]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/splice.c
Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 pipe_lock(pipe);
186
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
193 }
194
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 pipe_unlock(pipe);
248
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 }
255
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
258
259 return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
271 {
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
286 };
287
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293 /*
294 * Lookup the (hopefully) full range of pages we need.
295 */
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
298
299 /*
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
302 */
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
306
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
309 /*
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
312 */
313 page = find_get_page(mapping, index);
314 if (!page) {
315 /*
316 * page didn't exist, allocate one.
317 */
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
321
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
329 }
330 /*
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
333 */
334 unlock_page(page);
335 }
336
337 pages[spd.nr_pages++] = page;
338 index++;
339 }
340
341 /*
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
344 */
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
350
351 if (!len)
352 break;
353
354 /*
355 * this_len is the max we'll use from this page
356 */
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
359
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
363
364 /*
365 * If the page isn't uptodate, we may need to start io on it
366 */
367 if (!PageUptodate(page)) {
368 /*
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
371 */
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
376 }
377 } else
378 lock_page(page);
379
380 /*
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
385 */
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
390
391 if (!page) {
392 error = -ENOMEM;
393 break;
394 }
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
397 }
398 /*
399 * page was already under io and is now done, great
400 */
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
404 }
405
406 /*
407 * need to read in the page
408 */
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
411 /*
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
416 */
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
419
420 break;
421 }
422 }
423 fill_it:
424 /*
425 * i_size must be checked after PageUptodate.
426 */
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
431
432 /*
433 * if this is the last page, see if we need to shrink
434 * the length and stop
435 */
436 if (end_index == index) {
437 unsigned int plen;
438
439 /*
440 * max good bytes in this page
441 */
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
445
446 /*
447 * force quit after adding this page
448 */
449 this_len = min(this_len, plen - loff);
450 len = this_len;
451 }
452
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
459 }
460
461 /*
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
464 */
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
471
472 return error;
473 }
474
475 /**
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
482 *
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
487 *
488 */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
492 {
493 loff_t isize, left;
494 int ret;
495
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
499
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
503
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0)
506 *ppos += ret;
507
508 return ret;
509 }
510
511 EXPORT_SYMBOL(generic_file_splice_read);
512
513 /*
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
516 */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 struct file *file = sd->u.file;
521 loff_t pos = sd->pos;
522 int ret, more;
523
524 ret = buf->ops->confirm(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
530 }
531
532 return ret;
533 }
534
535 /*
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
538 *
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
547 *
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
554 */
555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
557 {
558 struct file *file = sd->u.file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 void *fsdata;
563 int ret;
564
565 /*
566 * make sure the data in this buffer is uptodate
567 */
568 ret = buf->ops->confirm(pipe, buf);
569 if (unlikely(ret))
570 return ret;
571
572 offset = sd->pos & ~PAGE_CACHE_MASK;
573
574 this_len = sd->len;
575 if (this_len + offset > PAGE_CACHE_SIZE)
576 this_len = PAGE_CACHE_SIZE - offset;
577
578 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
579 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
580 if (unlikely(ret))
581 goto out;
582
583 if (buf->page != page) {
584 /*
585 * Careful, ->map() uses KM_USER0!
586 */
587 char *src = buf->ops->map(pipe, buf, 1);
588 char *dst = kmap_atomic(page, KM_USER1);
589
590 memcpy(dst + offset, src + buf->offset, this_len);
591 flush_dcache_page(page);
592 kunmap_atomic(dst, KM_USER1);
593 buf->ops->unmap(pipe, buf, src);
594 }
595 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
596 page, fsdata);
597 out:
598 return ret;
599 }
600 EXPORT_SYMBOL(pipe_to_file);
601
602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
603 {
604 smp_mb();
605 if (waitqueue_active(&pipe->wait))
606 wake_up_interruptible(&pipe->wait);
607 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
608 }
609
610 /**
611 * splice_from_pipe_feed - feed available data from a pipe to a file
612 * @pipe: pipe to splice from
613 * @sd: information to @actor
614 * @actor: handler that splices the data
615 *
616 * Description:
617
618 * This function loops over the pipe and calls @actor to do the
619 * actual moving of a single struct pipe_buffer to the desired
620 * destination. It returns when there's no more buffers left in
621 * the pipe or if the requested number of bytes (@sd->total_len)
622 * have been copied. It returns a positive number (one) if the
623 * pipe needs to be filled with more data, zero if the required
624 * number of bytes have been copied and -errno on error.
