]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/splice.c
Merge tag 'pwm/for-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-hirsute-kernel.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37
38 #include "internal.h"
39
40 /*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48 {
49 struct page *page = buf->page;
50 struct address_space *mapping;
51
52 lock_page(page);
53
54 mapping = page_mapping(page);
55 if (mapping) {
56 WARN_ON(!PageUptodate(page));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this page, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * page, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 wait_on_page_writeback(page);
67
68 if (page_has_private(page) &&
69 !try_to_release_page(page, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, page)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove page from current
84 * address space, unlock and return failure.
85 */
86 out_unlock:
87 unlock_page(page);
88 return false;
89 }
90
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93 {
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97
98 /*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104 {
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135 error:
136 unlock_page(page);
137 return err;
138 }
139
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145 };
146
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149 {
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155 }
156
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222 out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251
252 /*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274 }
275
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283 }
284
285 /**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301 {
302 struct iov_iter to;
303 struct kiocb kiocb;
304 unsigned int i_head;
305 int ret;
306
307 iov_iter_pipe(&to, READ, pipe, len);
308 i_head = to.head;
309 init_sync_kiocb(&kiocb, in);
310 kiocb.ki_pos = *ppos;
311 ret = call_read_iter(in, &kiocb, &to);
312 if (ret > 0) {
313 *ppos = kiocb.ki_pos;
314 file_accessed(in);
315 } else if (ret < 0) {
316 to.head = i_head;
317 to.iov_offset = 0;
318 iov_iter_advance(&to, 0); /* to free what was emitted */
319 /*
320 * callers of ->splice_read() expect -EAGAIN on
321 * "can't put anything in there", rather than -EFAULT.
322 */
323 if (ret == -EFAULT)
324 ret = -EAGAIN;
325 }
326
327 return ret;
328 }
329 EXPORT_SYMBOL(generic_file_splice_read);
330
331 const struct pipe_buf_operations default_pipe_buf_ops = {
332 .release = generic_pipe_buf_release,
333 .try_steal = generic_pipe_buf_try_steal,
334 .get = generic_pipe_buf_get,
335 };
336
337 /* Pipe buffer operations for a socket and similar. */
338 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
339 .release = generic_pipe_buf_release,
340 .get = generic_pipe_buf_get,
341 };
342 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
343
344 /*
345 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
346 * using sendpage(). Return the number of bytes sent.
347 */
348 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
349 struct pipe_buffer *buf, struct splice_desc *sd)
350 {
351 struct file *file = sd->u.file;
352 loff_t pos = sd->pos;
353 int more;
354
355 if (!likely(file->f_op->sendpage))
356 return -EINVAL;
357
358 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
359
360 if (sd->len < sd->total_len &&
361 pipe_occupancy(pipe->head, pipe->tail) > 1)
362 more |= MSG_SENDPAGE_NOTLAST;
363
364 return file->f_op->sendpage(file, buf->page, buf->offset,
365 sd->len, &pos, more);
366 }
367
368 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
369 {
370 smp_mb();
371 if (waitqueue_active(&pipe->wr_wait))
372 wake_up_interruptible(&pipe->wr_wait);
373 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374 }
375
376 /**
377 * splice_from_pipe_feed - feed available data from a pipe to a file
378 * @pipe: pipe to splice from
379 * @sd: information to @actor
380 * @actor: handler that splices the data
381 *
382 * Description:
383 * This function loops over the pipe and calls @actor to do the
384 * actual moving of a single struct pipe_buffer to the desired
385 * destination. It returns when there's no more buffers left in
386 * the pipe or if the requested number of bytes (@sd->total_len)
387 * have been copied. It returns a positive number (one) if the
388 * pipe needs to be filled with more data, zero if the required
389 * number of bytes have been copied and -errno on error.
390 *
391 * This, together with splice_from_pipe_{begin,end,next}, may be
392 * used to implement the functionality of __splice_from_pipe() when
393 * locking is required around copying the pipe buffers to the
394 * destination.
