goto find_page;
643 }
644 ret = -EIO;
645 goto out;
646 }
647 } else
648 SetPageUptodate(page);
649 }
650 }
651
652 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
653 if (unlikely(ret)) {
654 loff_t isize = i_size_read(mapping->host);
655
656 if (ret != AOP_TRUNCATED_PAGE)
657 unlock_page(page);
658 page_cache_release(page);
659 if (ret == AOP_TRUNCATED_PAGE)
660 goto find_page;
661
662 /*
663 * prepare_write() may have instantiated a few blocks
664 * outside i_size. Trim these off again.
665 */
666 if (sd->pos + this_len > isize)
667 vmtruncate(mapping->host, isize);
668
669 goto out_ret;
670 }
671
672 if (buf->page != page) {
673 /*
674 * Careful, ->map() uses KM_USER0!
675 */
676 char *src = buf->ops->map(pipe, buf, 1);
677 char *dst = kmap_atomic(page, KM_USER1);
678
679 memcpy(dst + offset, src + buf->offset, this_len);
680 flush_dcache_page(page);
681 kunmap_atomic(dst, KM_USER1);
682 buf->ops->unmap(pipe, buf, src);
683 }
684
685 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
686 if (!ret) {
687 /*
688 * Return the number of bytes written and mark page as
689 * accessed, we are now done!
690 */
691 ret = this_len;
692 mark_page_accessed(page);
693 balance_dirty_pages_ratelimited(mapping);
694 } else if (ret == AOP_TRUNCATED_PAGE) {
695 page_cache_release(page);
696 goto find_page;
697 }
698 out:
699 page_cache_release(page);
700 unlock_page(page);
701 out_ret:
702 return ret;
703 }
704
705 /*
706 * Pipe input worker. Most of this logic works like a regular pipe, the
707 * key here is the 'actor' worker passed in that actually moves the data
708 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
709 */
710 static ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
711 struct file *out, loff_t *ppos, size_t len,
712 unsigned int flags, splice_actor *actor)
713 {
714 int ret, do_wakeup, err;
715 struct splice_desc sd;
716
717 ret = 0;
718 do_wakeup = 0;
719
720 sd.total_len = len;
721 sd.flags = flags;
722 sd.file = out;
723 sd.pos = *ppos;
724
725 for (;;) {
726 if (pipe->nrbufs) {
727 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
728 struct pipe_buf_operations *ops = buf->ops;
729
730 sd.len = buf->len;
731 if (sd.len > sd.total_len)
732 sd.len = sd.total_len;
733
734 err = actor(pipe, buf, &sd);
735 if (err <= 0) {
736 if (!ret && err != -ENODATA)
737 ret = err;
738
739 break;
740 }
741
742 ret += err;
743 buf->offset += err;
744 buf->len -= err;
745
746 sd.len -= err;
747 sd.pos += err;
748 sd.total_len -= err;
749 if (sd.len)
750 continue;
751
752 if (!buf->len) {
753 buf->ops = NULL;
754 ops->release(pipe, buf);
755 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
756 pipe->nrbufs--;
757 if (pipe->inode)
758 do_wakeup = 1;
759 }
760
761 if (!sd.total_len)
762 break;
763 }
764
765 if (pipe->nrbufs)
766 continue;
767 if (!pipe->writers)
768 break;
769 if (!pipe->waiting_writers) {
770 if (ret)
771 break;
772 }
773
774 if (flags & SPLICE_F_NONBLOCK) {
775 if (!ret)
776 ret = -EAGAIN;
777 break;
778 }
779
780 if (signal_pending(current)) {
781 if (!ret)
782 ret = -ERESTARTSYS;
783 break;
784 }
785
786 if (do_wakeup) {
787 smp_mb();
788 if (waitqueue_active(&pipe->wait))
789 wake_up_interruptible_sync(&pipe->wait);
790 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
791 do_wakeup = 0;
792 }
793
794 pipe_wait(pipe);
795 }
796
797 if (do_wakeup) {
798 smp_mb();
799 if (waitqueue_active(&pipe->wait))
800 wake_up_interruptible(&pipe->wait);
801 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
802 }
803
804 return ret;
805 }
806
807 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
808 loff_t *ppos, size_t len, unsigned int flags,
809 splice_actor *actor)
810 {
811 ssize_t ret;
812 struct inode *inode = out->f_mapping->host;
813
814 /*
815 * The actor worker might be calling ->prepare_write and
816 * ->commit_write. Most of the time, these expect i_mutex to
817 * be held. Since this may result in an ABBA deadlock with
818 * pipe->inode, we have to order lock acquiry here.
