]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/splice.c
vfs: Make sendfile(2) killable even better
[mirror_ubuntu-zesty-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45 {
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83 out_unlock:
84 unlock_page(page);
85 return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101 {
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
191
192 pipe_lock(pipe);
193
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
200 }
201
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
217
218 if (pipe->files)
219 do_wakeup = 1;
220
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
225
226 break;
227 }
228
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
233 }
234
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
239 }
240
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
247 }
248
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
252 }
253
254 pipe_unlock(pipe);
255
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
265
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 page_cache_release(spd->pages[i]);
269 }
270
271 /*
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
274 */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
282
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285
286 if (spd->pages && spd->partial)
287 return 0;
288
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
292 }
293
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
298
299 kfree(spd->pages);
300 kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
307 {
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
323 };
324
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
327
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
332
333 /*
334 * Lookup the (hopefully) full range of pages we need.
335 */
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
338
339 /*
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
342 */
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
346
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
349 /*
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
352 */
353 page = find_get_page(mapping, index);
354 if (!page) {
355 /*
356 * page didn't exist, allocate one.
357 */
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
361
362 error = add_to_page_cache_lru(page, mapping, index,
363 mapping_gfp_constraint(mapping, GFP_KERNEL));
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
369 }
370 /*
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
373 */
374 unlock_page(page);
375 }
376
377 spd.pages[spd.nr_pages++] = page;
378 index++;
379 }
380
381 /*
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
384 */
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
390
391 if (!len)
392 break;
393
394 /*
395 * this_len is the max we'll use from this page
396 */
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
399
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
403
404 /*
405 * If the page isn't uptodate, we may need to start io on it
406 */
407 if (!PageUptodate(page)) {
408 lock_page(page);
409
410 /*
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
415 */
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
420
421 if (!page) {
422 error = -ENOMEM;
423 break;
424 }
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
427 }
428 /*
429 * page was already under io and is now done, great
430 */
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
434 }
435
436 /*
437 * need to read in the page
438 */
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
441 /*
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
446 */
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
449
450 break;
451 }
452 }
453 fill_it:
454 /*
455 * i_size must be checked after PageUptodate.
456 */
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
461
462 /*
463 * if this is the last page, see if we need to shrink
464 * the length and stop
465 */
466 if (end_index == index) {
467 unsigned int plen;
468
469 /*
470 * max good bytes in this page
471 */
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
475
476 /*
477 * force quit after adding this page
478 */
479 this_len = min(this_len, plen - loff);
480 len = this_len;
481 }
482
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
489 }
490
491 /*
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
494 */
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
501
502 splice_shrink_spd(&spd);
503 return error;
504 }
505
506 /**
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
513 *
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
518 *
519 */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
523 {
524 loff_t isize, left;
525 int ret;
526
527 if (IS_DAX(in->f_mapping->host))
528 return default_file_splice_read(in, ppos, pipe, len, flags);
529
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
532 return 0;
533
534 left = isize - *ppos;
535 if (unlikely(left < len))
536 len = left;
537
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 if (ret > 0) {
540 *ppos += ret;
541 file_accessed(in);
542 }
543
544 return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 .can_merge = 0,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
554 };
555
556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
557 struct pipe_buffer *buf)
558 {
559 return 1;
560 }
561
562 /* Pipe buffer operations for a socket and similar. */
563 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
564 .can_merge = 0,
565 .confirm = generic_pipe_buf_confirm,
566 .release = generic_pipe_buf_release,
567 .steal = generic_pipe_buf_nosteal,
568 .get = generic_pipe_buf_get,
569 };
570 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
571
572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
573 unsigned long vlen, loff_t offset)
574 {
575 mm_segment_t old_fs;
576 loff_t pos = offset;
577 ssize_t res;
578
579 old_fs = get_fs();
580 set_fs(get_ds());
581 /* The cast to a user pointer is valid due to the set_fs() */
582 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
583 set_fs(old_fs);
584
585 return res;
586 }
587
588 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
589 loff_t pos)
590 {
591 mm_segment_t old_fs;
592 ssize_t res;
593
594 old_fs = get_fs();
595 set_fs(get_ds());
596 /* The cast to a user pointer is valid due to the set_fs() */
597 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
598 set_fs(old_fs);
599
600 return res;
601 }
602 EXPORT_SYMBOL(kernel_write);
603
604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
605 struct pipe_inode_info *pipe, size_t len,
606 unsigned int flags)
607 {
608 unsigned int nr_pages;
609 unsigned int nr_freed;
610 size_t offset;
611 struct page *pages[PIPE_DEF_BUFFERS];
612 struct partial_page partial[PIPE_DEF_BUFFERS];
613 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
614 ssize_t res;
615 size_t this_len;
616 int error;
617 int i;
618 struct splice_pipe_desc spd = {
619 .pages = pages,
620 .partial = partial,
621 .nr_pages_max = PIPE_DEF_BUFFERS,
622 .flags = flags,
623 .ops = &default_pipe_buf_ops,
624 .spd_release = spd_release_page,
625 };
626
627 if (splice_grow_spd(pipe, &spd))
628 return -ENOMEM;
629
630 res = -ENOMEM;
631 vec = __vec;
632 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
633 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
634 if (!vec)
635 goto shrink_ret;
636 }
637
638 offset = *ppos & ~PAGE_CACHE_MASK;
639 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
640
641 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
642 struct page *page;
643
644 page = alloc_page(GFP_USER);
645 error = -ENOMEM;
646 if (!page)
647 goto err;
648
649 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
650 vec[i].iov_base = (void __user *) page_address(page);
651 vec[i].iov_len = this_len;
652 spd.pages[i] = page;
653 spd.nr_pages++;
654 len -= this_len;
655 offset = 0;
656 }
657
658 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
659 if (res < 0) {
660 error = res;
661 goto err;
662 }
663
664 error = 0;
665 if (!res)
666 goto err;
667
668 nr_freed = 0;
669 for (i = 0; i < spd.nr_pages; i++) {
670 this_len = min_t(size_t, vec[i].iov_len, res);
671 spd.partial[i].offset = 0;
672 spd.partial[i].len = this_len;
673 if (!this_len) {
674 __free_page(spd.pages[i]);
675 spd.pages[i] = NULL;
676 nr_freed++;
677 }
678 res -= this_len;
679 }
680 spd.nr_pages -= nr_freed;
681
682 res = splice_to_pipe(pipe, &spd);
683 if (res > 0)
684 *ppos += res;
685
686 shrink_ret:
687 if (vec != __vec)
688 kfree(vec);
689 splice_shrink_spd(&spd);
690 return res;
691
692 err:
693 for (i = 0; i < spd.nr_pages; i++)
694 __free_page(spd.pages[i]);
695
696 res = error;
697 goto shrink_ret;
698 }
699 EXPORT_SYMBOL(default_file_splice_read);
700
701 /*
702 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
703 * using sendpage(). Return the number of bytes sent.