395 */
396 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
397 splice_actor *actor)
398 {
399 unsigned int head = pipe->head;
400 unsigned int tail = pipe->tail;
401 unsigned int mask = pipe->ring_size - 1;
402 int ret;
403
404 while (!pipe_empty(head, tail)) {
405 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
406
407 sd->len = buf->len;
408 if (sd->len > sd->total_len)
409 sd->len = sd->total_len;
410
411 ret = pipe_buf_confirm(pipe, buf);
412 if (unlikely(ret)) {
413 if (ret == -ENODATA)
414 ret = 0;
415 return ret;
416 }
417
418 ret = actor(pipe, buf, sd);
419 if (ret <= 0)
420 return ret;
421
422 buf->offset += ret;
423 buf->len -= ret;
424
425 sd->num_spliced += ret;
426 sd->len -= ret;
427 sd->pos += ret;
428 sd->total_len -= ret;
429
430 if (!buf->len) {
431 pipe_buf_release(pipe, buf);
432 tail++;
433 pipe->tail = tail;
434 if (pipe->files)
435 sd->need_wakeup = true;
436 }
437
438 if (!sd->total_len)
439 return 0;
440 }
441
442 return 1;
443 }
444
445 /* We know we have a pipe buffer, but maybe it's empty? */
446 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
447 {
448 unsigned int tail = pipe->tail;
449 unsigned int mask = pipe->ring_size - 1;
450 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
451
452 if (unlikely(!buf->len)) {
453 pipe_buf_release(pipe, buf);
454 pipe->tail = tail+1;
455 return true;
456 }
457
458 return false;
459 }
460
461 /**
462 * splice_from_pipe_next - wait for some data to splice from
463 * @pipe: pipe to splice from
464 * @sd: information about the splice operation
465 *
466 * Description:
467 * This function will wait for some data and return a positive
468 * value (one) if pipe buffers are available. It will return zero
469 * or -errno if no more data needs to be spliced.
470 */
471 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
472 {
473 /*
474 * Check for signal early to make process killable when there are
475 * always buffers available
476 */
477 if (signal_pending(current))
478 return -ERESTARTSYS;
479
480 repeat:
481 while (pipe_empty(pipe->head, pipe->tail)) {
482 if (!pipe->writers)
483 return 0;
484
485 if (sd->num_spliced)
486 return 0;
487
488 if (sd->flags & SPLICE_F_NONBLOCK)
489 return -EAGAIN;
490
491 if (signal_pending(current))
492 return -ERESTARTSYS;
493
494 if (sd->need_wakeup) {
495 wakeup_pipe_writers(pipe);
496 sd->need_wakeup = false;
497 }
498
499 pipe_wait_readable(pipe);
500 }
501
502 if (eat_empty_buffer(pipe))
503 goto repeat;
504
505 return 1;
506 }
507
508 /**
509 * splice_from_pipe_begin - start splicing from pipe
510 * @sd: information about the splice operation
511 *
512 * Description:
513 * This function should be called before a loop containing
514 * splice_from_pipe_next() and splice_from_pipe_feed() to
515 * initialize the necessary fields of @sd.
516 */
517 static void splice_from_pipe_begin(struct splice_desc *sd)
518 {
519 sd->num_spliced = 0;
520 sd->need_wakeup = false;
521 }
522
523 /**
524 * splice_from_pipe_end - finish splicing from pipe
525 * @pipe: pipe to splice from
526 * @sd: information about the splice operation
527 *
528 * Description:
529 * This function will wake up pipe writers if necessary. It should
530 * be called after a loop containing splice_from_pipe_next() and
531 * splice_from_pipe_feed().
532 */
533 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
534 {
535 if (sd->need_wakeup)
536 wakeup_pipe_writers(pipe);
537 }
538
539 /**
540 * __splice_from_pipe - splice data from a pipe to given actor
541 * @pipe: pipe to splice from
542 * @sd: information to @actor
543 * @actor: handler that splices the data
544 *
545 * Description:
546 * This function does little more than loop over the pipe and call
547 * @actor to do the actual moving of a single struct pipe_buffer to
548 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
549 * pipe_to_user.
550 *
551 */
552 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
553 splice_actor *actor)
554 {
555 int ret;
556
557 splice_from_pipe_begin(sd);
558 do {
559 cond_resched();
560 ret = splice_from_pipe_next(pipe, sd);
561 if (ret > 0)
562 ret = splice_from_pipe_feed(pipe, sd, actor);
563 } while (ret > 0);
564 splice_from_pipe_end(pipe, sd);
565
566 return sd->num_spliced ? sd->num_spliced : ret;
567 }
568 EXPORT_SYMBOL(__splice_from_pipe);
569
570 /**
571 * splice_from_pipe - splice data from a pipe to a file
572 * @pipe: pipe to splice from
573 * @out: file to splice to
574 * @ppos: position in @out
575 * @len: how many bytes to splice
576 * @flags: splice modifier flags
577 * @actor: handler that splices the data
578 *
579 * Description:
580 * See __splice_from_pipe. This function locks the pipe inode,
581 * otherwise it's identical to __splice_from_pipe().