819 */
820 inode_double_lock(inode, pipe->inode);
821 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
822 inode_double_unlock(inode, pipe->inode);
823
824 return ret;
825 }
826
827 /**
828 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
829 * @pipe: pipe info
830 * @out: file to write to
831 * @len: number of bytes to splice
832 * @flags: splice modifier flags
833 *
834 * Will either move or copy pages (determined by @flags options) from
835 * the given pipe inode to the given file. The caller is responsible
836 * for acquiring i_mutex on both inodes.
837 *
838 */
839 ssize_t
840 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
841 loff_t *ppos, size_t len, unsigned int flags)
842 {
843 struct address_space *mapping = out->f_mapping;
844 struct inode *inode = mapping->host;
845 ssize_t ret;
846 int err;
847
848 err = remove_suid(out->f_dentry);
849 if (unlikely(err))
850 return err;
851
852 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
853 if (ret > 0) {
854 *ppos += ret;
855
856 /*
857 * If file or inode is SYNC and we actually wrote some data,
858 * sync it.
859 */
860 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
861 err = generic_osync_inode(inode, mapping,
862 OSYNC_METADATA|OSYNC_DATA);
863
864 if (err)
865 ret = err;
866 }
867 }
868
869 return ret;
870 }
871
872 EXPORT_SYMBOL(generic_file_splice_write_nolock);
873
874 /**
875 * generic_file_splice_write - splice data from a pipe to a file
876 * @pipe: pipe info
877 * @out: file to write to
878 * @len: number of bytes to splice
879 * @flags: splice modifier flags
880 *
881 * Will either move or copy pages (determined by @flags options) from
882 * the given pipe inode to the given file.
883 *
884 */
885 ssize_t
886 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
887 loff_t *ppos, size_t len, unsigned int flags)
888 {
889 struct address_space *mapping = out->f_mapping;
890 struct inode *inode = mapping->host;
891 ssize_t ret;
892 int err;
893
894 err = should_remove_suid(out->f_dentry);
895 if (unlikely(err)) {
896 mutex_lock(&inode->i_mutex);
897 err = __remove_suid(out->f_dentry, err);
898 mutex_unlock(&inode->i_mutex);
899 if (err)
900 return err;
901 }
902
903 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
904 if (ret > 0) {
905 *ppos += ret;
906
907 /*
908 * If file or inode is SYNC and we actually wrote some data,
909 * sync it.
910 */
911 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
912 mutex_lock(&inode->i_mutex);
913 err = generic_osync_inode(inode, mapping,
914 OSYNC_METADATA|OSYNC_DATA);
915 mutex_unlock(&inode->i_mutex);
916
917 if (err)
918 ret = err;
919 }
920 }
921
922 return ret;
923 }
924
925 EXPORT_SYMBOL(generic_file_splice_write);
926
927 /**
928 * generic_splice_sendpage - splice data from a pipe to a socket
929 * @inode: pipe inode
930 * @out: socket to write to
931 * @len: number of bytes to splice
932 * @flags: splice modifier flags
933 *
934 * Will send @len bytes from the pipe to a network socket. No data copying
935 * is involved.
936 *
937 */
938 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
939 loff_t *ppos, size_t len, unsigned int flags)
940 {
941 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
942 }
943
944 EXPORT_SYMBOL(generic_splice_sendpage);
945
946 /*
947 * Attempt to initiate a splice from pipe to file.
948 */
949 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
950 loff_t *ppos, size_t len, unsigned int flags)
951 {
952 int ret;
953
954 if (unlikely(!out->f_op || !out->f_op->splice_write))
955 return -EINVAL;
956
957 if (unlikely(!(out->f_mode & FMODE_WRITE)))
958 return -EBADF;
959
960 ret = rw_verify_area(WRITE, out, ppos, len);
961 if (unlikely(ret < 0))
962 return ret;
963
964 return out->f_op->splice_write(pipe, out, ppos, len, flags);
965 }
966
967 /*
968 * Attempt to initiate a splice from a file to a pipe.