625 *
626 * This, together with splice_from_pipe_{begin,end,next}, may be
627 * used to implement the functionality of __splice_from_pipe() when
628 * locking is required around copying the pipe buffers to the
629 * destination.
630 */
631 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
632 splice_actor *actor)
633 {
634 int ret;
635
636 while (pipe->nrbufs) {
637 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
638 const struct pipe_buf_operations *ops = buf->ops;
639
640 sd->len = buf->len;
641 if (sd->len > sd->total_len)
642 sd->len = sd->total_len;
643
644 ret = actor(pipe, buf, sd);
645 if (ret <= 0) {
646 if (ret == -ENODATA)
647 ret = 0;
648 return ret;
649 }
650 buf->offset += ret;
651 buf->len -= ret;
652
653 sd->num_spliced += ret;
654 sd->len -= ret;
655 sd->pos += ret;
656 sd->total_len -= ret;
657
658 if (!buf->len) {
659 buf->ops = NULL;
660 ops->release(pipe, buf);
661 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
662 pipe->nrbufs--;
663 if (pipe->inode)
664 sd->need_wakeup = true;
665 }
666
667 if (!sd->total_len)
668 return 0;
669 }
670
671 return 1;
672 }
673 EXPORT_SYMBOL(splice_from_pipe_feed);
674
675 /**
676 * splice_from_pipe_next - wait for some data to splice from
677 * @pipe: pipe to splice from
678 * @sd: information about the splice operation
679 *
680 * Description:
681 * This function will wait for some data and return a positive
682 * value (one) if pipe buffers are available. It will return zero
683 * or -errno if no more data needs to be spliced.
684 */
685 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
686 {
687 while (!pipe->nrbufs) {
688 if (!pipe->writers)
689 return 0;
690
691 if (!pipe->waiting_writers && sd->num_spliced)
692 return 0;
693
694 if (sd->flags & SPLICE_F_NONBLOCK)
695 return -EAGAIN;
696
697 if (signal_pending(current))
698 return -ERESTARTSYS;
699
700 if (sd->need_wakeup) {
701 wakeup_pipe_writers(pipe);
702 sd->need_wakeup = false;
703 }
704
705 pipe_wait(pipe);
706 }
707
708 return 1;
709 }
710 EXPORT_SYMBOL(splice_from_pipe_next);
711
712 /**
713 * splice_from_pipe_begin - start splicing from pipe
714 * @pipe: pipe to splice from
715 *
716 * Description:
717 * This function should be called before a loop containing
718 * splice_from_pipe_next() and splice_from_pipe_feed() to
719 * initialize the necessary fields of @sd.
720 */
721 void splice_from_pipe_begin(struct splice_desc *sd)
722 {
723 sd->num_spliced = 0;
724 sd->need_wakeup = false;
725 }
726 EXPORT_SYMBOL(splice_from_pipe_begin);
727
728 /**
729 * splice_from_pipe_end - finish splicing from pipe
730 * @pipe: pipe to splice from
731 * @sd: information about the splice operation
732 *
733 * Description:
734 * This function will wake up pipe writers if necessary. It should
735 * be called after a loop containing splice_from_pipe_next() and
736 * splice_from_pipe_feed().
737 */
738 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
739 {
740 if (sd->need_wakeup)
741 wakeup_pipe_writers(pipe);
742 }
743 EXPORT_SYMBOL(splice_from_pipe_end);
744
745 /**
746 * __splice_from_pipe - splice data from a pipe to given actor
747 * @pipe: pipe to splice from
748 * @sd: information to @actor
749 * @actor: handler that splices the data
750 *
751 * Description:
752 * This function does little more than loop over the pipe and call
753 * @actor to do the actual moving of a single struct pipe_buffer to
754 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
755 * pipe_to_user.
756 *
757 */
758 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
759 splice_actor *actor)
760 {
761 int ret;
762
763 splice_from_pipe_begin(sd);
764 do {
765 ret = splice_from_pipe_next(pipe, sd);
766 if (ret > 0)
767 ret = splice_from_pipe_feed(pipe, sd, actor);
768 } while (ret > 0);
769 splice_from_pipe_end(pipe, sd);
770
771 return sd->num_spliced ? sd->num_spliced : ret;
772 }
773 EXPORT_SYMBOL(__splice_from_pipe);
774
775 /**
776 * splice_from_pipe - splice data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @out: file to splice to
779 * @ppos: position in @out
780 * @len: how many bytes to splice
781 * @flags: splice modifier flags
782 * @actor: handler that splices the data
783 *
784 * Description:
785 * See __splice_from_pipe. This function locks the pipe inode,
786 * otherwise it's identical to __splice_from_pipe().