582 *
583 */
584 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
585 loff_t *ppos, size_t len, unsigned int flags,
586 splice_actor *actor)
587 {
588 ssize_t ret;
589 struct splice_desc sd = {
590 .total_len = len,
591 .flags = flags,
592 .pos = *ppos,
593 .u.file = out,
594 };
595
596 pipe_lock(pipe);
597 ret = __splice_from_pipe(pipe, &sd, actor);
598 pipe_unlock(pipe);
599
600 return ret;
601 }
602
603 /**
604 * iter_file_splice_write - splice data from a pipe to a file
605 * @pipe: pipe info
606 * @out: file to write to
607 * @ppos: position in @out
608 * @len: number of bytes to splice
609 * @flags: splice modifier flags
610 *
611 * Description:
612 * Will either move or copy pages (determined by @flags options) from
613 * the given pipe inode to the given file.
614 * This one is ->write_iter-based.
615 *
616 */
617 ssize_t
618 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
619 loff_t *ppos, size_t len, unsigned int flags)
620 {
621 struct splice_desc sd = {
622 .total_len = len,
623 .flags = flags,
624 .pos = *ppos,
625 .u.file = out,
626 };
627 int nbufs = pipe->max_usage;
628 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
629 GFP_KERNEL);
630 ssize_t ret;
631
632 if (unlikely(!array))
633 return -ENOMEM;
634
635 pipe_lock(pipe);
636
637 splice_from_pipe_begin(&sd);
638 while (sd.total_len) {
639 struct iov_iter from;
640 unsigned int head, tail, mask;
641 size_t left;
642 int n;
643
644 ret = splice_from_pipe_next(pipe, &sd);
645 if (ret <= 0)
646 break;
647
648 if (unlikely(nbufs < pipe->max_usage)) {
649 kfree(array);
650 nbufs = pipe->max_usage;
651 array = kcalloc(nbufs, sizeof(struct bio_vec),
652 GFP_KERNEL);
653 if (!array) {
654 ret = -ENOMEM;
655 break;
656 }
657 }
658
659 head = pipe->head;
660 tail = pipe->tail;
661 mask = pipe->ring_size - 1;
662
663 /* build the vector */
664 left = sd.total_len;
665 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
666 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
667 size_t this_len = buf->len;
668
669 if (this_len > left)
670 this_len = left;
671
672 ret = pipe_buf_confirm(pipe, buf);
673 if (unlikely(ret)) {
674 if (ret == -ENODATA)
675 ret = 0;
676 goto done;
677 }
678
679 array[n].bv_page = buf->page;
680 array[n].bv_len = this_len;
681 array[n].bv_offset = buf->offset;
682 left -= this_len;
683 }
684
685 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
686 ret = vfs_iter_write(out, &from, &sd.pos, 0);
687 if (ret <= 0)
688 break;
689
690 sd.num_spliced += ret;
691 sd.total_len -= ret;
692 *ppos = sd.pos;
693
694 /* dismiss the fully eaten buffers, adjust the partial one */
695 tail = pipe->tail;
696 while (ret) {
697 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
698 if (ret >= buf->len) {
699 ret -= buf->len;
700 buf->len = 0;
701 pipe_buf_release(pipe, buf);
702 tail++;
703 pipe->tail = tail;
704 if (pipe->files)
705 sd.need_wakeup = true;
706 } else {
707 buf->offset += ret;
708 buf->len -= ret;
709 ret = 0;
710 }
711 }
712 }
713 done:
714 kfree(array);
715 splice_from_pipe_end(pipe, &sd);
716
717 pipe_unlock(pipe);
718
719 if (sd.num_spliced)
720 ret = sd.num_spliced;
721
722 return ret;
723 }
724
725 EXPORT_SYMBOL(iter_file_splice_write);
726
727 /**
728 * generic_splice_sendpage - splice data from a pipe to a socket
729 * @pipe: pipe to splice from
730 * @out: socket to write to
731 * @ppos: position in @out
732 * @len: number of bytes to splice
733 * @flags: splice modifier flags
734 *
735 * Description:
736 * Will send @len bytes from the pipe to a network socket. No data copying
737 * is involved.
738 *
739 */
740 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
741 loff_t *ppos, size_t len, unsigned int flags)
742 {
743 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
744 }
745
746 EXPORT_SYMBOL(generic_splice_sendpage);
747
748 static int warn_unsupported(struct file *file, const char *op)
749 {
750 pr_debug_ratelimited(
751 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
752 op, file, current->pid, current->comm);
753 return -EINVAL;
754 }
755
756 /*
757 * Attempt to initiate a splice from pipe to file.
