]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 pipe_lock(pipe);
186
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
193 }
194
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
210
211 if (pipe->inode)
212 do_wakeup = 1;
213
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
218
219 break;
220 }
221
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
226 }
227
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
232 }
233
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
240 }
241
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
245 }
246
247 pipe_unlock(pipe);
248
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 }
255
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
258
259 return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
271 {
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
286 };
287
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293 /*
294 * Lookup the (hopefully) full range of pages we need.
295 */
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
298
299 /*
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
302 */
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
306
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
309 /*
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
312 */
313 page = find_get_page(mapping, index);
314 if (!page) {
315 /*
316 * page didn't exist, allocate one.
317 */
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
321
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
329 }
330 /*
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
333 */
334 unlock_page(page);
335 }
336
337 pages[spd.nr_pages++] = page;
338 index++;
339 }
340
341 /*
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
344 */
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
350
351 if (!len)
352 break;
353
354 /*
355 * this_len is the max we'll use from this page
356 */
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
359
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
363
364 /*
365 * If the page isn't uptodate, we may need to start io on it
366 */
367 if (!PageUptodate(page)) {
368 /*
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
371 */
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
376 }
377 } else
378 lock_page(page);
379
380 /*
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
385 */
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
390
391 if (!page) {
392 error = -ENOMEM;
393 break;
394 }
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
397 }
398 /*
399 * page was already under io and is now done, great
400 */
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
404 }
405
406 /*
407 * need to read in the page
408 */
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
411 /*
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
416 */
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
419
420 break;
421 }
422 }
423 fill_it:
424 /*
425 * i_size must be checked after PageUptodate.
426 */
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
431
432 /*
433 * if this is the last page, see if we need to shrink
434 * the length and stop
435 */
436 if (end_index == index) {
437 unsigned int plen;
438
439 /*
440 * max good bytes in this page
441 */
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
445
446 /*
447 * force quit after adding this page
448 */
449 this_len = min(this_len, plen - loff);
450 len = this_len;
451 }
452
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
459 }
460
461 /*
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
464 */
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
471
472 return error;
473 }
474
475 /**
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
482 *
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
487 *
488 */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
492 {
493 loff_t isize, left;
494 int ret;
495
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
499
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
503
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0) {
506 *ppos += ret;
507 file_accessed(in);
508 }
509
510 return ret;
511 }
512 EXPORT_SYMBOL(generic_file_splice_read);
513
514 static const struct pipe_buf_operations default_pipe_buf_ops = {
515 .can_merge = 0,
516 .map = generic_pipe_buf_map,
517 .unmap = generic_pipe_buf_unmap,
518 .confirm = generic_pipe_buf_confirm,
519 .release = generic_pipe_buf_release,
520 .steal = generic_pipe_buf_steal,
521 .get = generic_pipe_buf_get,
522 };
523
524 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
525 unsigned long vlen, loff_t offset)
526 {
527 mm_segment_t old_fs;
528 loff_t pos = offset;
529 ssize_t res;
530
531 old_fs = get_fs();
532 set_fs(get_ds());
533 /* The cast to a user pointer is valid due to the set_fs() */
534 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
535 set_fs(old_fs);
536
537 return res;
538 }
539
540 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
541 loff_t pos)
542 {
543 mm_segment_t old_fs;
544 ssize_t res;
545
546 old_fs = get_fs();
547 set_fs(get_ds());
548 /* The cast to a user pointer is valid due to the set_fs() */
549 res = vfs_write(file, (const char __user *)buf, count, &pos);
550 set_fs(old_fs);
551
552 return res;
553 }
554
555 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
556 struct pipe_inode_info *pipe, size_t len,
557 unsigned int flags)
558 {
559 unsigned int nr_pages;
560 unsigned int nr_freed;
561 size_t offset;
562 struct page *pages[PIPE_BUFFERS];
563 struct partial_page partial[PIPE_BUFFERS];
564 struct iovec vec[PIPE_BUFFERS];
565 pgoff_t index;
566 ssize_t res;
567 size_t this_len;
568 int error;
569 int i;
570 struct splice_pipe_desc spd = {
571 .pages = pages,
572 .partial = partial,
573 .flags = flags,
574 .ops = &default_pipe_buf_ops,
575 .spd_release = spd_release_page,
576 };
577
578 index = *ppos >> PAGE_CACHE_SHIFT;
579 offset = *ppos & ~PAGE_CACHE_MASK;
580 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
581
582 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
583 struct page *page;
584
585 page = alloc_page(GFP_USER);
586 error = -ENOMEM;
587 if (!page)
588 goto err;
589
590 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
591 vec[i].iov_base = (void __user *) page_address(page);
592 vec[i].iov_len = this_len;
593 pages[i] = page;
594 spd.nr_pages++;
595 len -= this_len;
596 offset = 0;
597 }
598
599 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
600 if (res < 0) {
601 error = res;
602 goto err;
603 }
604
605 error = 0;
606 if (!res)
607 goto err;
608
609 nr_freed = 0;
610 for (i = 0; i < spd.nr_pages; i++) {
611 this_len = min_t(size_t, vec[i].iov_len, res);
612 partial[i].offset = 0;
613 partial[i].len = this_len;
614 if (!this_len) {
615 __free_page(pages[i]);
616 pages[i] = NULL;
617 nr_freed++;
618 }
619 res -= this_len;
620 }
621 spd.nr_pages -= nr_freed;
622
623 res = splice_to_pipe(pipe, &spd);
624 if (res > 0)
625 *ppos += res;
626
627 return res;
628
629 err:
630 for (i = 0; i < spd.nr_pages; i++)
631 __free_page(pages[i]);
632
633 return error;
634 }
635 EXPORT_SYMBOL(default_file_splice_read);
636
637 /*
638 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
639 * using sendpage(). Return the number of bytes sent.