787 *
788 */
789 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
790 loff_t *ppos, size_t len, unsigned int flags,
791 splice_actor *actor)
792 {
793 ssize_t ret;
794 struct splice_desc sd = {
795 .total_len = len,
796 .flags = flags,
797 .pos = *ppos,
798 .u.file = out,
799 };
800
801 pipe_lock(pipe);
802 ret = __splice_from_pipe(pipe, &sd, actor);
803 pipe_unlock(pipe);
804
805 return ret;
806 }
807
808 /**
809 * generic_file_splice_write - splice data from a pipe to a file
810 * @pipe: pipe info
811 * @out: file to write to
812 * @ppos: position in @out
813 * @len: number of bytes to splice
814 * @flags: splice modifier flags
815 *
816 * Description:
817 * Will either move or copy pages (determined by @flags options) from
818 * the given pipe inode to the given file.
819 *
820 */
821 ssize_t
822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
823 loff_t *ppos, size_t len, unsigned int flags)
824 {
825 struct address_space *mapping = out->f_mapping;
826 struct inode *inode = mapping->host;
827 struct splice_desc sd = {
828 .total_len = len,
829 .flags = flags,
830 .pos = *ppos,
831 .u.file = out,
832 };
833 ssize_t ret;
834
835 pipe_lock(pipe);
836
837 splice_from_pipe_begin(&sd);
838 do {
839 ret = splice_from_pipe_next(pipe, &sd);
840 if (ret <= 0)
841 break;
842
843 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
844 ret = file_remove_suid(out);
845 if (!ret)
846 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
847 mutex_unlock(&inode->i_mutex);
848 } while (ret > 0);
849 splice_from_pipe_end(pipe, &sd);
850
851 pipe_unlock(pipe);
852
853 if (sd.num_spliced)
854 ret = sd.num_spliced;
855
856 if (ret > 0) {
857 unsigned long nr_pages;
858
859 *ppos += ret;
860 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
861
862 /*
863 * If file or inode is SYNC and we actually wrote some data,
864 * sync it.
865 */
866 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
867 int err;
868
869 mutex_lock(&inode->i_mutex);
870 err = generic_osync_inode(inode, mapping,
871 OSYNC_METADATA|OSYNC_DATA);
872 mutex_unlock(&inode->i_mutex);
873
874 if (err)
875 ret = err;
876 }
877 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
878 }
879
880 return ret;
881 }
882
883 EXPORT_SYMBOL(generic_file_splice_write);
884
885 /**
886 * generic_splice_sendpage - splice data from a pipe to a socket
887 * @pipe: pipe to splice from
888 * @out: socket to write to
889 * @ppos: position in @out
890 * @len: number of bytes to splice
891 * @flags: splice modifier flags
892 *
893 * Description:
894 * Will send @len bytes from the pipe to a network socket. No data copying
895 * is involved.
896 *
897 */
898 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
899 loff_t *ppos, size_t len, unsigned int flags)
900 {
901 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
902 }
903
904 EXPORT_SYMBOL(generic_splice_sendpage);
905
906 /*
907 * Attempt to initiate a splice from pipe to file.
908 */
909 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
910 loff_t *ppos, size_t len, unsigned int flags)
911 {
912 int ret;
913
914 if (unlikely(!out->f_op || !out->f_op->splice_write))
915 return -EINVAL;
916
917 if (unlikely(!(out->f_mode & FMODE_WRITE)))
918 return -EBADF;
919
920 if (unlikely(out->f_flags & O_APPEND))
921 return -EINVAL;
922
923 ret = rw_verify_area(WRITE, out, ppos, len);
924 if (unlikely(ret < 0))
925 return ret;
926
927 return out->f_op->splice_write(pipe, out, ppos, len, flags);
928 }
929
930 /*
931 * Attempt to initiate a splice from a file to a pipe.