758 */
759 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
760 loff_t *ppos, size_t len, unsigned int flags)
761 {
762 if (unlikely(!out->f_op->splice_write))
763 return warn_unsupported(out, "write");
764 return out->f_op->splice_write(pipe, out, ppos, len, flags);
765 }
766
767 /*
768 * Attempt to initiate a splice from a file to a pipe.
769 */
770 static long do_splice_to(struct file *in, loff_t *ppos,
771 struct pipe_inode_info *pipe, size_t len,
772 unsigned int flags)
773 {
774 int ret;
775
776 if (unlikely(!(in->f_mode & FMODE_READ)))
777 return -EBADF;
778
779 ret = rw_verify_area(READ, in, ppos, len);
780 if (unlikely(ret < 0))
781 return ret;
782
783 if (unlikely(len > MAX_RW_COUNT))
784 len = MAX_RW_COUNT;
785
786 if (unlikely(!in->f_op->splice_read))
787 return warn_unsupported(in, "read");
788 return in->f_op->splice_read(in, ppos, pipe, len, flags);
789 }
790
791 /**
792 * splice_direct_to_actor - splices data directly between two non-pipes
793 * @in: file to splice from
794 * @sd: actor information on where to splice to
795 * @actor: handles the data splicing
796 *
797 * Description:
798 * This is a special case helper to splice directly between two
799 * points, without requiring an explicit pipe. Internally an allocated
800 * pipe is cached in the process, and reused during the lifetime of
801 * that process.
802 *
803 */
804 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
805 splice_direct_actor *actor)
806 {
807 struct pipe_inode_info *pipe;
808 long ret, bytes;
809 umode_t i_mode;
810 size_t len;
811 int i, flags, more;
812
813 /*
814 * We require the input being a regular file, as we don't want to
815 * randomly drop data for eg socket -> socket splicing. Use the
816 * piped splicing for that!
817 */
818 i_mode = file_inode(in)->i_mode;
819 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
820 return -EINVAL;
821
822 /*
823 * neither in nor out is a pipe, setup an internal pipe attached to
824 * 'out' and transfer the wanted data from 'in' to 'out' through that
825 */
826 pipe = current->splice_pipe;
827 if (unlikely(!pipe)) {
828 pipe = alloc_pipe_info();
829 if (!pipe)
830 return -ENOMEM;
831
832 /*
833 * We don't have an immediate reader, but we'll read the stuff
834 * out of the pipe right after the splice_to_pipe(). So set
835 * PIPE_READERS appropriately.
836 */
837 pipe->readers = 1;
838
839 current->splice_pipe = pipe;
840 }
841
842 /*
843 * Do the splice.
844 */
845 ret = 0;
846 bytes = 0;
847 len = sd->total_len;
848 flags = sd->flags;
849
850 /*
851 * Don't block on output, we have to drain the direct pipe.
852 */
853 sd->flags &= ~SPLICE_F_NONBLOCK;
854 more = sd->flags & SPLICE_F_MORE;
855
856 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
857
858 while (len) {
859 unsigned int p_space;
860 size_t read_len;
861 loff_t pos = sd->pos, prev_pos = pos;
862
863 /* Don't try to read more the pipe has space for. */
864 p_space = pipe->max_usage -
865 pipe_occupancy(pipe->head, pipe->tail);
866 read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
867 ret = do_splice_to(in, &pos, pipe, read_len, flags);
868 if (unlikely(ret <= 0))
869 goto out_release;
870
871 read_len = ret;
872 sd->total_len = read_len;
873
874 /*
875 * If more data is pending, set SPLICE_F_MORE
876 * If this is the last data and SPLICE_F_MORE was not set
877 * initially, clears it.