640 */
641 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
642 struct pipe_buffer *buf, struct splice_desc *sd)
643 {
644 struct file *file = sd->u.file;
645 loff_t pos = sd->pos;
646 int ret, more;
647
648 ret = buf->ops->confirm(pipe, buf);
649 if (!ret) {
650 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
651
652 ret = file->f_op->sendpage(file, buf->page, buf->offset,
653 sd->len, &pos, more);
654 }
655
656 return ret;
657 }
658
659 /*
660 * This is a little more tricky than the file -> pipe splicing. There are
661 * basically three cases:
662 *
663 * - Destination page already exists in the address space and there
664 * are users of it. For that case we have no other option that
665 * copying the data. Tough luck.
666 * - Destination page already exists in the address space, but there
667 * are no users of it. Make sure it's uptodate, then drop it. Fall
668 * through to last case.
669 * - Destination page does not exist, we can add the pipe page to
670 * the page cache and avoid the copy.
671 *
672 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
673 * sd->flags), we attempt to migrate pages from the pipe to the output
674 * file address space page cache. This is possible if no one else has
675 * the pipe page referenced outside of the pipe and page cache. If
676 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
677 * a new page in the output file page cache and fill/dirty that.
678 */
679 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
680 struct splice_desc *sd)
681 {
682 struct file *file = sd->u.file;
683 struct address_space *mapping = file->f_mapping;
684 unsigned int offset, this_len;
685 struct page *page;
686 void *fsdata;
687 int ret;
688
689 /*
690 * make sure the data in this buffer is uptodate
691 */
692 ret = buf->ops->confirm(pipe, buf);
693 if (unlikely(ret))
694 return ret;
695
696 offset = sd->pos & ~PAGE_CACHE_MASK;
697
698 this_len = sd->len;
699 if (this_len + offset > PAGE_CACHE_SIZE)
700 this_len = PAGE_CACHE_SIZE - offset;
701
702 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
703 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
704 if (unlikely(ret))
705 goto out;
706
707 if (buf->page != page) {
708 /*
709 * Careful, ->map() uses KM_USER0!
710 */
711 char *src = buf->ops->map(pipe, buf, 1);
712 char *dst = kmap_atomic(page, KM_USER1);
713
714 memcpy(dst + offset, src + buf->offset, this_len);
715 flush_dcache_page(page);
716 kunmap_atomic(dst, KM_USER1);
717 buf->ops->unmap(pipe, buf, src);
718 }
719 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
720 page, fsdata);
721 out:
722 return ret;
723 }
724 EXPORT_SYMBOL(pipe_to_file);
725
726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
727 {
728 smp_mb();
729 if (waitqueue_active(&pipe->wait))
730 wake_up_interruptible(&pipe->wait);
731 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 }
733
734 /**
735 * splice_from_pipe_feed - feed available data from a pipe to a file
736 * @pipe: pipe to splice from
737 * @sd: information to @actor
738 * @actor: handler that splices the data
739 *
740 * Description:
741 * This function loops over the pipe and calls @actor to do the
742 * actual moving of a single struct pipe_buffer to the desired
743 * destination. It returns when there's no more buffers left in
744 * the pipe or if the requested number of bytes (@sd->total_len)
745 * have been copied. It returns a positive number (one) if the
746 * pipe needs to be filled with more data, zero if the required
747 * number of bytes have been copied and -errno on error.
748 *
749 * This, together with splice_from_pipe_{begin,end,next}, may be
750 * used to implement the functionality of __splice_from_pipe() when
751 * locking is required around copying the pipe buffers to the
752 * destination.
753 */
754 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
755 splice_actor *actor)
756 {
757 int ret;
758
759 while (pipe->nrbufs) {
760 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
761 const struct pipe_buf_operations *ops = buf->ops;
762
763 sd->len = buf->len;
764 if (sd->len > sd->total_len)
765 sd->len = sd->total_len;
766
767 ret = actor(pipe, buf, sd);
768 if (ret <= 0) {
769 if (ret == -ENODATA)
770 ret = 0;
771 return ret;
772 }
773 buf->offset += ret;
774 buf->len -= ret;
775
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
780
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
785 pipe->nrbufs--;
786 if (pipe->inode)
787 sd->need_wakeup = true;
788 }
789
790 if (!sd->total_len)
791 return 0;
792 }
793
794 return 1;
795 }
796 EXPORT_SYMBOL(splice_from_pipe_feed);
797
798 /**
799 * splice_from_pipe_next - wait for some data to splice from
800 * @pipe: pipe to splice from
801 * @sd: information about the splice operation
802 *
803 * Description:
804 * This function will wait for some data and return a positive
805 * value (one) if pipe buffers are available. It will return zero
806 * or -errno if no more data needs to be spliced.
807 */
808 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 {
810 while (!pipe->nrbufs) {
811 if (!pipe->writers)
812 return 0;
813
814 if (!pipe->waiting_writers && sd->num_spliced)
815 return 0;
816
817 if (sd->flags & SPLICE_F_NONBLOCK)
818 return -EAGAIN;
819
820 if (signal_pending(current))
821 return -ERESTARTSYS;
822
823 if (sd->need_wakeup) {
824 wakeup_pipe_writers(pipe);
825 sd->need_wakeup = false;
826 }
827
828 pipe_wait(pipe);
829 }
830
831 return 1;
832 }
833 EXPORT_SYMBOL(splice_from_pipe_next);
834
835 /**
836 * splice_from_pipe_begin - start splicing from pipe
837 * @sd: information about the splice operation
838 *
839 * Description:
840 * This function should be called before a loop containing
841 * splice_from_pipe_next() and splice_from_pipe_feed() to
842 * initialize the necessary fields of @sd.