932 */
933 static long do_splice_to(struct file *in, loff_t *ppos,
934 struct pipe_inode_info *pipe, size_t len,
935 unsigned int flags)
936 {
937 int ret;
938
939 if (unlikely(!in->f_op || !in->f_op->splice_read))
940 return -EINVAL;
941
942 if (unlikely(!(in->f_mode & FMODE_READ)))
943 return -EBADF;
944
945 ret = rw_verify_area(READ, in, ppos, len);
946 if (unlikely(ret < 0))
947 return ret;
948
949 return in->f_op->splice_read(in, ppos, pipe, len, flags);
950 }
951
952 /**
953 * splice_direct_to_actor - splices data directly between two non-pipes
954 * @in: file to splice from
955 * @sd: actor information on where to splice to
956 * @actor: handles the data splicing
957 *
958 * Description:
959 * This is a special case helper to splice directly between two
960 * points, without requiring an explicit pipe. Internally an allocated
961 * pipe is cached in the process, and reused during the lifetime of
962 * that process.
963 *
964 */
965 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
966 splice_direct_actor *actor)
967 {
968 struct pipe_inode_info *pipe;
969 long ret, bytes;
970 umode_t i_mode;
971 size_t len;
972 int i, flags;
973
974 /*
975 * We require the input being a regular file, as we don't want to
976 * randomly drop data for eg socket -> socket splicing. Use the
977 * piped splicing for that!
978 */
979 i_mode = in->f_path.dentry->d_inode->i_mode;
980 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
981 return -EINVAL;
982
983 /*
984 * neither in nor out is a pipe, setup an internal pipe attached to
985 * 'out' and transfer the wanted data from 'in' to 'out' through that
986 */
987 pipe = current->splice_pipe;
988 if (unlikely(!pipe)) {
989 pipe = alloc_pipe_info(NULL);
990 if (!pipe)
991 return -ENOMEM;
992
993 /*
994 * We don't have an immediate reader, but we'll read the stuff
995 * out of the pipe right after the splice_to_pipe(). So set
996 * PIPE_READERS appropriately.
997 */
998 pipe->readers = 1;
999
1000 current->splice_pipe = pipe;
1001 }
1002
1003 /*
1004 * Do the splice.
1005 */
1006 ret = 0;
1007 bytes = 0;
1008 len = sd->total_len;
1009 flags = sd->flags;
1010
1011 /*
1012 * Don't block on output, we have to drain the direct pipe.
1013 */
1014 sd->flags &= ~SPLICE_F_NONBLOCK;
1015
1016 while (len) {
1017 size_t read_len;
1018 loff_t pos = sd->pos, prev_pos = pos;
1019
1020 ret = do_splice_to(in, &pos, pipe, len, flags);
1021 if (unlikely(ret <= 0))
1022 goto out_release;
1023
1024 read_len = ret;
1025 sd->total_len = read_len;
1026
1027 /*
1028 * NOTE: nonblocking mode only applies to the input. We
1029 * must not do the output in nonblocking mode as then we
1030 * could get stuck data in the internal pipe:
1031 */
1032 ret = actor(pipe, sd);
1033 if (unlikely(ret <= 0)) {
1034 sd->pos = prev_pos;
1035 goto out_release;
1036 }
1037
1038 bytes += ret;
1039 len -= ret;
1040 sd->pos = pos;
1041
1042 if (ret < read_len) {
1043 sd->pos = prev_pos + ret;
1044 goto out_release;
1045 }
1046 }
1047
1048 done:
1049 pipe->nrbufs = pipe->curbuf = 0;
1050 file_accessed(in);
1051 return bytes;
1052
1053 out_release:
1054 /*
1055 * If we did an incomplete transfer we must release
1056 * the pipe buffers in question:
1057 */
1058 for (i = 0; i < PIPE_BUFFERS; i++) {
1059 struct pipe_buffer *buf = pipe->bufs + i;
1060
1061 if (buf->ops) {
1062 buf->ops->release(pipe, buf);
1063 buf->ops = NULL;
1064 }
1065 }
1066
1067 if (!bytes)
1068 bytes = ret;
1069
1070 goto done;
1071 }
1072 EXPORT_SYMBOL(splice_direct_to_actor);
1073
1074 static int direct_splice_actor(struct pipe_inode_info *pipe,
1075 struct splice_desc *sd)
1076 {
1077 struct file *file = sd->u.file;
1078
1079 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1080 }
1081
1082 /**
1083 * do_splice_direct - splices data directly between two files
1084 * @in: file to splice from
1085 * @ppos: input file offset
1086 * @out: file to splice to
1087 * @len: number of bytes to splice
1088 * @flags: splice modifier flags
1089 *
1090 * Description:
1091 * For use by do_sendfile(). splice can easily emulate sendfile, but
1092 * doing it in the application would incur an extra system call
1093 * (splice in + splice out, as compared to just sendfile()). So this helper
1094 * can splice directly through a process-private pipe.