704 */
705 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
706 struct pipe_buffer *buf, struct splice_desc *sd)
707 {
708 struct file *file = sd->u.file;
709 loff_t pos = sd->pos;
710 int more;
711
712 if (!likely(file->f_op->sendpage))
713 return -EINVAL;
714
715 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
716
717 if (sd->len < sd->total_len && pipe->nrbufs > 1)
718 more |= MSG_SENDPAGE_NOTLAST;
719
720 return file->f_op->sendpage(file, buf->page, buf->offset,
721 sd->len, &pos, more);
722 }
723
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 {
726 smp_mb();
727 if (waitqueue_active(&pipe->wait))
728 wake_up_interruptible(&pipe->wait);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731
732 /**
733 * splice_from_pipe_feed - feed available data from a pipe to a file
734 * @pipe: pipe to splice from
735 * @sd: information to @actor
736 * @actor: handler that splices the data
737 *
738 * Description:
739 * This function loops over the pipe and calls @actor to do the
740 * actual moving of a single struct pipe_buffer to the desired
741 * destination. It returns when there's no more buffers left in
742 * the pipe or if the requested number of bytes (@sd->total_len)
743 * have been copied. It returns a positive number (one) if the
744 * pipe needs to be filled with more data, zero if the required
745 * number of bytes have been copied and -errno on error.
746 *
747 * This, together with splice_from_pipe_{begin,end,next}, may be
748 * used to implement the functionality of __splice_from_pipe() when
749 * locking is required around copying the pipe buffers to the
750 * destination.
751 */
752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 splice_actor *actor)
754 {
755 int ret;
756
757 while (pipe->nrbufs) {
758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 const struct pipe_buf_operations *ops = buf->ops;
760
761 sd->len = buf->len;
762 if (sd->len > sd->total_len)
763 sd->len = sd->total_len;
764
765 ret = buf->ops->confirm(pipe, buf);
766 if (unlikely(ret)) {
767 if (ret == -ENODATA)
768 ret = 0;
769 return ret;
770 }
771
772 ret = actor(pipe, buf, sd);
773 if (ret <= 0)
774 return ret;
775
776 buf->offset += ret;
777 buf->len -= ret;
778
779 sd->num_spliced += ret;
780 sd->len -= ret;
781 sd->pos += ret;
782 sd->total_len -= ret;
783
784 if (!buf->len) {
785 buf->ops = NULL;
786 ops->release(pipe, buf);
787 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
788 pipe->nrbufs--;
789 if (pipe->files)
790 sd->need_wakeup = true;
791 }
792
793 if (!sd->total_len)
794 return 0;
795 }
796
797 return 1;
798 }
799
800 /**
801 * splice_from_pipe_next - wait for some data to splice from
802 * @pipe: pipe to splice from
803 * @sd: information about the splice operation
804 *
805 * Description:
806 * This function will wait for some data and return a positive
807 * value (one) if pipe buffers are available. It will return zero
808 * or -errno if no more data needs to be spliced.
809 */
810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 {
812 /*
813 * Check for signal early to make process killable when there are
814 * always buffers available
815 */
816 if (signal_pending(current))
817 return -ERESTARTSYS;
818
819 while (!pipe->nrbufs) {
820 if (!pipe->writers)
821 return 0;
822
823 if (!pipe->waiting_writers && sd->num_spliced)
824 return 0;
825
826 if (sd->flags & SPLICE_F_NONBLOCK)
827 return -EAGAIN;
828
829 if (signal_pending(current))
830 return -ERESTARTSYS;
831
832 if (sd->need_wakeup) {
833 wakeup_pipe_writers(pipe);
834 sd->need_wakeup = false;
835 }
836
837 pipe_wait(pipe);
838 }
839
840 return 1;
841 }
842
843 /**
844 * splice_from_pipe_begin - start splicing from pipe
845 * @sd: information about the splice operation
846 *
847 * Description:
848 * This function should be called before a loop containing
849 * splice_from_pipe_next() and splice_from_pipe_feed() to
850 * initialize the necessary fields of @sd.
851 */
852 static void splice_from_pipe_begin(struct splice_desc *sd)
853 {
854 sd->num_spliced = 0;
855 sd->need_wakeup = false;
856 }
857
858 /**
859 * splice_from_pipe_end - finish splicing from pipe
860 * @pipe: pipe to splice from
861 * @sd: information about the splice operation
862 *
863 * Description:
864 * This function will wake up pipe writers if necessary. It should
865 * be called after a loop containing splice_from_pipe_next() and
866 * splice_from_pipe_feed().