843 */
844 void splice_from_pipe_begin(struct splice_desc *sd)
845 {
846 sd->num_spliced = 0;
847 sd->need_wakeup = false;
848 }
849 EXPORT_SYMBOL(splice_from_pipe_begin);
850
851 /**
852 * splice_from_pipe_end - finish splicing from pipe
853 * @pipe: pipe to splice from
854 * @sd: information about the splice operation
855 *
856 * Description:
857 * This function will wake up pipe writers if necessary. It should
858 * be called after a loop containing splice_from_pipe_next() and
859 * splice_from_pipe_feed().
860 */
861 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
862 {
863 if (sd->need_wakeup)
864 wakeup_pipe_writers(pipe);
865 }
866 EXPORT_SYMBOL(splice_from_pipe_end);
867
868 /**
869 * __splice_from_pipe - splice data from a pipe to given actor
870 * @pipe: pipe to splice from
871 * @sd: information to @actor
872 * @actor: handler that splices the data
873 *
874 * Description:
875 * This function does little more than loop over the pipe and call
876 * @actor to do the actual moving of a single struct pipe_buffer to
877 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
878 * pipe_to_user.
879 *
880 */
881 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
882 splice_actor *actor)
883 {
884 int ret;
885
886 splice_from_pipe_begin(sd);
887 do {
888 ret = splice_from_pipe_next(pipe, sd);
889 if (ret > 0)
890 ret = splice_from_pipe_feed(pipe, sd, actor);
891 } while (ret > 0);
892 splice_from_pipe_end(pipe, sd);
893
894 return sd->num_spliced ? sd->num_spliced : ret;
895 }
896 EXPORT_SYMBOL(__splice_from_pipe);
897
898 /**
899 * splice_from_pipe - splice data from a pipe to a file
900 * @pipe: pipe to splice from
901 * @out: file to splice to
902 * @ppos: position in @out
903 * @len: how many bytes to splice
904 * @flags: splice modifier flags
905 * @actor: handler that splices the data
906 *
907 * Description:
908 * See __splice_from_pipe. This function locks the pipe inode,
909 * otherwise it's identical to __splice_from_pipe().
910 *
911 */
912 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
913 loff_t *ppos, size_t len, unsigned int flags,
914 splice_actor *actor)
915 {
916 ssize_t ret;
917 struct splice_desc sd = {
918 .total_len = len,
919 .flags = flags,
920 .pos = *ppos,
921 .u.file = out,
922 };
923
924 pipe_lock(pipe);
925 ret = __splice_from_pipe(pipe, &sd, actor);
926 pipe_unlock(pipe);
927
928 return ret;
929 }
930
931 /**
932 * generic_file_splice_write - splice data from a pipe to a file
933 * @pipe: pipe info
934 * @out: file to write to
935 * @ppos: position in @out
936 * @len: number of bytes to splice
937 * @flags: splice modifier flags
938 *
939 * Description:
940 * Will either move or copy pages (determined by @flags options) from
941 * the given pipe inode to the given file.
942 *
943 */
944 ssize_t
945 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
947 {
948 struct address_space *mapping = out->f_mapping;
949 struct inode *inode = mapping->host;
950 struct splice_desc sd = {
951 .total_len = len,
952 .flags = flags,
953 .pos = *ppos,
954 .u.file = out,
955 };
956 ssize_t ret;
957
958 pipe_lock(pipe);
959
960 splice_from_pipe_begin(&sd);
961 do {
962 ret = splice_from_pipe_next(pipe, &sd);
963 if (ret <= 0)
964 break;
965
966 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
967 ret = file_remove_suid(out);
968 if (!ret) {
969 file_update_time(out);
970 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
971 }
972 mutex_unlock(&inode->i_mutex);
973 } while (ret > 0);
974 splice_from_pipe_end(pipe, &sd);
975
976 pipe_unlock(pipe);
977
978 if (sd.num_spliced)
979 ret = sd.num_spliced;
980
981 if (ret > 0) {
982 unsigned long nr_pages;
983 int err;
984
985 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
986
987 err = generic_write_sync(out, *ppos, ret);
988 if (err)
989 ret = err;
990 else
991 *ppos += ret;
992 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
993 }
994
995 return ret;
996 }
997
998 EXPORT_SYMBOL(generic_file_splice_write);
999
1000 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1001 struct splice_desc *sd)
1002 {
1003 int ret;
1004 void *data;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (ret)
1008 return ret;
1009
1010 data = buf->ops->map(pipe, buf, 0);
1011 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1012 buf->ops->unmap(pipe, buf, data);
1013
1014 return ret;
1015 }
1016
1017 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1018 struct file *out, loff_t *ppos,
1019 size_t len, unsigned int flags)
1020 {
1021 ssize_t ret;
1022
1023 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1024 if (ret > 0)
1025 *ppos += ret;
1026
1027 return ret;
1028 }
1029
1030 /**
1031 * generic_splice_sendpage - splice data from a pipe to a socket
1032 * @pipe: pipe to splice from
1033 * @out: socket to write to
1034 * @ppos: position in @out
1035 * @len: number of bytes to splice
1036 * @flags: splice modifier flags
1037 *
1038 * Description:
1039 * Will send @len bytes from the pipe to a network socket. No data copying
1040 * is involved.