878 */
879 if (read_len < len)
880 sd->flags |= SPLICE_F_MORE;
881 else if (!more)
882 sd->flags &= ~SPLICE_F_MORE;
883 /*
884 * NOTE: nonblocking mode only applies to the input. We
885 * must not do the output in nonblocking mode as then we
886 * could get stuck data in the internal pipe:
887 */
888 ret = actor(pipe, sd);
889 if (unlikely(ret <= 0)) {
890 sd->pos = prev_pos;
891 goto out_release;
892 }
893
894 bytes += ret;
895 len -= ret;
896 sd->pos = pos;
897
898 if (ret < read_len) {
899 sd->pos = prev_pos + ret;
900 goto out_release;
901 }
902 }
903
904 done:
905 pipe->tail = pipe->head = 0;
906 file_accessed(in);
907 return bytes;
908
909 out_release:
910 /*
911 * If we did an incomplete transfer we must release
912 * the pipe buffers in question:
913 */
914 for (i = 0; i < pipe->ring_size; i++) {
915 struct pipe_buffer *buf = &pipe->bufs[i];
916
917 if (buf->ops)
918 pipe_buf_release(pipe, buf);
919 }
920
921 if (!bytes)
922 bytes = ret;
923
924 goto done;
925 }
926 EXPORT_SYMBOL(splice_direct_to_actor);
927
928 static int direct_splice_actor(struct pipe_inode_info *pipe,
929 struct splice_desc *sd)
930 {
931 struct file *file = sd->u.file;
932
933 return do_splice_from(pipe, file, sd->opos, sd->total_len,
934 sd->flags);
935 }
936
937 /**
938 * do_splice_direct - splices data directly between two files
939 * @in: file to splice from
940 * @ppos: input file offset
941 * @out: file to splice to
942 * @opos: output file offset
943 * @len: number of bytes to splice
944 * @flags: splice modifier flags
945 *
946 * Description:
947 * For use by do_sendfile(). splice can easily emulate sendfile, but
948 * doing it in the application would incur an extra system call
949 * (splice in + splice out, as compared to just sendfile()). So this helper
950 * can splice directly through a process-private pipe.
951 *
952 */
953 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
954 loff_t *opos, size_t len, unsigned int flags)
955 {
956 struct splice_desc sd = {
957 .len = len,
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 .opos = opos,
963 };
964 long ret;
965
966 if (unlikely(!(out->f_mode & FMODE_WRITE)))
967 return -EBADF;
968
969 if (unlikely(out->f_flags & O_APPEND))
970 return -EINVAL;
971
972 ret = rw_verify_area(WRITE, out, opos, len);
973 if (unlikely(ret < 0))
974 return ret;
975
976 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
977 if (ret > 0)
978 *ppos = sd.pos;
979
980 return ret;
981 }
982 EXPORT_SYMBOL(do_splice_direct);
983
984 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
985 {
986 for (;;) {
987 if (unlikely(!pipe->readers)) {
988 send_sig(SIGPIPE, current, 0);
989 return -EPIPE;
990 }
991 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
992 return 0;
993 if (flags & SPLICE_F_NONBLOCK)
994 return -EAGAIN;
995 if (signal_pending(current))
996 return -ERESTARTSYS;
997 pipe_wait_writable(pipe);
998 }
999 }
1000
1001 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1002 struct pipe_inode_info *opipe,
1003 size_t len, unsigned int flags);
1004
1005 /*
1006 * Determine where to splice to/from.
1007 */
1008 long do_splice(struct file *in, loff_t __user *off_in,
1009 struct file *out, loff_t __user *off_out,
1010 size_t len, unsigned int flags)
1011 {
1012 struct pipe_inode_info *ipipe;
1013 struct pipe_inode_info *opipe;
1014 loff_t offset;
1015 long ret;
1016
1017 if (unlikely(!(in->f_mode & FMODE_READ) ||
1018 !(out->f_mode & FMODE_WRITE)))
1019 return -EBADF;
1020
1021 ipipe = get_pipe_info(in, true);
1022 opipe = get_pipe_info(out, true);
1023
1024 if (ipipe && opipe) {
1025 if (off_in || off_out)
1026 return -ESPIPE;
1027
1028 /* Splicing to self would be fun, but... */
1029 if (ipipe == opipe)
1030 return -EINVAL;
1031
1032 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1033 flags |= SPLICE_F_NONBLOCK;
1034
1035 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1036 }
1037
1038 if (ipipe) {
1039 if (off_in)
1040 return -ESPIPE;
1041 if (off_out) {
1042 if (!(out->f_mode & FMODE_PWRITE))
1043 return -EINVAL;
1044 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1045 return -EFAULT;
1046 } else {
1047 offset = out->f_pos;
1048 }
1049
1050 if (unlikely(out->f_flags & O_APPEND))
1051 return -EINVAL;
1052
1053 ret = rw_verify_area(WRITE, out, &offset, len);
1054 if (unlikely(ret < 0))
1055 return ret;
1056
1057 if (in->f_flags & O_NONBLOCK)
1058 flags |= SPLICE_F_NONBLOCK;
1059
1060 file_start_write(out);
1061 ret = do_splice_from(ipipe, out, &offset, len, flags);
1062 file_end_write(out);
1063
1064 if (!off_out)
1065 out->f_pos = offset;