867 */
868 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
869 {
870 if (sd->need_wakeup)
871 wakeup_pipe_writers(pipe);
872 }
873
874 /**
875 * __splice_from_pipe - splice data from a pipe to given actor
876 * @pipe: pipe to splice from
877 * @sd: information to @actor
878 * @actor: handler that splices the data
879 *
880 * Description:
881 * This function does little more than loop over the pipe and call
882 * @actor to do the actual moving of a single struct pipe_buffer to
883 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
884 * pipe_to_user.
885 *
886 */
887 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
888 splice_actor *actor)
889 {
890 int ret;
891
892 splice_from_pipe_begin(sd);
893 do {
894 ret = splice_from_pipe_next(pipe, sd);
895 if (ret > 0)
896 ret = splice_from_pipe_feed(pipe, sd, actor);
897 } while (ret > 0);
898 splice_from_pipe_end(pipe, sd);
899
900 return sd->num_spliced ? sd->num_spliced : ret;
901 }
902 EXPORT_SYMBOL(__splice_from_pipe);
903
904 /**
905 * splice_from_pipe - splice data from a pipe to a file
906 * @pipe: pipe to splice from
907 * @out: file to splice to
908 * @ppos: position in @out
909 * @len: how many bytes to splice
910 * @flags: splice modifier flags
911 * @actor: handler that splices the data
912 *
913 * Description:
914 * See __splice_from_pipe. This function locks the pipe inode,
915 * otherwise it's identical to __splice_from_pipe().
916 *
917 */
918 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
919 loff_t *ppos, size_t len, unsigned int flags,
920 splice_actor *actor)
921 {
922 ssize_t ret;
923 struct splice_desc sd = {
924 .total_len = len,
925 .flags = flags,
926 .pos = *ppos,
927 .u.file = out,
928 };
929
930 pipe_lock(pipe);
931 ret = __splice_from_pipe(pipe, &sd, actor);
932 pipe_unlock(pipe);
933
934 return ret;
935 }
936
937 /**
938 * iter_file_splice_write - splice data from a pipe to a file
939 * @pipe: pipe info
940 * @out: file to write to
941 * @ppos: position in @out
942 * @len: number of bytes to splice
943 * @flags: splice modifier flags
944 *
945 * Description:
946 * Will either move or copy pages (determined by @flags options) from
947 * the given pipe inode to the given file.
948 * This one is ->write_iter-based.
949 *
950 */
951 ssize_t
952 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
953 loff_t *ppos, size_t len, unsigned int flags)
954 {
955 struct splice_desc sd = {
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 };
961 int nbufs = pipe->buffers;
962 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
963 GFP_KERNEL);
964 ssize_t ret;
965
966 if (unlikely(!array))
967 return -ENOMEM;
968
969 pipe_lock(pipe);
970
971 splice_from_pipe_begin(&sd);
972 while (sd.total_len) {
973 struct iov_iter from;
974 size_t left;
975 int n, idx;
976
977 ret = splice_from_pipe_next(pipe, &sd);
978 if (ret <= 0)
979 break;
980
981 if (unlikely(nbufs < pipe->buffers)) {
982 kfree(array);
983 nbufs = pipe->buffers;
984 array = kcalloc(nbufs, sizeof(struct bio_vec),
985 GFP_KERNEL);
986 if (!array) {
987 ret = -ENOMEM;
988 break;
989 }
990 }
991
992 /* build the vector */
993 left = sd.total_len;
994 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
995 struct pipe_buffer *buf = pipe->bufs + idx;
996 size_t this_len = buf->len;
997
998 if (this_len > left)
999 this_len = left;
1000
1001 if (idx == pipe->buffers - 1)
1002 idx = -1;
1003
1004 ret = buf->ops->confirm(pipe, buf);
1005 if (unlikely(ret)) {
1006 if (ret == -ENODATA)
1007 ret = 0;
1008 goto done;
1009 }
1010
1011 array[n].bv_page = buf->page;
1012 array[n].bv_len = this_len;
1013 array[n].bv_offset = buf->offset;
1014 left -= this_len;
1015 }
1016
1017 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1018 sd.total_len - left);
1019 ret = vfs_iter_write(out, &from, &sd.pos);
1020 if (ret <= 0)
1021 break;
1022
1023 sd.num_spliced += ret;
1024 sd.total_len -= ret;
1025 *ppos = sd.pos;
1026
1027 /* dismiss the fully eaten buffers, adjust the partial one */
1028 while (ret) {
1029 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1030 if (ret >= buf->len) {
1031 const struct pipe_buf_operations *ops = buf->ops;
1032 ret -= buf->len;
1033 buf->len = 0;
1034 buf->ops = NULL;
1035 ops->release(pipe, buf);
1036 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1037 pipe->nrbufs--;
1038 if (pipe->files)
1039 sd.need_wakeup = true;
1040 } else {
1041 buf->offset += ret;
1042 buf->len -= ret;
1043 ret = 0;
1044 }
1045 }
1046 }
1047 done:
1048 kfree(array);
1049 splice_from_pipe_end(pipe, &sd);
1050
1051 pipe_unlock(pipe);
1052
1053 if (sd.num_spliced)
1054 ret = sd.num_spliced;
1055
1056 return ret;
1057 }
1058
1059 EXPORT_SYMBOL(iter_file_splice_write);
1060
1061 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1062 struct splice_desc *sd)
1063 {
1064 int ret;
1065 void *data;
1066 loff_t tmp = sd->pos;
1067
1068 data = kmap(buf->page);
1069 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1070 kunmap(buf->page);
1071
1072 return ret;
1073 }
1074
1075 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1076 struct file *out, loff_t *ppos,
1077 size_t len, unsigned int flags)
1078 {
1079 ssize_t ret;
1080
1081 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1082 if (ret > 0)
1083 *ppos += ret;
1084
1085 return ret;
1086 }
1087
1088 /**
1089 * generic_splice_sendpage - splice data from a pipe to a socket
1090 * @pipe: pipe to splice from
1091 * @out: socket to write to
1092 * @ppos: position in @out
1093 * @len: number of bytes to splice
1094 * @flags: splice modifier flags
1095 *
1096 * Description:
1097 * Will send @len bytes from the pipe to a network socket. No data copying
1098 * is involved.