1095 *
1096 */
1097 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1098 size_t len, unsigned int flags)
1099 {
1100 struct splice_desc sd = {
1101 .len = len,
1102 .total_len = len,
1103 .flags = flags,
1104 .pos = *ppos,
1105 .u.file = out,
1106 };
1107 long ret;
1108
1109 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1110 if (ret > 0)
1111 *ppos = sd.pos;
1112
1113 return ret;
1114 }
1115
1116 /*
1117 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1118 * location, so checking ->i_pipe is not enough to verify that this is a
1119 * pipe.
1120 */
1121 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1122 {
1123 if (S_ISFIFO(inode->i_mode))
1124 return inode->i_pipe;
1125
1126 return NULL;
1127 }
1128
1129 /*
1130 * Determine where to splice to/from.
1131 */
1132 static long do_splice(struct file *in, loff_t __user *off_in,
1133 struct file *out, loff_t __user *off_out,
1134 size_t len, unsigned int flags)
1135 {
1136 struct pipe_inode_info *pipe;
1137 loff_t offset, *off;
1138 long ret;
1139
1140 pipe = pipe_info(in->f_path.dentry->d_inode);
1141 if (pipe) {
1142 if (off_in)
1143 return -ESPIPE;
1144 if (off_out) {
1145 if (out->f_op->llseek == no_llseek)
1146 return -EINVAL;
1147 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148 return -EFAULT;
1149 off = &offset;
1150 } else
1151 off = &out->f_pos;
1152
1153 ret = do_splice_from(pipe, out, off, len, flags);
1154
1155 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1156 ret = -EFAULT;
1157
1158 return ret;
1159 }
1160
1161 pipe = pipe_info(out->f_path.dentry->d_inode);
1162 if (pipe) {
1163 if (off_out)
1164 return -ESPIPE;
1165 if (off_in) {
1166 if (in->f_op->llseek == no_llseek)
1167 return -EINVAL;
1168 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1169 return -EFAULT;
1170 off = &offset;
1171 } else
1172 off = &in->f_pos;
1173
1174 ret = do_splice_to(in, off, pipe, len, flags);
1175
1176 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1177 ret = -EFAULT;
1178
1179 return ret;
1180 }
1181
1182 return -EINVAL;
1183 }
1184
1185 /*
1186 * Map an iov into an array of pages and offset/length tupples. With the
1187 * partial_page structure, we can map several non-contiguous ranges into
1188 * our ones pages[] map instead of splitting that operation into pieces.
1189 * Could easily be exported as a generic helper for other users, in which
1190 * case one would probably want to add a 'max_nr_pages' parameter as well.
1191 */
1192 static int get_iovec_page_array(const struct iovec __user *iov,
1193 unsigned int nr_vecs, struct page **pages,
1194 struct partial_page *partial, int aligned)
1195 {
1196 int buffers = 0, error = 0;
1197
1198 while (nr_vecs) {
1199 unsigned long off, npages;
1200 struct iovec entry;
1201 void __user *base;
1202 size_t len;
1203 int i;
1204
1205 error = -EFAULT;
1206 if (copy_from_user(&entry, iov, sizeof(entry)))
1207 break;
1208
1209 base = entry.iov_base;
1210 len = entry.iov_len;
1211
1212 /*
1213 * Sanity check this iovec. 0 read succeeds.
1214 */
1215 error = 0;
1216 if (unlikely(!len))
1217 break;
1218 error = -EFAULT;
1219 if (!access_ok(VERIFY_READ, base, len))
1220 break;
1221
1222 /*
1223 * Get this base offset and number of pages, then map
1224 * in the user pages.
1225 */
1226 off = (unsigned long) base & ~PAGE_MASK;
1227
1228 /*
1229 * If asked for alignment, the offset must be zero and the
1230 * length a multiple of the PAGE_SIZE.
1231 */
1232 error = -EINVAL;
1233 if (aligned && (off || len & ~PAGE_MASK))
1234 break;
1235
1236 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1237 if (npages > PIPE_BUFFERS - buffers)
1238 npages = PIPE_BUFFERS - buffers;
1239
1240 error = get_user_pages_fast((unsigned long)base, npages,
1241 0, &pages[buffers]);
1242
1243 if (unlikely(error <= 0))
1244 break;
1245
1246 /*
1247 * Fill this contiguous range into the partial page map.