1066 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1067 ret = -EFAULT;
1068
1069 return ret;
1070 }
1071
1072 if (opipe) {
1073 if (off_out)
1074 return -ESPIPE;
1075 if (off_in) {
1076 if (!(in->f_mode & FMODE_PREAD))
1077 return -EINVAL;
1078 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1079 return -EFAULT;
1080 } else {
1081 offset = in->f_pos;
1082 }
1083
1084 if (out->f_flags & O_NONBLOCK)
1085 flags |= SPLICE_F_NONBLOCK;
1086
1087 pipe_lock(opipe);
1088 ret = wait_for_space(opipe, flags);
1089 if (!ret) {
1090 unsigned int p_space;
1091
1092 /* Don't try to read more the pipe has space for. */
1093 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1094 len = min_t(size_t, len, p_space << PAGE_SHIFT);
1095
1096 ret = do_splice_to(in, &offset, opipe, len, flags);
1097 }
1098 pipe_unlock(opipe);
1099 if (ret > 0)
1100 wakeup_pipe_readers(opipe);
1101 if (!off_in)
1102 in->f_pos = offset;
1103 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1104 ret = -EFAULT;
1105
1106 return ret;
1107 }
1108
1109 return -EINVAL;
1110 }
1111
1112 static int iter_to_pipe(struct iov_iter *from,
1113 struct pipe_inode_info *pipe,
1114 unsigned flags)
1115 {
1116 struct pipe_buffer buf = {
1117 .ops = &user_page_pipe_buf_ops,
1118 .flags = flags
1119 };
1120 size_t total = 0;
1121 int ret = 0;
1122 bool failed = false;
1123
1124 while (iov_iter_count(from) && !failed) {
1125 struct page *pages[16];
1126 ssize_t copied;
1127 size_t start;
1128 int n;
1129
1130 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1131 if (copied <= 0) {
1132 ret = copied;
1133 break;
1134 }
1135
1136 for (n = 0; copied; n++, start = 0) {
1137 int size = min_t(int, copied, PAGE_SIZE - start);
1138 if (!failed) {
1139 buf.page = pages[n];
1140 buf.offset = start;
1141 buf.len = size;
1142 ret = add_to_pipe(pipe, &buf);
1143 if (unlikely(ret < 0)) {
1144 failed = true;
1145 } else {
1146 iov_iter_advance(from, ret);
1147 total += ret;
1148 }
1149 } else {
1150 put_page(pages[n]);
1151 }
1152 copied -= size;
1153 }
1154 }
1155 return total ? total : ret;
1156 }
1157
1158 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1159 struct splice_desc *sd)
1160 {
1161 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1162 return n == sd->len ? n : -EFAULT;
1163 }
1164
1165 /*
1166 * For lack of a better implementation, implement vmsplice() to userspace
1167 * as a simple copy of the pipes pages to the user iov.
1168 */
1169 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1170 unsigned int flags)
1171 {
1172 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1173 struct splice_desc sd = {
1174 .total_len = iov_iter_count(iter),
1175 .flags = flags,
1176 .u.data = iter
1177 };
1178 long ret = 0;
1179
1180 if (!pipe)
1181 return -EBADF;
1182
1183 if (sd.total_len) {
1184 pipe_lock(pipe);
1185 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1186 pipe_unlock(pipe);
1187 }
1188
1189 return ret;
1190 }
1191
1192 /*
1193 * vmsplice splices a user address range into a pipe. It can be thought of
1194 * as splice-from-memory, where the regular splice is splice-from-file (or
1195 * to file). In both cases the output is a pipe, naturally.
1196 */
1197 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1198 unsigned int flags)
1199 {
1200 struct pipe_inode_info *pipe;
1201 long ret = 0;
1202 unsigned buf_flag = 0;
1203
1204 if (flags & SPLICE_F_GIFT)
1205 buf_flag = PIPE_BUF_FLAG_GIFT;
1206
1207 pipe = get_pipe_info(file, true);
1208 if (!pipe)
1209 return -EBADF;
1210
1211 pipe_lock(pipe);
1212 ret = wait_for_space(pipe, flags);
1213 if (!ret)
1214 ret = iter_to_pipe(iter, pipe, buf_flag);
1215 pipe_unlock(pipe);
1216 if (ret > 0)
1217 wakeup_pipe_readers(pipe);
1218 return ret;
1219 }
1220
1221 static int vmsplice_type(struct fd f, int *type)
1222 {
1223 if (!f.file)
1224 return -EBADF;
1225 if (f.file->f_mode & FMODE_WRITE) {
1226 *type = WRITE;
1227 } else if (f.file->f_mode & FMODE_READ) {
1228 *type = READ;
1229 } else {
1230 fdput(f);
1231 return -EBADF;
1232 }
1233 return 0;
1234 }
1235
1236 /*
1237 * Note that vmsplice only really supports true splicing _from_ user memory
1238 * to a pipe, not the other way around. Splicing from user memory is a simple
1239 * operation that can be supported without any funky alignment restrictions
1240 * or nasty vm tricks. We simply map in the user memory and fill them into
1241 * a pipe. The reverse isn't quite as easy, though. There are two possible
1242 * solutions for that:
1243 *
1244 * - memcpy() the data internally, at which point we might as well just
1245 * do a regular read() on the buffer anyway.