1099 *
1100 */
1101 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1102 loff_t *ppos, size_t len, unsigned int flags)
1103 {
1104 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1105 }
1106
1107 EXPORT_SYMBOL(generic_splice_sendpage);
1108
1109 /*
1110 * Attempt to initiate a splice from pipe to file.
1111 */
1112 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1113 loff_t *ppos, size_t len, unsigned int flags)
1114 {
1115 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1116 loff_t *, size_t, unsigned int);
1117
1118 if (out->f_op->splice_write)
1119 splice_write = out->f_op->splice_write;
1120 else
1121 splice_write = default_file_splice_write;
1122
1123 return splice_write(pipe, out, ppos, len, flags);
1124 }
1125
1126 /*
1127 * Attempt to initiate a splice from a file to a pipe.
1128 */
1129 static long do_splice_to(struct file *in, loff_t *ppos,
1130 struct pipe_inode_info *pipe, size_t len,
1131 unsigned int flags)
1132 {
1133 ssize_t (*splice_read)(struct file *, loff_t *,
1134 struct pipe_inode_info *, size_t, unsigned int);
1135 int ret;
1136
1137 if (unlikely(!(in->f_mode & FMODE_READ)))
1138 return -EBADF;
1139
1140 ret = rw_verify_area(READ, in, ppos, len);
1141 if (unlikely(ret < 0))
1142 return ret;
1143
1144 if (in->f_op->splice_read)
1145 splice_read = in->f_op->splice_read;
1146 else
1147 splice_read = default_file_splice_read;
1148
1149 return splice_read(in, ppos, pipe, len, flags);
1150 }
1151
1152 /**
1153 * splice_direct_to_actor - splices data directly between two non-pipes
1154 * @in: file to splice from
1155 * @sd: actor information on where to splice to
1156 * @actor: handles the data splicing
1157 *
1158 * Description:
1159 * This is a special case helper to splice directly between two
1160 * points, without requiring an explicit pipe. Internally an allocated
1161 * pipe is cached in the process, and reused during the lifetime of
1162 * that process.
1163 *
1164 */
1165 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1166 splice_direct_actor *actor)
1167 {
1168 struct pipe_inode_info *pipe;
1169 long ret, bytes;
1170 umode_t i_mode;
1171 size_t len;
1172 int i, flags, more;
1173
1174 /*
1175 * We require the input being a regular file, as we don't want to
1176 * randomly drop data for eg socket -> socket splicing. Use the
1177 * piped splicing for that!
1178 */
1179 i_mode = file_inode(in)->i_mode;
1180 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1181 return -EINVAL;
1182
1183 /*
1184 * neither in nor out is a pipe, setup an internal pipe attached to
1185 * 'out' and transfer the wanted data from 'in' to 'out' through that
1186 */
1187 pipe = current->splice_pipe;
1188 if (unlikely(!pipe)) {
1189 pipe = alloc_pipe_info();
1190 if (!pipe)
1191 return -ENOMEM;
1192
1193 /*
1194 * We don't have an immediate reader, but we'll read the stuff
1195 * out of the pipe right after the splice_to_pipe(). So set
1196 * PIPE_READERS appropriately.
1197 */
1198 pipe->readers = 1;
1199
1200 current->splice_pipe = pipe;
1201 }
1202
1203 /*
1204 * Do the splice.
1205 */
1206 ret = 0;
1207 bytes = 0;
1208 len = sd->total_len;
1209 flags = sd->flags;
1210
1211 /*
1212 * Don't block on output, we have to drain the direct pipe.
1213 */
1214 sd->flags &= ~SPLICE_F_NONBLOCK;
1215 more = sd->flags & SPLICE_F_MORE;
1216
1217 while (len) {
1218 size_t read_len;
1219 loff_t pos = sd->pos, prev_pos = pos;
1220
1221 ret = do_splice_to(in, &pos, pipe, len, flags);
1222 if (unlikely(ret <= 0))
1223 goto out_release;
1224
1225 read_len = ret;
1226 sd->total_len = read_len;
1227
1228 /*
1229 * If more data is pending, set SPLICE_F_MORE
1230 * If this is the last data and SPLICE_F_MORE was not set
1231 * initially, clears it.