1041 *
1042 */
1043 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1044 loff_t *ppos, size_t len, unsigned int flags)
1045 {
1046 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1047 }
1048
1049 EXPORT_SYMBOL(generic_splice_sendpage);
1050
1051 /*
1052 * Attempt to initiate a splice from pipe to file.
1053 */
1054 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1055 loff_t *ppos, size_t len, unsigned int flags)
1056 {
1057 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1058 loff_t *, size_t, unsigned int);
1059 int ret;
1060
1061 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1062 return -EBADF;
1063
1064 if (unlikely(out->f_flags & O_APPEND))
1065 return -EINVAL;
1066
1067 ret = rw_verify_area(WRITE, out, ppos, len);
1068 if (unlikely(ret < 0))
1069 return ret;
1070
1071 splice_write = out->f_op->splice_write;
1072 if (!splice_write)
1073 splice_write = default_file_splice_write;
1074
1075 return splice_write(pipe, out, ppos, len, flags);
1076 }
1077
1078 /*
1079 * Attempt to initiate a splice from a file to a pipe.
1080 */
1081 static long do_splice_to(struct file *in, loff_t *ppos,
1082 struct pipe_inode_info *pipe, size_t len,
1083 unsigned int flags)
1084 {
1085 ssize_t (*splice_read)(struct file *, loff_t *,
1086 struct pipe_inode_info *, size_t, unsigned int);
1087 int ret;
1088
1089 if (unlikely(!(in->f_mode & FMODE_READ)))
1090 return -EBADF;
1091
1092 ret = rw_verify_area(READ, in, ppos, len);
1093 if (unlikely(ret < 0))
1094 return ret;
1095
1096 splice_read = in->f_op->splice_read;
1097 if (!splice_read)
1098 splice_read = default_file_splice_read;
1099
1100 return splice_read(in, ppos, pipe, len, flags);
1101 }
1102
1103 /**
1104 * splice_direct_to_actor - splices data directly between two non-pipes
1105 * @in: file to splice from
1106 * @sd: actor information on where to splice to
1107 * @actor: handles the data splicing
1108 *
1109 * Description:
1110 * This is a special case helper to splice directly between two
1111 * points, without requiring an explicit pipe. Internally an allocated
1112 * pipe is cached in the process, and reused during the lifetime of
1113 * that process.
1114 *
1115 */
1116 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1117 splice_direct_actor *actor)
1118 {
1119 struct pipe_inode_info *pipe;
1120 long ret, bytes;
1121 umode_t i_mode;
1122 size_t len;
1123 int i, flags;
1124
1125 /*
1126 * We require the input being a regular file, as we don't want to
1127 * randomly drop data for eg socket -> socket splicing. Use the
1128 * piped splicing for that!
1129 */
1130 i_mode = in->f_path.dentry->d_inode->i_mode;
1131 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1132 return -EINVAL;
1133
1134 /*
1135 * neither in nor out is a pipe, setup an internal pipe attached to
1136 * 'out' and transfer the wanted data from 'in' to 'out' through that
1137 */
1138 pipe = current->splice_pipe;
1139 if (unlikely(!pipe)) {
1140 pipe = alloc_pipe_info(NULL);
1141 if (!pipe)
1142 return -ENOMEM;
1143
1144 /*
1145 * We don't have an immediate reader, but we'll read the stuff
1146 * out of the pipe right after the splice_to_pipe(). So set
1147 * PIPE_READERS appropriately.
1148 */
1149 pipe->readers = 1;
1150
1151 current->splice_pipe = pipe;
1152 }
1153
1154 /*
1155 * Do the splice.
1156 */
1157 ret = 0;
1158 bytes = 0;
1159 len = sd->total_len;
1160 flags = sd->flags;
1161
1162 /*
1163 * Don't block on output, we have to drain the direct pipe.
1164 */
1165 sd->flags &= ~SPLICE_F_NONBLOCK;
1166
1167 while (len) {
1168 size_t read_len;
1169 loff_t pos = sd->pos, prev_pos = pos;
1170
1171 ret = do_splice_to(in, &pos, pipe, len, flags);
1172 if (unlikely(ret <= 0))
1173 goto out_release;
1174
1175 read_len = ret;
1176 sd->total_len = read_len;
1177
1178 /*
1179 * NOTE: nonblocking mode only applies to the input. We
1180 * must not do the output in nonblocking mode as then we
1181 * could get stuck data in the internal pipe:
1182 */
1183 ret = actor(pipe, sd);
1184 if (unlikely(ret <= 0)) {
1185 sd->pos = prev_pos;
1186 goto out_release;
1187 }
1188
1189 bytes += ret;
1190 len -= ret;
1191 sd->pos = pos;
1192
1193 if (ret < read_len) {
1194 sd->pos = prev_pos + ret;
1195 goto out_release;
1196 }
1197 }
1198
1199 done:
1200 pipe->nrbufs = pipe->curbuf = 0;
1201 file_accessed(in);
1202 return bytes;
1203
1204 out_release:
1205 /*
1206 * If we did an incomplete transfer we must release
1207 * the pipe buffers in question:
1208 */
1209 for (i = 0; i < PIPE_BUFFERS; i++) {
1210 struct pipe_buffer *buf = pipe->bufs + i;
1211
1212 if (buf->ops) {
1213 buf->ops->release(pipe, buf);
1214 buf->ops = NULL;
1215 }
1216 }
1217
1218 if (!bytes)
1219 bytes = ret;
1220
1221 goto done;
1222 }
1223 EXPORT_SYMBOL(splice_direct_to_actor);
1224
1225 static int direct_splice_actor(struct pipe_inode_info *pipe,
1226 struct splice_desc *sd)
1227 {
1228 struct file *file = sd->u.file;
1229
1230 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1231 }
1232
1233 /**
1234 * do_splice_direct - splices data directly between two files
1235 * @in: file to splice from
1236 * @ppos: input file offset
1237 * @out: file to splice to
1238 * @len: number of bytes to splice
1239 * @flags: splice modifier flags
1240 *
1241 * Description:
1242 * For use by do_sendfile(). splice can easily emulate sendfile, but
1243 * doing it in the application would incur an extra system call
1244 * (splice in + splice out, as compared to just sendfile()). So this helper
1245 * can splice directly through a process-private pipe.