1246 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1247 * has restriction limitations on both ends of the pipe).
1248 *
1249 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1250 *
1251 */
1252 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1253 unsigned long, nr_segs, unsigned int, flags)
1254 {
1255 struct iovec iovstack[UIO_FASTIOV];
1256 struct iovec *iov = iovstack;
1257 struct iov_iter iter;
1258 ssize_t error;
1259 struct fd f;
1260 int type;
1261
1262 if (unlikely(flags & ~SPLICE_F_ALL))
1263 return -EINVAL;
1264
1265 f = fdget(fd);
1266 error = vmsplice_type(f, &type);
1267 if (error)
1268 return error;
1269
1270 error = import_iovec(type, uiov, nr_segs,
1271 ARRAY_SIZE(iovstack), &iov, &iter);
1272 if (error < 0)
1273 goto out_fdput;
1274
1275 if (!iov_iter_count(&iter))
1276 error = 0;
1277 else if (iov_iter_rw(&iter) == WRITE)
1278 error = vmsplice_to_pipe(f.file, &iter, flags);
1279 else
1280 error = vmsplice_to_user(f.file, &iter, flags);
1281
1282 kfree(iov);
1283 out_fdput:
1284 fdput(f);
1285 return error;
1286 }
1287
1288 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1289 int, fd_out, loff_t __user *, off_out,
1290 size_t, len, unsigned int, flags)
1291 {
1292 struct fd in, out;
1293 long error;
1294
1295 if (unlikely(!len))
1296 return 0;
1297
1298 if (unlikely(flags & ~SPLICE_F_ALL))
1299 return -EINVAL;
1300
1301 error = -EBADF;
1302 in = fdget(fd_in);
1303 if (in.file) {
1304 out = fdget(fd_out);
1305 if (out.file) {
1306 error = do_splice(in.file, off_in, out.file, off_out,
1307 len, flags);
1308 fdput(out);
1309 }
1310 fdput(in);
1311 }
1312 return error;
1313 }
1314
1315 /*
1316 * Make sure there's data to read. Wait for input if we can, otherwise
1317 * return an appropriate error.
1318 */
1319 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1320 {
1321 int ret;
1322
1323 /*
1324 * Check the pipe occupancy without the inode lock first. This function
1325 * is speculative anyways, so missing one is ok.
1326 */
1327 if (!pipe_empty(pipe->head, pipe->tail))
1328 return 0;
1329
1330 ret = 0;
1331 pipe_lock(pipe);
1332
1333 while (pipe_empty(pipe->head, pipe->tail)) {
1334 if (signal_pending(current)) {
1335 ret = -ERESTARTSYS;
1336 break;
1337 }
1338 if (!pipe->writers)
1339 break;
1340 if (flags & SPLICE_F_NONBLOCK) {
1341 ret = -EAGAIN;
1342 break;
1343 }
1344 pipe_wait_readable(pipe);
1345 }
1346
1347 pipe_unlock(pipe);
1348 return ret;
1349 }
1350
1351 /*
1352 * Make sure there's writeable room. Wait for room if we can, otherwise
1353 * return an appropriate error.
1354 */
1355 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1356 {
1357 int ret;
1358
1359 /*
1360 * Check pipe occupancy without the inode lock first. This function
1361 * is speculative anyways, so missing one is ok.
1362 */
1363 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1364 return 0;
1365
1366 ret = 0;
1367 pipe_lock(pipe);
1368
1369 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1370 if (!pipe->readers) {
1371 send_sig(SIGPIPE, current, 0);
1372 ret = -EPIPE;
1373 break;
1374 }
1375 if (flags & SPLICE_F_NONBLOCK) {
1376 ret = -EAGAIN;
1377 break;
1378 }
1379 if (signal_pending(current)) {
1380 ret = -ERESTARTSYS;
1381 break;
1382 }
1383 pipe_wait_writable(pipe);
1384 }
1385
1386 pipe_unlock(pipe);
1387 return ret;
1388 }
1389
1390 /*
1391 * Splice contents of ipipe to opipe.