969 */
970 static long do_splice_to(struct file *in, loff_t *ppos,
971 struct pipe_inode_info *pipe, size_t len,
972 unsigned int flags)
973 {
974 loff_t isize, left;
975 int ret;
976
977 if (unlikely(!in->f_op || !in->f_op->splice_read))
978 return -EINVAL;
979
980 if (unlikely(!(in->f_mode & FMODE_READ)))
981 return -EBADF;
982
983 ret = rw_verify_area(READ, in, ppos, len);
984 if (unlikely(ret < 0))
985 return ret;
986
987 isize = i_size_read(in->f_mapping->host);
988 if (unlikely(*ppos >= isize))
989 return 0;
990
991 left = isize - *ppos;
992 if (unlikely(left < len))
993 len = left;
994
995 return in->f_op->splice_read(in, ppos, pipe, len, flags);
996 }
997
998 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
999 size_t len, unsigned int flags)
1000 {
1001 struct pipe_inode_info *pipe;
1002 long ret, bytes;
1003 loff_t out_off;
1004 umode_t i_mode;
1005 int i;
1006
1007 /*
1008 * We require the input being a regular file, as we don't want to
1009 * randomly drop data for eg socket -> socket splicing. Use the
1010 * piped splicing for that!
1011 */
1012 i_mode = in->f_dentry->d_inode->i_mode;
1013 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1014 return -EINVAL;
1015
1016 /*
1017 * neither in nor out is a pipe, setup an internal pipe attached to
1018 * 'out' and transfer the wanted data from 'in' to 'out' through that
1019 */
1020 pipe = current->splice_pipe;
1021 if (unlikely(!pipe)) {
1022 pipe = alloc_pipe_info(NULL);
1023 if (!pipe)
1024 return -ENOMEM;
1025
1026 /*
1027 * We don't have an immediate reader, but we'll read the stuff
1028 * out of the pipe right after the splice_to_pipe(). So set
1029 * PIPE_READERS appropriately.
1030 */
1031 pipe->readers = 1;
1032
1033 current->splice_pipe = pipe;
1034 }
1035
1036 /*
1037 * Do the splice.
1038 */
1039 ret = 0;
1040 bytes = 0;
1041 out_off = 0;
1042
1043 while (len) {
1044 size_t read_len, max_read_len;
1045
1046 /*
1047 * Do at most PIPE_BUFFERS pages worth of transfer:
1048 */
1049 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1050
1051 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1052 if (unlikely(ret < 0))
1053 goto out_release;
1054
1055 read_len = ret;
1056
1057 /*
1058 * NOTE: nonblocking mode only applies to the input. We
1059 * must not do the output in nonblocking mode as then we
1060 * could get stuck data in the internal pipe:
1061 */
1062 ret = do_splice_from(pipe, out, &out_off, read_len,
1063 flags & ~SPLICE_F_NONBLOCK);
1064 if (unlikely(ret < 0))
1065 goto out_release;
1066
1067 bytes += ret;
1068 len -= ret;
1069
1070 /*
1071 * In nonblocking mode, if we got back a short read then
1072 * that was due to either an IO error or due to the
1073 * pagecache entry not being there. In the IO error case
1074 * the _next_ splice attempt will produce a clean IO error
1075 * return value (not a short read), so in both cases it's
1076 * correct to break out of the loop here:
1077 */
1078 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1079 break;
1080 }
1081
1082 pipe->nrbufs = pipe->curbuf = 0;
1083
1084 return bytes;
1085
1086 out_release:
1087 /*
1088 * If we did an incomplete transfer we must release
1089 * the pipe buffers in question:
1090 */
1091 for (i = 0; i < PIPE_BUFFERS; i++) {
1092 struct pipe_buffer *buf = pipe->bufs + i;
1093
1094 if (buf->ops) {
1095 buf->ops->release(pipe, buf);
1096 buf->ops = NULL;
1097 }
1098 }
1099 pipe->nrbufs = pipe->curbuf = 0;
1100
1101 /*
1102 * If we transferred some data, return the number of bytes:
1103 */
1104 if (bytes > 0)
1105 return bytes;
1106
1107 return ret;
1108 }
1109
1110 EXPORT_SYMBOL(do_splice_direct);
1111
1112 /*
1113 * Determine where to splice to/from.