1232 */
1233 if (read_len < len)
1234 sd->flags |= SPLICE_F_MORE;
1235 else if (!more)
1236 sd->flags &= ~SPLICE_F_MORE;
1237 /*
1238 * NOTE: nonblocking mode only applies to the input. We
1239 * must not do the output in nonblocking mode as then we
1240 * could get stuck data in the internal pipe:
1241 */
1242 ret = actor(pipe, sd);
1243 if (unlikely(ret <= 0)) {
1244 sd->pos = prev_pos;
1245 goto out_release;
1246 }
1247
1248 bytes += ret;
1249 len -= ret;
1250 sd->pos = pos;
1251
1252 if (ret < read_len) {
1253 sd->pos = prev_pos + ret;
1254 goto out_release;
1255 }
1256 }
1257
1258 done:
1259 pipe->nrbufs = pipe->curbuf = 0;
1260 file_accessed(in);
1261 return bytes;
1262
1263 out_release:
1264 /*
1265 * If we did an incomplete transfer we must release
1266 * the pipe buffers in question:
1267 */
1268 for (i = 0; i < pipe->buffers; i++) {
1269 struct pipe_buffer *buf = pipe->bufs + i;
1270
1271 if (buf->ops) {
1272 buf->ops->release(pipe, buf);
1273 buf->ops = NULL;
1274 }
1275 }
1276
1277 if (!bytes)
1278 bytes = ret;
1279
1280 goto done;
1281 }
1282 EXPORT_SYMBOL(splice_direct_to_actor);
1283
1284 static int direct_splice_actor(struct pipe_inode_info *pipe,
1285 struct splice_desc *sd)
1286 {
1287 struct file *file = sd->u.file;
1288
1289 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1290 sd->flags);
1291 }
1292
1293 /**
1294 * do_splice_direct - splices data directly between two files
1295 * @in: file to splice from
1296 * @ppos: input file offset
1297 * @out: file to splice to
1298 * @opos: output file offset
1299 * @len: number of bytes to splice
1300 * @flags: splice modifier flags
1301 *
1302 * Description:
1303 * For use by do_sendfile(). splice can easily emulate sendfile, but
1304 * doing it in the application would incur an extra system call
1305 * (splice in + splice out, as compared to just sendfile()). So this helper
1306 * can splice directly through a process-private pipe.
1307 *
1308 */
1309 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1310 loff_t *opos, size_t len, unsigned int flags)
1311 {
1312 struct splice_desc sd = {
1313 .len = len,
1314 .total_len = len,
1315 .flags = flags,
1316 .pos = *ppos,
1317 .u.file = out,
1318 .opos = opos,
1319 };
1320 long ret;
1321
1322 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1323 return -EBADF;
1324
1325 if (unlikely(out->f_flags & O_APPEND))
1326 return -EINVAL;
1327
1328 ret = rw_verify_area(WRITE, out, opos, len);
1329 if (unlikely(ret < 0))
1330 return ret;
1331
1332 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1333 if (ret > 0)
1334 *ppos = sd.pos;
1335
1336 return ret;
1337 }
1338 EXPORT_SYMBOL(do_splice_direct);
1339
1340 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1341 struct pipe_inode_info *opipe,
1342 size_t len, unsigned int flags);
1343
1344 /*
1345 * Determine where to splice to/from.
1346 */
1347 static long do_splice(struct file *in, loff_t __user *off_in,
1348 struct file *out, loff_t __user *off_out,
1349 size_t len, unsigned int flags)
1350 {
1351 struct pipe_inode_info *ipipe;
1352 struct pipe_inode_info *opipe;
1353 loff_t offset;
1354 long ret;
1355
1356 ipipe = get_pipe_info(in);
1357 opipe = get_pipe_info(out);
1358
1359 if (ipipe && opipe) {
1360 if (off_in || off_out)
1361 return -ESPIPE;
1362
1363 if (!(in->f_mode & FMODE_READ))
1364 return -EBADF;
1365
1366 if (!(out->f_mode & FMODE_WRITE))
1367 return -EBADF;
1368
1369 /* Splicing to self would be fun, but... */
1370 if (ipipe == opipe)
1371 return -EINVAL;
1372
1373 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1374 }
1375
1376 if (ipipe) {
1377 if (off_in)
1378 return -ESPIPE;
1379 if (off_out) {
1380 if (!(out->f_mode & FMODE_PWRITE))
1381 return -EINVAL;
1382 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1383 return -EFAULT;
1384 } else {
1385 offset = out->f_pos;
1386 }
1387
1388 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1389 return -EBADF;
1390
1391 if (unlikely(out->f_flags & O_APPEND))
1392 return -EINVAL;
1393
1394 ret = rw_verify_area(WRITE, out, &offset, len);
1395 if (unlikely(ret < 0))
1396 return ret;
1397
1398 file_start_write(out);
1399 ret = do_splice_from(ipipe, out, &offset, len, flags);
1400 file_end_write(out);
1401
1402 if (!off_out)
1403 out->f_pos = offset;
1404 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1405 ret = -EFAULT;
1406
1407 return ret;
1408 }
1409
1410 if (opipe) {
1411 if (off_out)
1412 return -ESPIPE;
1413 if (off_in) {
1414 if (!(in->f_mode & FMODE_PREAD))
1415 return -EINVAL;
1416 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1417 return -EFAULT;
1418 } else {
1419 offset = in->f_pos;
1420 }
1421
1422 ret = do_splice_to(in, &offset, opipe, len, flags);
1423
1424 if (!off_in)
1425 in->f_pos = offset;
1426 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1427 ret = -EFAULT;
1428
1429 return ret;
1430 }
1431
1432 return -EINVAL;
1433 }
1434
1435 /*
1436 * Map an iov into an array of pages and offset/length tupples. With the
1437 * partial_page structure, we can map several non-contiguous ranges into
1438 * our ones pages[] map instead of splitting that operation into pieces.
1439 * Could easily be exported as a generic helper for other users, in which
1440 * case one would probably want to add a 'max_nr_pages' parameter as well.