1248 */
1249 for (i = 0; i < error; i++) {
1250 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1251
1252 partial[buffers].offset = off;
1253 partial[buffers].len = plen;
1254
1255 off = 0;
1256 len -= plen;
1257 buffers++;
1258 }
1259
1260 /*
1261 * We didn't complete this iov, stop here since it probably
1262 * means we have to move some of this into a pipe to
1263 * be able to continue.
1264 */
1265 if (len)
1266 break;
1267
1268 /*
1269 * Don't continue if we mapped fewer pages than we asked for,
1270 * or if we mapped the max number of pages that we have
1271 * room for.
1272 */
1273 if (error < npages || buffers == PIPE_BUFFERS)
1274 break;
1275
1276 nr_vecs--;
1277 iov++;
1278 }
1279
1280 if (buffers)
1281 return buffers;
1282
1283 return error;
1284 }
1285
1286 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1287 struct splice_desc *sd)
1288 {
1289 char *src;
1290 int ret;
1291
1292 ret = buf->ops->confirm(pipe, buf);
1293 if (unlikely(ret))
1294 return ret;
1295
1296 /*
1297 * See if we can use the atomic maps, by prefaulting in the
1298 * pages and doing an atomic copy
1299 */
1300 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1301 src = buf->ops->map(pipe, buf, 1);
1302 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1303 sd->len);
1304 buf->ops->unmap(pipe, buf, src);
1305 if (!ret) {
1306 ret = sd->len;
1307 goto out;
1308 }
1309 }
1310
1311 /*
1312 * No dice, use slow non-atomic map and copy
1313 */
1314 src = buf->ops->map(pipe, buf, 0);
1315
1316 ret = sd->len;
1317 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1318 ret = -EFAULT;
1319
1320 buf->ops->unmap(pipe, buf, src);
1321 out:
1322 if (ret > 0)
1323 sd->u.userptr += ret;
1324 return ret;
1325 }
1326
1327 /*
1328 * For lack of a better implementation, implement vmsplice() to userspace
1329 * as a simple copy of the pipes pages to the user iov.
1330 */
1331 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1332 unsigned long nr_segs, unsigned int flags)
1333 {
1334 struct pipe_inode_info *pipe;
1335 struct splice_desc sd;
1336 ssize_t size;
1337 int error;
1338 long ret;
1339
1340 pipe = pipe_info(file->f_path.dentry->d_inode);
1341 if (!pipe)
1342 return -EBADF;
1343
1344 pipe_lock(pipe);
1345
1346 error = ret = 0;
1347 while (nr_segs) {
1348 void __user *base;
1349 size_t len;
1350
1351 /*
1352 * Get user address base and length for this iovec.
1353 */
1354 error = get_user(base, &iov->iov_base);
1355 if (unlikely(error))
1356 break;
1357 error = get_user(len, &iov->iov_len);
1358 if (unlikely(error))
1359 break;
1360
1361 /*
1362 * Sanity check this iovec. 0 read succeeds.
1363 */
1364 if (unlikely(!len))
1365 break;
1366 if (unlikely(!base)) {
1367 error = -EFAULT;
1368 break;
1369 }
1370
1371 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1372 error = -EFAULT;
1373 break;
1374 }
1375
1376 sd.len = 0;
1377 sd.total_len = len;
1378 sd.flags = flags;
1379 sd.u.userptr = base;
1380 sd.pos = 0;
1381
1382 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1383 if (size < 0) {
1384 if (!ret)
1385 ret = size;
1386
1387 break;
1388 }
1389
1390 ret += size;
1391
1392 if (size < len)
1393 break;
1394
1395 nr_segs--;
1396 iov++;
1397 }
1398
1399 pipe_unlock(pipe);
1400
1401 if (!ret)
1402 ret = error;
1403
1404 return ret;
1405 }
1406
1407 /*
1408 * vmsplice splices a user address range into a pipe. It can be thought of
1409 * as splice-from-memory, where the regular splice is splice-from-file (or
1410 * to file). In both cases the output is a pipe, naturally.