1114 */
1115 static long do_splice(struct file *in, loff_t __user *off_in,
1116 struct file *out, loff_t __user *off_out,
1117 size_t len, unsigned int flags)
1118 {
1119 struct pipe_inode_info *pipe;
1120 loff_t offset, *off;
1121 long ret;
1122
1123 pipe = in->f_dentry->d_inode->i_pipe;
1124 if (pipe) {
1125 if (off_in)
1126 return -ESPIPE;
1127 if (off_out) {
1128 if (out->f_op->llseek == no_llseek)
1129 return -EINVAL;
1130 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1131 return -EFAULT;
1132 off = &offset;
1133 } else
1134 off = &out->f_pos;
1135
1136 ret = do_splice_from(pipe, out, off, len, flags);
1137
1138 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1139 ret = -EFAULT;
1140
1141 return ret;
1142 }
1143
1144 pipe = out->f_dentry->d_inode->i_pipe;
1145 if (pipe) {
1146 if (off_out)
1147 return -ESPIPE;
1148 if (off_in) {
1149 if (in->f_op->llseek == no_llseek)
1150 return -EINVAL;
1151 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1152 return -EFAULT;
1153 off = &offset;
1154 } else
1155 off = &in->f_pos;
1156
1157 ret = do_splice_to(in, off, pipe, len, flags);
1158
1159 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1160 ret = -EFAULT;
1161
1162 return ret;
1163 }
1164
1165 return -EINVAL;
1166 }
1167
1168 /*
1169 * Map an iov into an array of pages and offset/length tupples. With the
1170 * partial_page structure, we can map several non-contiguous ranges into
1171 * our ones pages[] map instead of splitting that operation into pieces.
1172 * Could easily be exported as a generic helper for other users, in which
1173 * case one would probably want to add a 'max_nr_pages' parameter as well.
1174 */
1175 static int get_iovec_page_array(const struct iovec __user *iov,
1176 unsigned int nr_vecs, struct page **pages,
1177 struct partial_page *partial, int aligned)
1178 {
1179 int buffers = 0, error = 0;
1180
1181 /*
1182 * It's ok to take the mmap_sem for reading, even
1183 * across a "get_user()".
1184 */
1185 down_read(&current->mm->mmap_sem);
1186
1187 while (nr_vecs) {
1188 unsigned long off, npages;
1189 void __user *base;
1190 size_t len;
1191 int i;
1192
1193 /*
1194 * Get user address base and length for this iovec.
1195 */
1196 error = get_user(base, &iov->iov_base);
1197 if (unlikely(error))
1198 break;
1199 error = get_user(len, &iov->iov_len);
1200 if (unlikely(error))
1201 break;
1202
1203 /*
1204 * Sanity check this iovec. 0 read succeeds.
1205 */
1206 if (unlikely(!len))
1207 break;
1208 error = -EFAULT;
1209 if (unlikely(!base))
1210 break;
1211
1212 /*
1213 * Get this base offset and number of pages, then map
1214 * in the user pages.
1215 */
1216 off = (unsigned long) base & ~PAGE_MASK;
1217
1218 /*
1219 * If asked for alignment, the offset must be zero and the
1220 * length a multiple of the PAGE_SIZE.
1221 */
1222 error = -EINVAL;
1223 if (aligned && (off || len & ~PAGE_MASK))
1224 break;
1225
1226 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 if (npages > PIPE_BUFFERS - buffers)
1228 npages = PIPE_BUFFERS - buffers;
1229
1230 error = get_user_pages(current, current->mm,
1231 (unsigned long) base, npages, 0, 0,
1232 &pages[buffers], NULL);
1233
1234 if (unlikely(error <= 0))
1235 break;
1236
1237 /*
1238 * Fill this contiguous range into the partial page map.
1239 */
1240 for (i = 0; i < error; i++) {
1241 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1242
1243 partial[buffers].offset = off;
1244 partial[buffers].len = plen;
1245
1246 off = 0;
1247 len -= plen;
1248 buffers++;
1249 }
1250
1251 /*
1252 * We didn't complete this iov, stop here since it probably
1253 * means we have to move some of this into a pipe to
1254 * be able to continue.
1255 */
1256 if (len)
1257 break;
1258
1259 /*
1260 * Don't continue if we mapped fewer pages than we asked for,
1261 * or if we mapped the max number of pages that we have
1262 * room for.
1263 */
1264 if (error < npages || buffers == PIPE_BUFFERS)
1265 break;
1266
1267 nr_vecs--;
1268 iov++;
1269 }
1270
1271 up_read(&current->mm->mmap_sem);
1272
1273 if (buffers)
1274 return buffers;
1275
1276 return error;
1277 }
1278
1279 /*
1280 * vmsplice splices a user address range into a pipe. It can be thought of
1281 * as splice-from-memory, where the regular splice is splice-from-file (or
1282 * to file). In both cases the output is a pipe, naturally.
1283 *
1284 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1285 * not the other way around. Splicing from user memory is a simple operation
1286 * that can be supported without any funky alignment restrictions or nasty
1287 * vm tricks. We simply map in the user memory and fill them into a pipe.