1441 */
1442 static int get_iovec_page_array(const struct iovec __user *iov,
1443 unsigned int nr_vecs, struct page **pages,
1444 struct partial_page *partial, bool aligned,
1445 unsigned int pipe_buffers)
1446 {
1447 int buffers = 0, error = 0;
1448
1449 while (nr_vecs) {
1450 unsigned long off, npages;
1451 struct iovec entry;
1452 void __user *base;
1453 size_t len;
1454 int i;
1455
1456 error = -EFAULT;
1457 if (copy_from_user(&entry, iov, sizeof(entry)))
1458 break;
1459
1460 base = entry.iov_base;
1461 len = entry.iov_len;
1462
1463 /*
1464 * Sanity check this iovec. 0 read succeeds.
1465 */
1466 error = 0;
1467 if (unlikely(!len))
1468 break;
1469 error = -EFAULT;
1470 if (!access_ok(VERIFY_READ, base, len))
1471 break;
1472
1473 /*
1474 * Get this base offset and number of pages, then map
1475 * in the user pages.
1476 */
1477 off = (unsigned long) base & ~PAGE_MASK;
1478
1479 /*
1480 * If asked for alignment, the offset must be zero and the
1481 * length a multiple of the PAGE_SIZE.
1482 */
1483 error = -EINVAL;
1484 if (aligned && (off || len & ~PAGE_MASK))
1485 break;
1486
1487 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1488 if (npages > pipe_buffers - buffers)
1489 npages = pipe_buffers - buffers;
1490
1491 error = get_user_pages_fast((unsigned long)base, npages,
1492 0, &pages[buffers]);
1493
1494 if (unlikely(error <= 0))
1495 break;
1496
1497 /*
1498 * Fill this contiguous range into the partial page map.
1499 */
1500 for (i = 0; i < error; i++) {
1501 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1502
1503 partial[buffers].offset = off;
1504 partial[buffers].len = plen;
1505
1506 off = 0;
1507 len -= plen;
1508 buffers++;
1509 }
1510
1511 /*
1512 * We didn't complete this iov, stop here since it probably
1513 * means we have to move some of this into a pipe to
1514 * be able to continue.
1515 */
1516 if (len)
1517 break;
1518
1519 /*
1520 * Don't continue if we mapped fewer pages than we asked for,
1521 * or if we mapped the max number of pages that we have
1522 * room for.
1523 */
1524 if (error < npages || buffers == pipe_buffers)
1525 break;
1526
1527 nr_vecs--;
1528 iov++;
1529 }
1530
1531 if (buffers)
1532 return buffers;
1533
1534 return error;
1535 }
1536
1537 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1538 struct splice_desc *sd)
1539 {
1540 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1541 return n == sd->len ? n : -EFAULT;
1542 }
1543
1544 /*
1545 * For lack of a better implementation, implement vmsplice() to userspace
1546 * as a simple copy of the pipes pages to the user iov.
1547 */
1548 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1549 unsigned long nr_segs, unsigned int flags)
1550 {
1551 struct pipe_inode_info *pipe;
1552 struct splice_desc sd;
1553 long ret;
1554 struct iovec iovstack[UIO_FASTIOV];
1555 struct iovec *iov = iovstack;
1556 struct iov_iter iter;
1557
1558 pipe = get_pipe_info(file);
1559 if (!pipe)
1560 return -EBADF;
1561
1562 ret = import_iovec(READ, uiov, nr_segs,
1563 ARRAY_SIZE(iovstack), &iov, &iter);
1564 if (ret < 0)
1565 return ret;
1566
1567 sd.total_len = iov_iter_count(&iter);
1568 sd.len = 0;
1569 sd.flags = flags;
1570 sd.u.data = &iter;
1571 sd.pos = 0;
1572
1573 if (sd.total_len) {
1574 pipe_lock(pipe);
1575 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1576 pipe_unlock(pipe);
1577 }
1578
1579 kfree(iov);
1580 return ret;
1581 }
1582
1583 /*
1584 * vmsplice splices a user address range into a pipe. It can be thought of
1585 * as splice-from-memory, where the regular splice is splice-from-file (or
1586 * to file). In both cases the output is a pipe, naturally.
1587 */
1588 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1589 unsigned long nr_segs, unsigned int flags)
1590 {
1591 struct pipe_inode_info *pipe;
1592 struct page *pages[PIPE_DEF_BUFFERS];
1593 struct partial_page partial[PIPE_DEF_BUFFERS];
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
1597 .nr_pages_max = PIPE_DEF_BUFFERS,
1598 .flags = flags,
1599 .ops = &user_page_pipe_buf_ops,
1600 .spd_release = spd_release_page,
1601 };
1602 long ret;
1603
1604 pipe = get_pipe_info(file);
1605 if (!pipe)
1606 return -EBADF;
1607
1608 if (splice_grow_spd(pipe, &spd))
1609 return -ENOMEM;
1610
1611 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1612 spd.partial, false,
1613 spd.nr_pages_max);
1614 if (spd.nr_pages <= 0)
1615 ret = spd.nr_pages;
1616 else
1617 ret = splice_to_pipe(pipe, &spd);
1618
1619 splice_shrink_spd(&spd);
1620 return ret;
1621 }
1622
1623 /*
1624 * Note that vmsplice only really supports true splicing _from_ user memory
1625 * to a pipe, not the other way around. Splicing from user memory is a simple
1626 * operation that can be supported without any funky alignment restrictions
1627 * or nasty vm tricks. We simply map in the user memory and fill them into
1628 * a pipe. The reverse isn't quite as easy, though. There are two possible
1629 * solutions for that:
1630 *
1631 * - memcpy() the data internally, at which point we might as well just
1632 * do a regular read() on the buffer anyway.
1633 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1634 * has restriction limitations on both ends of the pipe).