1411 */
1412 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1413 unsigned long nr_segs, unsigned int flags)
1414 {
1415 struct pipe_inode_info *pipe;
1416 struct page *pages[PIPE_BUFFERS];
1417 struct partial_page partial[PIPE_BUFFERS];
1418 struct splice_pipe_desc spd = {
1419 .pages = pages,
1420 .partial = partial,
1421 .flags = flags,
1422 .ops = &user_page_pipe_buf_ops,
1423 .spd_release = spd_release_page,
1424 };
1425
1426 pipe = pipe_info(file->f_path.dentry->d_inode);
1427 if (!pipe)
1428 return -EBADF;
1429
1430 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1431 flags & SPLICE_F_GIFT);
1432 if (spd.nr_pages <= 0)
1433 return spd.nr_pages;
1434
1435 return splice_to_pipe(pipe, &spd);
1436 }
1437
1438 /*
1439 * Note that vmsplice only really supports true splicing _from_ user memory
1440 * to a pipe, not the other way around. Splicing from user memory is a simple
1441 * operation that can be supported without any funky alignment restrictions
1442 * or nasty vm tricks. We simply map in the user memory and fill them into
1443 * a pipe. The reverse isn't quite as easy, though. There are two possible
1444 * solutions for that:
1445 *
1446 * - memcpy() the data internally, at which point we might as well just
1447 * do a regular read() on the buffer anyway.
1448 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1449 * has restriction limitations on both ends of the pipe).
1450 *
1451 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1452 *
1453 */
1454 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1455 unsigned long, nr_segs, unsigned int, flags)
1456 {
1457 struct file *file;
1458 long error;
1459 int fput;
1460
1461 if (unlikely(nr_segs > UIO_MAXIOV))
1462 return -EINVAL;
1463 else if (unlikely(!nr_segs))
1464 return 0;
1465
1466 error = -EBADF;
1467 file = fget_light(fd, &fput);
1468 if (file) {
1469 if (file->f_mode & FMODE_WRITE)
1470 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1471 else if (file->f_mode & FMODE_READ)
1472 error = vmsplice_to_user(file, iov, nr_segs, flags);
1473
1474 fput_light(file, fput);
1475 }
1476
1477 return error;
1478 }
1479
1480 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1481 int, fd_out, loff_t __user *, off_out,
1482 size_t, len, unsigned int, flags)
1483 {
1484 long error;
1485 struct file *in, *out;
1486 int fput_in, fput_out;
1487
1488 if (unlikely(!len))
1489 return 0;
1490
1491 error = -EBADF;
1492 in = fget_light(fd_in, &fput_in);
1493 if (in) {
1494 if (in->f_mode & FMODE_READ) {
1495 out = fget_light(fd_out, &fput_out);
1496 if (out) {
1497 if (out->f_mode & FMODE_WRITE)
1498 error = do_splice(in, off_in,
1499 out, off_out,
1500 len, flags);
1501 fput_light(out, fput_out);
1502 }
1503 }
1504
1505 fput_light(in, fput_in);
1506 }
1507
1508 return error;
1509 }
1510
1511 /*
1512 * Make sure there's data to read. Wait for input if we can, otherwise
1513 * return an appropriate error.
1514 */
1515 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1516 {
1517 int ret;
1518
1519 /*
1520 * Check ->nrbufs without the inode lock first. This function
1521 * is speculative anyways, so missing one is ok.
1522 */
1523 if (pipe->nrbufs)
1524 return 0;
1525
1526 ret = 0;
1527 pipe_lock(pipe);
1528
1529 while (!pipe->nrbufs) {
1530 if (signal_pending(current)) {
1531 ret = -ERESTARTSYS;
1532 break;
1533 }
1534 if (!pipe->writers)
1535 break;
1536 if (!pipe->waiting_writers) {
1537 if (flags & SPLICE_F_NONBLOCK) {
1538 ret = -EAGAIN;
1539 break;
1540 }
1541 }
1542 pipe_wait(pipe);
1543 }
1544
1545 pipe_unlock(pipe);
1546 return ret;
1547 }
1548
1549 /*
1550 * Make sure there's writeable room. Wait for room if we can, otherwise
1551 * return an appropriate error.
1552 */
1553 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1554 {
1555 int ret;
1556
1557 /*
1558 * Check ->nrbufs without the inode lock first. This function
1559 * is speculative anyways, so missing one is ok.
1560 */
1561 if (pipe->nrbufs < PIPE_BUFFERS)
1562 return 0;
1563
1564 ret = 0;
1565 pipe_lock(pipe);
1566
1567 while (pipe->nrbufs >= PIPE_BUFFERS) {
1568 if (!pipe->readers) {
1569 send_sig(SIGPIPE, current, 0);
1570 ret = -EPIPE;
1571 break;
1572 }
1573 if (flags & SPLICE_F_NONBLOCK) {
1574 ret = -EAGAIN;
1575 break;
1576 }
1577 if (signal_pending(current)) {
1578 ret = -ERESTARTSYS;
1579 break;
1580 }
1581 pipe->waiting_writers++;
1582 pipe_wait(pipe);
1583 pipe->waiting_writers--;
1584 }
1585
1586 pipe_unlock(pipe);
1587 return ret;
1588 }
1589
1590 /*
1591 * Link contents of ipipe to opipe.