1288 * The reverse isn't quite as easy, though. There are two possible solutions
1289 * for that:
1290 *
1291 * - memcpy() the data internally, at which point we might as well just
1292 * do a regular read() on the buffer anyway.
1293 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1294 * has restriction limitations on both ends of the pipe).
1295 *
1296 * Alas, it isn't here.
1297 *
1298 */
1299 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1300 unsigned long nr_segs, unsigned int flags)
1301 {
1302 struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1303 struct page *pages[PIPE_BUFFERS];
1304 struct partial_page partial[PIPE_BUFFERS];
1305 struct splice_pipe_desc spd = {
1306 .pages = pages,
1307 .partial = partial,
1308 .flags = flags,
1309 .ops = &user_page_pipe_buf_ops,
1310 };
1311
1312 if (unlikely(!pipe))
1313 return -EBADF;
1314 if (unlikely(nr_segs > UIO_MAXIOV))
1315 return -EINVAL;
1316 else if (unlikely(!nr_segs))
1317 return 0;
1318
1319 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1320 flags & SPLICE_F_GIFT);
1321 if (spd.nr_pages <= 0)
1322 return spd.nr_pages;
1323
1324 return splice_to_pipe(pipe, &spd);
1325 }
1326
1327 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1328 unsigned long nr_segs, unsigned int flags)
1329 {
1330 struct file *file;
1331 long error;
1332 int fput;
1333
1334 error = -EBADF;
1335 file = fget_light(fd, &fput);
1336 if (file) {
1337 if (file->f_mode & FMODE_WRITE)
1338 error = do_vmsplice(file, iov, nr_segs, flags);
1339
1340 fput_light(file, fput);
1341 }
1342
1343 return error;
1344 }
1345
1346 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1347 int fd_out, loff_t __user *off_out,
1348 size_t len, unsigned int flags)
1349 {
1350 long error;
1351 struct file *in, *out;
1352 int fput_in, fput_out;
1353
1354 if (unlikely(!len))
1355 return 0;
1356
1357 error = -EBADF;
1358 in = fget_light(fd_in, &fput_in);
1359 if (in) {
1360 if (in->f_mode & FMODE_READ) {
1361 out = fget_light(fd_out, &fput_out);
1362 if (out) {
1363 if (out->f_mode & FMODE_WRITE)
1364 error = do_splice(in, off_in,
1365 out, off_out,
1366 len, flags);
1367 fput_light(out, fput_out);
1368 }
1369 }
1370
1371 fput_light(in, fput_in);
1372 }
1373
1374 return error;
1375 }
1376
1377 /*
1378 * Make sure there's data to read. Wait for input if we can, otherwise
1379 * return an appropriate error.
1380 */
1381 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1382 {
1383 int ret;
1384
1385 /*
1386 * Check ->nrbufs without the inode lock first. This function
1387 * is speculative anyways, so missing one is ok.
1388 */
1389 if (pipe->nrbufs)
1390 return 0;
1391
1392 ret = 0;
1393 mutex_lock(&pipe->inode->i_mutex);
1394
1395 while (!pipe->nrbufs) {
1396 if (signal_pending(current)) {
1397 ret = -ERESTARTSYS;
1398 break;
1399 }
1400 if (!pipe->writers)
1401 break;
1402 if (!pipe->waiting_writers) {
1403 if (flags & SPLICE_F_NONBLOCK) {
1404 ret = -EAGAIN;
1405 break;
1406 }
1407 }
1408 pipe_wait(pipe);
1409 }
1410
1411 mutex_unlock(&pipe->inode->i_mutex);
1412 return ret;
1413 }
1414
1415 /*
1416 * Make sure there's writeable room. Wait for room if we can, otherwise
1417 * return an appropriate error.
1418 */
1419 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1420 {
1421 int ret;
1422
1423 /*
1424 * Check ->nrbufs without the inode lock first. This function
1425 * is speculative anyways, so missing one is ok.