1246 *
1247 */
1248 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1249 size_t len, unsigned int flags)
1250 {
1251 struct splice_desc sd = {
1252 .len = len,
1253 .total_len = len,
1254 .flags = flags,
1255 .pos = *ppos,
1256 .u.file = out,
1257 };
1258 long ret;
1259
1260 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1261 if (ret > 0)
1262 *ppos = sd.pos;
1263
1264 return ret;
1265 }
1266
1267 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1268 struct pipe_inode_info *opipe,
1269 size_t len, unsigned int flags);
1270 /*
1271 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1272 * location, so checking ->i_pipe is not enough to verify that this is a
1273 * pipe.
1274 */
1275 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1276 {
1277 if (S_ISFIFO(inode->i_mode))
1278 return inode->i_pipe;
1279
1280 return NULL;
1281 }
1282
1283 /*
1284 * Determine where to splice to/from.
1285 */
1286 static long do_splice(struct file *in, loff_t __user *off_in,
1287 struct file *out, loff_t __user *off_out,
1288 size_t len, unsigned int flags)
1289 {
1290 struct pipe_inode_info *ipipe;
1291 struct pipe_inode_info *opipe;
1292 loff_t offset, *off;
1293 long ret;
1294
1295 ipipe = pipe_info(in->f_path.dentry->d_inode);
1296 opipe = pipe_info(out->f_path.dentry->d_inode);
1297
1298 if (ipipe && opipe) {
1299 if (off_in || off_out)
1300 return -ESPIPE;
1301
1302 if (!(in->f_mode & FMODE_READ))
1303 return -EBADF;
1304
1305 if (!(out->f_mode & FMODE_WRITE))
1306 return -EBADF;
1307
1308 /* Splicing to self would be fun, but... */
1309 if (ipipe == opipe)
1310 return -EINVAL;
1311
1312 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1313 }
1314
1315 if (ipipe) {
1316 if (off_in)
1317 return -ESPIPE;
1318 if (off_out) {
1319 if (out->f_op->llseek == no_llseek)
1320 return -EINVAL;
1321 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1322 return -EFAULT;
1323 off = &offset;
1324 } else
1325 off = &out->f_pos;
1326
1327 ret = do_splice_from(ipipe, out, off, len, flags);
1328
1329 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1330 ret = -EFAULT;
1331
1332 return ret;
1333 }
1334
1335 if (opipe) {
1336 if (off_out)
1337 return -ESPIPE;
1338 if (off_in) {
1339 if (in->f_op->llseek == no_llseek)
1340 return -EINVAL;
1341 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1342 return -EFAULT;
1343 off = &offset;
1344 } else
1345 off = &in->f_pos;
1346
1347 ret = do_splice_to(in, off, opipe, len, flags);
1348
1349 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1350 ret = -EFAULT;
1351
1352 return ret;
1353 }
1354
1355 return -EINVAL;
1356 }
1357
1358 /*
1359 * Map an iov into an array of pages and offset/length tupples. With the
1360 * partial_page structure, we can map several non-contiguous ranges into
1361 * our ones pages[] map instead of splitting that operation into pieces.
1362 * Could easily be exported as a generic helper for other users, in which
1363 * case one would probably want to add a 'max_nr_pages' parameter as well.
1364 */
1365 static int get_iovec_page_array(const struct iovec __user *iov,
1366 unsigned int nr_vecs, struct page **pages,
1367 struct partial_page *partial, int aligned)
1368 {
1369 int buffers = 0, error = 0;
1370
1371 while (nr_vecs) {
1372 unsigned long off, npages;
1373 struct iovec entry;
1374 void __user *base;
1375 size_t len;
1376 int i;
1377
1378 error = -EFAULT;
1379 if (copy_from_user(&entry, iov, sizeof(entry)))
1380 break;
1381
1382 base = entry.iov_base;
1383 len = entry.iov_len;
1384
1385 /*
1386 * Sanity check this iovec. 0 read succeeds.
1387 */
1388 error = 0;
1389 if (unlikely(!len))
1390 break;
1391 error = -EFAULT;
1392 if (!access_ok(VERIFY_READ, base, len))
1393 break;
1394
1395 /*
1396 * Get this base offset and number of pages, then map
1397 * in the user pages.
1398 */
1399 off = (unsigned long) base & ~PAGE_MASK;
1400
1401 /*
1402 * If asked for alignment, the offset must be zero and the
1403 * length a multiple of the PAGE_SIZE.
1404 */
1405 error = -EINVAL;
1406 if (aligned && (off || len & ~PAGE_MASK))
1407 break;
1408
1409 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1410 if (npages > PIPE_BUFFERS - buffers)
1411 npages = PIPE_BUFFERS - buffers;
1412
1413 error = get_user_pages_fast((unsigned long)base, npages,
1414 0, &pages[buffers]);
1415
1416 if (unlikely(error <= 0))
1417 break;
1418
1419 /*
1420 * Fill this contiguous range into the partial page map.