1635 *
1636 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1637 *
1638 */
1639 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1640 unsigned long, nr_segs, unsigned int, flags)
1641 {
1642 struct fd f;
1643 long error;
1644
1645 if (unlikely(nr_segs > UIO_MAXIOV))
1646 return -EINVAL;
1647 else if (unlikely(!nr_segs))
1648 return 0;
1649
1650 error = -EBADF;
1651 f = fdget(fd);
1652 if (f.file) {
1653 if (f.file->f_mode & FMODE_WRITE)
1654 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1655 else if (f.file->f_mode & FMODE_READ)
1656 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1657
1658 fdput(f);
1659 }
1660
1661 return error;
1662 }
1663
1664 #ifdef CONFIG_COMPAT
1665 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1666 unsigned int, nr_segs, unsigned int, flags)
1667 {
1668 unsigned i;
1669 struct iovec __user *iov;
1670 if (nr_segs > UIO_MAXIOV)
1671 return -EINVAL;
1672 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1673 for (i = 0; i < nr_segs; i++) {
1674 struct compat_iovec v;
1675 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1676 get_user(v.iov_len, &iov32[i].iov_len) ||
1677 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1678 put_user(v.iov_len, &iov[i].iov_len))
1679 return -EFAULT;
1680 }
1681 return sys_vmsplice(fd, iov, nr_segs, flags);
1682 }
1683 #endif
1684
1685 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1686 int, fd_out, loff_t __user *, off_out,
1687 size_t, len, unsigned int, flags)
1688 {
1689 struct fd in, out;
1690 long error;
1691
1692 if (unlikely(!len))
1693 return 0;
1694
1695 error = -EBADF;
1696 in = fdget(fd_in);
1697 if (in.file) {
1698 if (in.file->f_mode & FMODE_READ) {
1699 out = fdget(fd_out);
1700 if (out.file) {
1701 if (out.file->f_mode & FMODE_WRITE)
1702 error = do_splice(in.file, off_in,
1703 out.file, off_out,
1704 len, flags);
1705 fdput(out);
1706 }
1707 }
1708 fdput(in);
1709 }
1710 return error;
1711 }
1712
1713 /*
1714 * Make sure there's data to read. Wait for input if we can, otherwise
1715 * return an appropriate error.
1716 */
1717 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1718 {
1719 int ret;
1720
1721 /*
1722 * Check ->nrbufs without the inode lock first. This function
1723 * is speculative anyways, so missing one is ok.
1724 */
1725 if (pipe->nrbufs)
1726 return 0;
1727
1728 ret = 0;
1729 pipe_lock(pipe);
1730
1731 while (!pipe->nrbufs) {
1732 if (signal_pending(current)) {
1733 ret = -ERESTARTSYS;
1734 break;
1735 }
1736 if (!pipe->writers)
1737 break;
1738 if (!pipe->waiting_writers) {
1739 if (flags & SPLICE_F_NONBLOCK) {
1740 ret = -EAGAIN;
1741 break;
1742 }
1743 }
1744 pipe_wait(pipe);
1745 }
1746
1747 pipe_unlock(pipe);
1748 return ret;
1749 }
1750
1751 /*
1752 * Make sure there's writeable room. Wait for room if we can, otherwise
1753 * return an appropriate error.
1754 */
1755 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1756 {
1757 int ret;
1758
1759 /*
1760 * Check ->nrbufs without the inode lock first. This function
1761 * is speculative anyways, so missing one is ok.
1762 */
1763 if (pipe->nrbufs < pipe->buffers)
1764 return 0;
1765
1766 ret = 0;
1767 pipe_lock(pipe);
1768
1769 while (pipe->nrbufs >= pipe->buffers) {
1770 if (!pipe->readers) {
1771 send_sig(SIGPIPE, current, 0);
1772 ret = -EPIPE;
1773 break;
1774 }
1775 if (flags & SPLICE_F_NONBLOCK) {
1776 ret = -EAGAIN;
1777 break;
1778 }
1779 if (signal_pending(current)) {
1780 ret = -ERESTARTSYS;
1781 break;
1782 }
1783 pipe->waiting_writers++;
1784 pipe_wait(pipe);
1785 pipe->waiting_writers--;
1786 }
1787
1788 pipe_unlock(pipe);
1789 return ret;
1790 }
1791
1792 /*
1793 * Splice contents of ipipe to opipe.
1794 */
1795 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1796 struct pipe_inode_info *opipe,
1797 size_t len, unsigned int flags)
1798 {
1799 struct pipe_buffer *ibuf, *obuf;
1800 int ret = 0, nbuf;
1801 bool input_wakeup = false;
1802
1803
1804 retry:
1805 ret = ipipe_prep(ipipe, flags);
1806 if (ret)
1807 return ret;
1808
1809 ret = opipe_prep(opipe, flags);
1810 if (ret)
1811 return ret;
1812
1813 /*
1814 * Potential ABBA deadlock, work around it by ordering lock
1815 * grabbing by pipe info address. Otherwise two different processes
1816 * could deadlock (one doing tee from A -> B, the other from B -> A).
1817 */
1818 pipe_double_lock(ipipe, opipe);
1819
1820 do {
1821 if (!opipe->readers) {
1822 send_sig(SIGPIPE, current, 0);
1823 if (!ret)
1824 ret = -EPIPE;
1825 break;
1826 }
1827
1828 if (!ipipe->nrbufs && !ipipe->writers)
1829 break;
1830
1831 /*
1832 * Cannot make any progress, because either the input
1833 * pipe is empty or the output pipe is full.
1834 */
1835 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1836 /* Already processed some buffers, break */
1837 if (ret)
1838 break;
1839
1840 if (flags & SPLICE_F_NONBLOCK) {
1841 ret = -EAGAIN;
1842 break;
1843 }
1844
1845 /*
1846 * We raced with another reader/writer and haven't
1847 * managed to process any buffers. A zero return
1848 * value means EOF, so retry instead.