1426 */
1427 if (pipe->nrbufs < PIPE_BUFFERS)
1428 return 0;
1429
1430 ret = 0;
1431 mutex_lock(&pipe->inode->i_mutex);
1432
1433 while (pipe->nrbufs >= PIPE_BUFFERS) {
1434 if (!pipe->readers) {
1435 send_sig(SIGPIPE, current, 0);
1436 ret = -EPIPE;
1437 break;
1438 }
1439 if (flags & SPLICE_F_NONBLOCK) {
1440 ret = -EAGAIN;
1441 break;
1442 }
1443 if (signal_pending(current)) {
1444 ret = -ERESTARTSYS;
1445 break;
1446 }
1447 pipe->waiting_writers++;
1448 pipe_wait(pipe);
1449 pipe->waiting_writers--;
1450 }
1451
1452 mutex_unlock(&pipe->inode->i_mutex);
1453 return ret;
1454 }
1455
1456 /*
1457 * Link contents of ipipe to opipe.
1458 */
1459 static int link_pipe(struct pipe_inode_info *ipipe,
1460 struct pipe_inode_info *opipe,
1461 size_t len, unsigned int flags)
1462 {
1463 struct pipe_buffer *ibuf, *obuf;
1464 int ret = 0, i = 0, nbuf;
1465
1466 /*
1467 * Potential ABBA deadlock, work around it by ordering lock
1468 * grabbing by inode address. Otherwise two different processes
1469 * could deadlock (one doing tee from A -> B, the other from B -> A).
1470 */
1471 inode_double_lock(ipipe->inode, opipe->inode);
1472
1473 do {
1474 if (!opipe->readers) {
1475 send_sig(SIGPIPE, current, 0);
1476 if (!ret)
1477 ret = -EPIPE;
1478 break;
1479 }
1480
1481 /*
1482 * If we have iterated all input buffers or ran out of
1483 * output room, break.
1484 */
1485 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1486 break;
1487
1488 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1489 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1490
1491 /*
1492 * Get a reference to this pipe buffer,
1493 * so we can copy the contents over.
1494 */
1495 ibuf->ops->get(ipipe, ibuf);
1496
1497 obuf = opipe->bufs + nbuf;
1498 *obuf = *ibuf;
1499
1500 /*
1501 * Don't inherit the gift flag, we need to
1502 * prevent multiple steals of this page.
1503 */
1504 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1505
1506 if (obuf->len > len)
1507 obuf->len = len;
1508
1509 opipe->nrbufs++;
1510 ret += obuf->len;
1511 len -= obuf->len;
1512 i++;
1513 } while (len);
1514
1515 inode_double_unlock(ipipe->inode, opipe->inode);
1516
1517 /*
1518 * If we put data in the output pipe, wakeup any potential readers.
1519 */
1520 if (ret > 0) {
1521 smp_mb();
1522 if (waitqueue_active(&opipe->wait))
1523 wake_up_interruptible(&opipe->wait);
1524 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1525 }
1526
1527 return ret;
1528 }
1529
1530 /*
1531 * This is a tee(1) implementation that works on pipes. It doesn't copy
1532 * any data, it simply references the 'in' pages on the 'out' pipe.
1533 * The 'flags' used are the SPLICE_F_* variants, currently the only
1534 * applicable one is SPLICE_F_NONBLOCK.
1535 */
1536 static long do_tee(struct file *in, struct file *out, size_t len,
1537 unsigned int flags)
1538 {
1539 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1540 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1541 int ret = -EINVAL;
1542
1543 /*
1544 * Duplicate the contents of ipipe to opipe without actually
1545 * copying the data.
1546 */
1547 if (ipipe && opipe && ipipe != opipe) {
1548 /*
1549 * Keep going, unless we encounter an error. The ipipe/opipe
1550 * ordering doesn't really matter.
1551 */
1552 ret = link_ipipe_prep(ipipe, flags);
1553 if (!ret) {
1554 ret = link_opipe_prep(opipe, flags);
1555 if (!ret) {
1556 ret = link_pipe(ipipe, opipe, len, flags);
1557 if (!ret && (flags & SPLICE_F_NONBLOCK))
1558 ret = -EAGAIN;
1559 }
1560 }
1561 }
1562
1563 return ret;
1564 }
1565
1566 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1567 {
1568 struct file *in;
1569 int error, fput_in;
1570
1571 if (unlikely(!len))
1572 return 0;
1573
1574 error = -EBADF;
1575 in = fget_light(fdin, &fput_in);
1576 if (in) {
1577 if (in->f_mode & FMODE_READ) {
1578 int fput_out;
1579 struct file *out = fget_light(fdout, &fput_out);
1580
1581 if (out) {
1582 if (out->f_mode & FMODE_WRITE)
1583 error = do_tee(in, out, len, flags);
1584 fput_light(out, fput_out);
1585 }
1586 }
1587 fput_light(in, fput_in);
1588 }
1589
1590 return error;
1591 }