1421 */
1422 for (i = 0; i < error; i++) {
1423 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1424
1425 partial[buffers].offset = off;
1426 partial[buffers].len = plen;
1427
1428 off = 0;
1429 len -= plen;
1430 buffers++;
1431 }
1432
1433 /*
1434 * We didn't complete this iov, stop here since it probably
1435 * means we have to move some of this into a pipe to
1436 * be able to continue.
1437 */
1438 if (len)
1439 break;
1440
1441 /*
1442 * Don't continue if we mapped fewer pages than we asked for,
1443 * or if we mapped the max number of pages that we have
1444 * room for.
1445 */
1446 if (error < npages || buffers == PIPE_BUFFERS)
1447 break;
1448
1449 nr_vecs--;
1450 iov++;
1451 }
1452
1453 if (buffers)
1454 return buffers;
1455
1456 return error;
1457 }
1458
1459 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1460 struct splice_desc *sd)
1461 {
1462 char *src;
1463 int ret;
1464
1465 ret = buf->ops->confirm(pipe, buf);
1466 if (unlikely(ret))
1467 return ret;
1468
1469 /*
1470 * See if we can use the atomic maps, by prefaulting in the
1471 * pages and doing an atomic copy
1472 */
1473 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1474 src = buf->ops->map(pipe, buf, 1);
1475 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1476 sd->len);
1477 buf->ops->unmap(pipe, buf, src);
1478 if (!ret) {
1479 ret = sd->len;
1480 goto out;
1481 }
1482 }
1483
1484 /*
1485 * No dice, use slow non-atomic map and copy
1486 */
1487 src = buf->ops->map(pipe, buf, 0);
1488
1489 ret = sd->len;
1490 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1491 ret = -EFAULT;
1492
1493 buf->ops->unmap(pipe, buf, src);
1494 out:
1495 if (ret > 0)
1496 sd->u.userptr += ret;
1497 return ret;
1498 }
1499
1500 /*
1501 * For lack of a better implementation, implement vmsplice() to userspace
1502 * as a simple copy of the pipes pages to the user iov.
1503 */
1504 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1505 unsigned long nr_segs, unsigned int flags)
1506 {
1507 struct pipe_inode_info *pipe;
1508 struct splice_desc sd;
1509 ssize_t size;
1510 int error;
1511 long ret;
1512
1513 pipe = pipe_info(file->f_path.dentry->d_inode);
1514 if (!pipe)
1515 return -EBADF;
1516
1517 pipe_lock(pipe);
1518
1519 error = ret = 0;
1520 while (nr_segs) {
1521 void __user *base;
1522 size_t len;
1523
1524 /*
1525 * Get user address base and length for this iovec.
1526 */
1527 error = get_user(base, &iov->iov_base);
1528 if (unlikely(error))
1529 break;
1530 error = get_user(len, &iov->iov_len);
1531 if (unlikely(error))
1532 break;
1533
1534 /*
1535 * Sanity check this iovec. 0 read succeeds.
1536 */
1537 if (unlikely(!len))
1538 break;
1539 if (unlikely(!base)) {
1540 error = -EFAULT;
1541 break;
1542 }
1543
1544 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1545 error = -EFAULT;
1546 break;
1547 }
1548
1549 sd.len = 0;
1550 sd.total_len = len;
1551 sd.flags = flags;
1552 sd.u.userptr = base;
1553 sd.pos = 0;
1554
1555 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1556 if (size < 0) {
1557 if (!ret)
1558 ret = size;
1559
1560 break;
1561 }
1562
1563 ret += size;
1564
1565 if (size < len)
1566 break;
1567
1568 nr_segs--;
1569 iov++;
1570 }
1571
1572 pipe_unlock(pipe);
1573
1574 if (!ret)
1575 ret = error;
1576
1577 return ret;
1578 }
1579
1580 /*
1581 * vmsplice splices a user address range into a pipe. It can be thought of
1582 * as splice-from-memory, where the regular splice is splice-from-file (or
1583 * to file). In both cases the output is a pipe, naturally.
1584 */
1585 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1586 unsigned long nr_segs, unsigned int flags)
1587 {
1588 struct pipe_inode_info *pipe;
1589 struct page *pages[PIPE_BUFFERS];
1590 struct partial_page partial[PIPE_BUFFERS];
1591 struct splice_pipe_desc spd = {
1592 .pages = pages,
1593 .partial = partial,
1594 .flags = flags,
1595 .ops = &user_page_pipe_buf_ops,
1596 .spd_release = spd_release_page,
1597 };
1598
1599 pipe = pipe_info(file->f_path.dentry->d_inode);
1600 if (!pipe)
1601 return -EBADF;
1602
1603 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1604 flags & SPLICE_F_GIFT);
1605 if (spd.nr_pages <= 0)
1606 return spd.nr_pages;
1607
1608 return splice_to_pipe(pipe, &spd);
1609 }
1610
1611 /*
1612 * Note that vmsplice only really supports true splicing _from_ user memory
1613 * to a pipe, not the other way around. Splicing from user memory is a simple
1614 * operation that can be supported without any funky alignment restrictions
1615 * or nasty vm tricks. We simply map in the user memory and fill them into
1616 * a pipe. The reverse isn't quite as easy, though. There are two possible
1617 * solutions for that:
1618 *
1619 * - memcpy() the data internally, at which point we might as well just
1620 * do a regular read() on the buffer anyway.
1621 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1622 * has restriction limitations on both ends of the pipe).