1849 */
1850 pipe_unlock(ipipe);
1851 pipe_unlock(opipe);
1852 goto retry;
1853 }
1854
1855 ibuf = ipipe->bufs + ipipe->curbuf;
1856 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1857 obuf = opipe->bufs + nbuf;
1858
1859 if (len >= ibuf->len) {
1860 /*
1861 * Simply move the whole buffer from ipipe to opipe
1862 */
1863 *obuf = *ibuf;
1864 ibuf->ops = NULL;
1865 opipe->nrbufs++;
1866 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1867 ipipe->nrbufs--;
1868 input_wakeup = true;
1869 } else {
1870 /*
1871 * Get a reference to this pipe buffer,
1872 * so we can copy the contents over.
1873 */
1874 ibuf->ops->get(ipipe, ibuf);
1875 *obuf = *ibuf;
1876
1877 /*
1878 * Don't inherit the gift flag, we need to
1879 * prevent multiple steals of this page.
1880 */
1881 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882
1883 obuf->len = len;
1884 opipe->nrbufs++;
1885 ibuf->offset += obuf->len;
1886 ibuf->len -= obuf->len;
1887 }
1888 ret += obuf->len;
1889 len -= obuf->len;
1890 } while (len);
1891
1892 pipe_unlock(ipipe);
1893 pipe_unlock(opipe);
1894
1895 /*
1896 * If we put data in the output pipe, wakeup any potential readers.
1897 */
1898 if (ret > 0)
1899 wakeup_pipe_readers(opipe);
1900
1901 if (input_wakeup)
1902 wakeup_pipe_writers(ipipe);
1903
1904 return ret;
1905 }
1906
1907 /*
1908 * Link contents of ipipe to opipe.
1909 */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 struct pipe_inode_info *opipe,
1912 size_t len, unsigned int flags)
1913 {
1914 struct pipe_buffer *ibuf, *obuf;
1915 int ret = 0, i = 0, nbuf;
1916
1917 /*
1918 * Potential ABBA deadlock, work around it by ordering lock
1919 * grabbing by pipe info address. Otherwise two different processes
1920 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 */
1922 pipe_double_lock(ipipe, opipe);
1923
1924 do {
1925 if (!opipe->readers) {
1926 send_sig(SIGPIPE, current, 0);
1927 if (!ret)
1928 ret = -EPIPE;
1929 break;
1930 }
1931
1932 /*
1933 * If we have iterated all input buffers or ran out of
1934 * output room, break.
1935 */
1936 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 break;
1938
1939 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941
1942 /*
1943 * Get a reference to this pipe buffer,
1944 * so we can copy the contents over.
1945 */
1946 ibuf->ops->get(ipipe, ibuf);
1947
1948 obuf = opipe->bufs + nbuf;
1949 *obuf = *ibuf;
1950
1951 /*
1952 * Don't inherit the gift flag, we need to
1953 * prevent multiple steals of this page.
1954 */
1955 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956
1957 if (obuf->len > len)
1958 obuf->len = len;
1959
1960 opipe->nrbufs++;
1961 ret += obuf->len;
1962 len -= obuf->len;
1963 i++;
1964 } while (len);
1965
1966 /*
1967 * return EAGAIN if we have the potential of some data in the
1968 * future, otherwise just return 0
1969 */
1970 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 ret = -EAGAIN;
1972
1973 pipe_unlock(ipipe);
1974 pipe_unlock(opipe);
1975
1976 /*
1977 * If we put data in the output pipe, wakeup any potential readers.
1978 */
1979 if (ret > 0)
1980 wakeup_pipe_readers(opipe);
1981
1982 return ret;
1983 }
1984
1985 /*
1986 * This is a tee(1) implementation that works on pipes. It doesn't copy
1987 * any data, it simply references the 'in' pages on the 'out' pipe.
1988 * The 'flags' used are the SPLICE_F_* variants, currently the only
1989 * applicable one is SPLICE_F_NONBLOCK.
1990 */
1991 static long do_tee(struct file *in, struct file *out, size_t len,
1992 unsigned int flags)
1993 {
1994 struct pipe_inode_info *ipipe = get_pipe_info(in);
1995 struct pipe_inode_info *opipe = get_pipe_info(out);
1996 int ret = -EINVAL;
1997
1998 /*
1999 * Duplicate the contents of ipipe to opipe without actually
2000 * copying the data.
2001 */
2002 if (ipipe && opipe && ipipe != opipe) {
2003 /*
2004 * Keep going, unless we encounter an error. The ipipe/opipe
2005 * ordering doesn't really matter.
2006 */
2007 ret = ipipe_prep(ipipe, flags);
2008 if (!ret) {
2009 ret = opipe_prep(opipe, flags);
2010 if (!ret)
2011 ret = link_pipe(ipipe, opipe, len, flags);
2012 }
2013 }
2014
2015 return ret;
2016 }
2017
2018 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2019 {
2020 struct fd in;
2021 int error;
2022
2023 if (unlikely(!len))
2024 return 0;
2025
2026 error = -EBADF;
2027 in = fdget(fdin);
2028 if (in.file) {
2029 if (in.file->f_mode & FMODE_READ) {
2030 struct fd out = fdget(fdout);
2031 if (out.file) {
2032 if (out.file->f_mode & FMODE_WRITE)
2033 error = do_tee(in.file, out.file,
2034 len, flags);
2035 fdput(out);
2036 }
2037 }
2038 fdput(in);
2039 }
2040
2041 return error;
2042 }