1592 */
1593 static int link_pipe(struct pipe_inode_info *ipipe,
1594 struct pipe_inode_info *opipe,
1595 size_t len, unsigned int flags)
1596 {
1597 struct pipe_buffer *ibuf, *obuf;
1598 int ret = 0, i = 0, nbuf;
1599
1600 /*
1601 * Potential ABBA deadlock, work around it by ordering lock
1602 * grabbing by pipe info address. Otherwise two different processes
1603 * could deadlock (one doing tee from A -> B, the other from B -> A).
1604 */
1605 pipe_double_lock(ipipe, opipe);
1606
1607 do {
1608 if (!opipe->readers) {
1609 send_sig(SIGPIPE, current, 0);
1610 if (!ret)
1611 ret = -EPIPE;
1612 break;
1613 }
1614
1615 /*
1616 * If we have iterated all input buffers or ran out of
1617 * output room, break.
1618 */
1619 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1620 break;
1621
1622 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1623 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1624
1625 /*
1626 * Get a reference to this pipe buffer,
1627 * so we can copy the contents over.
1628 */
1629 ibuf->ops->get(ipipe, ibuf);
1630
1631 obuf = opipe->bufs + nbuf;
1632 *obuf = *ibuf;
1633
1634 /*
1635 * Don't inherit the gift flag, we need to
1636 * prevent multiple steals of this page.
1637 */
1638 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1639
1640 if (obuf->len > len)
1641 obuf->len = len;
1642
1643 opipe->nrbufs++;
1644 ret += obuf->len;
1645 len -= obuf->len;
1646 i++;
1647 } while (len);
1648
1649 /*
1650 * return EAGAIN if we have the potential of some data in the
1651 * future, otherwise just return 0
1652 */
1653 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1654 ret = -EAGAIN;
1655
1656 pipe_unlock(ipipe);
1657 pipe_unlock(opipe);
1658
1659 /*
1660 * If we put data in the output pipe, wakeup any potential readers.
1661 */
1662 if (ret > 0) {
1663 smp_mb();
1664 if (waitqueue_active(&opipe->wait))
1665 wake_up_interruptible(&opipe->wait);
1666 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1667 }
1668
1669 return ret;
1670 }
1671
1672 /*
1673 * This is a tee(1) implementation that works on pipes. It doesn't copy
1674 * any data, it simply references the 'in' pages on the 'out' pipe.
1675 * The 'flags' used are the SPLICE_F_* variants, currently the only
1676 * applicable one is SPLICE_F_NONBLOCK.
1677 */
1678 static long do_tee(struct file *in, struct file *out, size_t len,
1679 unsigned int flags)
1680 {
1681 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1682 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1683 int ret = -EINVAL;
1684
1685 /*
1686 * Duplicate the contents of ipipe to opipe without actually
1687 * copying the data.
1688 */
1689 if (ipipe && opipe && ipipe != opipe) {
1690 /*
1691 * Keep going, unless we encounter an error. The ipipe/opipe
1692 * ordering doesn't really matter.
1693 */
1694 ret = link_ipipe_prep(ipipe, flags);
1695 if (!ret) {
1696 ret = link_opipe_prep(opipe, flags);
1697 if (!ret)
1698 ret = link_pipe(ipipe, opipe, len, flags);
1699 }
1700 }
1701
1702 return ret;
1703 }
1704
1705 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1706 {
1707 struct file *in;
1708 int error, fput_in;
1709
1710 if (unlikely(!len))
1711 return 0;
1712
1713 error = -EBADF;
1714 in = fget_light(fdin, &fput_in);
1715 if (in) {
1716 if (in->f_mode & FMODE_READ) {
1717 int fput_out;
1718 struct file *out = fget_light(fdout, &fput_out);
1719
1720 if (out) {
1721 if (out->f_mode & FMODE_WRITE)
1722 error = do_tee(in, out, len, flags);
1723 fput_light(out, fput_out);
1724 }
1725 }
1726 fput_light(in, fput_in);
1727 }
1728
1729 return error;
1730 }