1623 *
1624 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1625 *
1626 */
1627 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1628 unsigned long, nr_segs, unsigned int, flags)
1629 {
1630 struct file *file;
1631 long error;
1632 int fput;
1633
1634 if (unlikely(nr_segs > UIO_MAXIOV))
1635 return -EINVAL;
1636 else if (unlikely(!nr_segs))
1637 return 0;
1638
1639 error = -EBADF;
1640 file = fget_light(fd, &fput);
1641 if (file) {
1642 if (file->f_mode & FMODE_WRITE)
1643 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1644 else if (file->f_mode & FMODE_READ)
1645 error = vmsplice_to_user(file, iov, nr_segs, flags);
1646
1647 fput_light(file, fput);
1648 }
1649
1650 return error;
1651 }
1652
1653 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1654 int, fd_out, loff_t __user *, off_out,
1655 size_t, len, unsigned int, flags)
1656 {
1657 long error;
1658 struct file *in, *out;
1659 int fput_in, fput_out;
1660
1661 if (unlikely(!len))
1662 return 0;
1663
1664 error = -EBADF;
1665 in = fget_light(fd_in, &fput_in);
1666 if (in) {
1667 if (in->f_mode & FMODE_READ) {
1668 out = fget_light(fd_out, &fput_out);
1669 if (out) {
1670 if (out->f_mode & FMODE_WRITE)
1671 error = do_splice(in, off_in,
1672 out, off_out,
1673 len, flags);
1674 fput_light(out, fput_out);
1675 }
1676 }
1677
1678 fput_light(in, fput_in);
1679 }
1680
1681 return error;
1682 }
1683
1684 /*
1685 * Make sure there's data to read. Wait for input if we can, otherwise
1686 * return an appropriate error.
1687 */
1688 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1689 {
1690 int ret;
1691
1692 /*
1693 * Check ->nrbufs without the inode lock first. This function
1694 * is speculative anyways, so missing one is ok.
1695 */
1696 if (pipe->nrbufs)
1697 return 0;
1698
1699 ret = 0;
1700 pipe_lock(pipe);
1701
1702 while (!pipe->nrbufs) {
1703 if (signal_pending(current)) {
1704 ret = -ERESTARTSYS;
1705 break;
1706 }
1707 if (!pipe->writers)
1708 break;
1709 if (!pipe->waiting_writers) {
1710 if (flags & SPLICE_F_NONBLOCK) {
1711 ret = -EAGAIN;
1712 break;
1713 }
1714 }
1715 pipe_wait(pipe);
1716 }
1717
1718 pipe_unlock(pipe);
1719 return ret;
1720 }
1721
1722 /*
1723 * Make sure there's writeable room. Wait for room if we can, otherwise
1724 * return an appropriate error.
1725 */
1726 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1727 {
1728 int ret;
1729
1730 /*
1731 * Check ->nrbufs without the inode lock first. This function
1732 * is speculative anyways, so missing one is ok.
1733 */
1734 if (pipe->nrbufs < PIPE_BUFFERS)
1735 return 0;
1736
1737 ret = 0;
1738 pipe_lock(pipe);
1739
1740 while (pipe->nrbufs >= PIPE_BUFFERS) {
1741 if (!pipe->readers) {
1742 send_sig(SIGPIPE, current, 0);
1743 ret = -EPIPE;
1744 break;
1745 }
1746 if (flags & SPLICE_F_NONBLOCK) {
1747 ret = -EAGAIN;
1748 break;
1749 }
1750 if (signal_pending(current)) {
1751 ret = -ERESTARTSYS;
1752 break;
1753 }
1754 pipe->waiting_writers++;
1755 pipe_wait(pipe);
1756 pipe->waiting_writers--;
1757 }
1758
1759 pipe_unlock(pipe);
1760 return ret;
1761 }
1762
1763 /*
1764 * Splice contents of ipipe to opipe.
1765 */
1766 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1767 struct pipe_inode_info *opipe,
1768 size_t len, unsigned int flags)
1769 {
1770 struct pipe_buffer *ibuf, *obuf;
1771 int ret = 0, nbuf;
1772 bool input_wakeup = false;
1773
1774
1775 retry:
1776 ret = ipipe_prep(ipipe, flags);
1777 if (ret)
1778 return ret;
1779
1780 ret = opipe_prep(opipe, flags);
1781 if (ret)
1782 return ret;
1783
1784 /*
1785 * Potential ABBA deadlock, work around it by ordering lock
1786 * grabbing by pipe info address. Otherwise two different processes
1787 * could deadlock (one doing tee from A -> B, the other from B -> A).
1788 */
1789 pipe_double_lock(ipipe, opipe);
1790
1791 do {
1792 if (!opipe->readers) {
1793 send_sig(SIGPIPE, current, 0);
1794 if (!ret)
1795 ret = -EPIPE;
1796 break;
1797 }
1798
1799 if (!ipipe->nrbufs && !ipipe->writers)
1800 break;
1801
1802 /*
1803 * Cannot make any progress, because either the input
1804 * pipe is empty or the output pipe is full.
1805 */
1806 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1807 /* Already processed some buffers, break */
1808 if (ret)
1809 break;
1810
1811 if (flags & SPLICE_F_NONBLOCK) {
1812 ret = -EAGAIN;
1813 break;
1814 }
1815
1816 /*
1817 * We raced with another reader/writer and haven't
1818 * managed to process any buffers. A zero return
1819 * value means EOF, so retry instead.
1820 */
1821 pipe_unlock(ipipe);
1822 pipe_unlock(opipe);
1823 goto retry;
1824 }
1825
1826 ibuf = ipipe->bufs + ipipe->curbuf;
1827 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1828 obuf = opipe->bufs + nbuf;
1829
1830 if (len >= ibuf->len) {
1831 /*
1832 * Simply move the whole buffer from ipipe to opipe
1833 */
1834 *obuf = *ibuf;
1835 ibuf->ops = NULL;
1836 opipe->nrbufs++;
1837 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1838 ipipe->nrbufs--;
1839 input_wakeup = true;
1840 } else {
1841 /*
1842 * Get a reference to this pipe buffer,
1843 * so we can copy the contents over.
1844 */
1845 ibuf->ops->get(ipipe, ibuf);
1846 *obuf = *ibuf;
1847
1848 /*
1849 * Don't inherit the gift flag, we need to
1850 * prevent multiple steals of this page.
1851 */
1852 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1853
1854 obuf->len = len;
1855 opipe->nrbufs++;
1856 ibuf->offset += obuf->len;
1857 ibuf->len -= obuf->len;
1858 }
1859 ret += obuf->len;
1860 len -= obuf->len;
1861 } while (len);
1862
1863 pipe_unlock(ipipe);
1864 pipe_unlock(opipe);
1865
1866 /*
1867 * If we put data in the output pipe, wakeup any potential readers.
1868 */
1869 if (ret > 0) {
1870 smp_mb();
1871 if (waitqueue_active(&opipe->wait))
1872 wake_up_interruptible(&opipe->wait);
1873 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1874 }
1875 if (input_wakeup)
1876 wakeup_pipe_writers(ipipe);
1877
1878 return ret;
1879 }
1880
1881 /*
1882 * Link contents of ipipe to opipe.
1883 */
1884 static int link_pipe(struct pipe_inode_info *ipipe,
1885 struct pipe_inode_info *opipe,
1886 size_t len, unsigned int flags)
1887 {
1888 struct pipe_buffer *ibuf, *obuf;
1889 int ret = 0, i = 0, nbuf;
1890
1891 /*
1892 * Potential ABBA deadlock, work around it by ordering lock
1893 * grabbing by pipe info address. Otherwise two different processes
1894 * could deadlock (one doing tee from A -> B, the other from B -> A).
1895 */
1896 pipe_double_lock(ipipe, opipe);
1897
1898 do {
1899 if (!opipe->readers) {
1900 send_sig(SIGPIPE, current, 0);
1901 if (!ret)
1902 ret = -EPIPE;
1903 break;
1904 }
1905
1906 /*
1907 * If we have iterated all input buffers or ran out of
1908 * output room, break.
1909 */
1910 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1911 break;
1912
1913 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1914 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1915
1916 /*
1917 * Get a reference to this pipe buffer,
1918 * so we can copy the contents over.
1919 */
1920 ibuf->ops->get(ipipe, ibuf);
1921
1922 obuf = opipe->bufs + nbuf;
1923 *obuf = *ibuf;
1924
1925 /*
1926 * Don't inherit the gift flag, we need to
1927 * prevent multiple steals of this page.
1928 */
1929 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1930
1931 if (obuf->len > len)
1932 obuf->len = len;
1933
1934 opipe->nrbufs++;
1935 ret += obuf->len;
1936 len -= obuf->len;
1937 i++;
1938 } while (len);
1939
1940 /*
1941 * return EAGAIN if we have the potential of some data in the
1942 * future, otherwise just return 0
1943 */
1944 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1945 ret = -EAGAIN;
1946
1947 pipe_unlock(ipipe);
1948 pipe_unlock(opipe);
1949
1950 /*
1951 * If we put data in the output pipe, wakeup any potential readers.
1952 */
1953 if (ret > 0) {
1954 smp_mb();
1955 if (waitqueue_active(&opipe->wait))
1956 wake_up_interruptible(&opipe->wait);
1957 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1958 }
1959
1960 return ret;
1961 }
1962
1963 /*
1964 * This is a tee(1) implementation that works on pipes. It doesn't copy
1965 * any data, it simply references the 'in' pages on the 'out' pipe.
1966 * The 'flags' used are the SPLICE_F_* variants, currently the only
1967 * applicable one is SPLICE_F_NONBLOCK.
1968 */
1969 static long do_tee(struct file *in, struct file *out, size_t len,
1970 unsigned int flags)
1971 {
1972 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1973 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1974 int ret = -EINVAL;
1975
1976 /*
1977 * Duplicate the contents of ipipe to opipe without actually
1978 * copying the data.
1979 */
1980 if (ipipe && opipe && ipipe != opipe) {
1981 /*
1982 * Keep going, unless we encounter an error. The ipipe/opipe
1983 * ordering doesn't really matter.
1984 */
1985 ret = ipipe_prep(ipipe, flags);
1986 if (!ret) {
1987 ret = opipe_prep(opipe, flags);
1988 if (!ret)
1989 ret = link_pipe(ipipe, opipe, len, flags);
1990 }
1991 }
1992
1993 return ret;
1994 }
1995
1996 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1997 {
1998 struct file *in;
1999 int error, fput_in;
2000
2001 if (unlikely(!len))
2002 return 0;
2003
2004 error = -EBADF;
2005 in = fget_light(fdin, &fput_in);
2006 if (in) {
2007 if (in->f_mode & FMODE_READ) {
2008 int fput_out;
2009 struct file *out = fget_light(fdout, &fput_out);
2010
2011 if (out) {
2012 if (out->f_mode & FMODE_WRITE)
2013 error = do_tee(in, out, len, flags);
2014 fput_light(out, fput_out);
2015 }
2016 }
2017 fput_light(in, fput_in);
2018 }
2019
2020 return error;
2021 }