1392 */
1393 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1394 struct pipe_inode_info *opipe,
1395 size_t len, unsigned int flags)
1396 {
1397 struct pipe_buffer *ibuf, *obuf;
1398 unsigned int i_head, o_head;
1399 unsigned int i_tail, o_tail;
1400 unsigned int i_mask, o_mask;
1401 int ret = 0;
1402 bool input_wakeup = false;
1403
1404
1405 retry:
1406 ret = ipipe_prep(ipipe, flags);
1407 if (ret)
1408 return ret;
1409
1410 ret = opipe_prep(opipe, flags);
1411 if (ret)
1412 return ret;
1413
1414 /*
1415 * Potential ABBA deadlock, work around it by ordering lock
1416 * grabbing by pipe info address. Otherwise two different processes
1417 * could deadlock (one doing tee from A -> B, the other from B -> A).
1418 */
1419 pipe_double_lock(ipipe, opipe);
1420
1421 i_tail = ipipe->tail;
1422 i_mask = ipipe->ring_size - 1;
1423 o_head = opipe->head;
1424 o_mask = opipe->ring_size - 1;
1425
1426 do {
1427 size_t o_len;
1428
1429 if (!opipe->readers) {
1430 send_sig(SIGPIPE, current, 0);
1431 if (!ret)
1432 ret = -EPIPE;
1433 break;
1434 }
1435
1436 i_head = ipipe->head;
1437 o_tail = opipe->tail;
1438
1439 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1440 break;
1441
1442 /*
1443 * Cannot make any progress, because either the input
1444 * pipe is empty or the output pipe is full.
1445 */
1446 if (pipe_empty(i_head, i_tail) ||
1447 pipe_full(o_head, o_tail, opipe->max_usage)) {
1448 /* Already processed some buffers, break */
1449 if (ret)
1450 break;
1451
1452 if (flags & SPLICE_F_NONBLOCK) {
1453 ret = -EAGAIN;
1454 break;
1455 }
1456
1457 /*
1458 * We raced with another reader/writer and haven't
1459 * managed to process any buffers. A zero return
1460 * value means EOF, so retry instead.
1461 */
1462 pipe_unlock(ipipe);
1463 pipe_unlock(opipe);
1464 goto retry;
1465 }
1466
1467 ibuf = &ipipe->bufs[i_tail & i_mask];
1468 obuf = &opipe->bufs[o_head & o_mask];
1469
1470 if (len >= ibuf->len) {
1471 /*
1472 * Simply move the whole buffer from ipipe to opipe
1473 */
1474 *obuf = *ibuf;
1475 ibuf->ops = NULL;
1476 i_tail++;
1477 ipipe->tail = i_tail;
1478 input_wakeup = true;
1479 o_len = obuf->len;
1480 o_head++;
1481 opipe->head = o_head;
1482 } else {
1483 /*
1484 * Get a reference to this pipe buffer,
1485 * so we can copy the contents over.
1486 */
1487 if (!pipe_buf_get(ipipe, ibuf)) {
1488 if (ret == 0)
1489 ret = -EFAULT;
1490 break;
1491 }
1492 *obuf = *ibuf;
1493
1494 /*
1495 * Don't inherit the gift and merge flags, we need to
1496 * prevent multiple steals of this page.
1497 */
1498 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1499 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1500
1501 obuf->len = len;
1502 ibuf->offset += len;
1503 ibuf->len -= len;
1504 o_len = len;
1505 o_head++;
1506 opipe->head = o_head;
1507 }
1508 ret += o_len;
1509 len -= o_len;
1510 } while (len);
1511
1512 pipe_unlock(ipipe);
1513 pipe_unlock(opipe);
1514
1515 /*
1516 * If we put data in the output pipe, wakeup any potential readers.
1517 */
1518 if (ret > 0)
1519 wakeup_pipe_readers(opipe);
1520
1521 if (input_wakeup)
1522 wakeup_pipe_writers(ipipe);
1523
1524 return ret;
1525 }
1526
1527 /*
1528 * Link contents of ipipe to opipe.
1529 */
1530 static int link_pipe(struct pipe_inode_info *ipipe,
1531 struct pipe_inode_info *opipe,
1532 size_t len, unsigned int flags)
1533 {
1534 struct pipe_buffer *ibuf, *obuf;
1535 unsigned int i_head, o_head;
1536 unsigned int i_tail, o_tail;
1537 unsigned int i_mask, o_mask;
1538 int ret = 0;
1539
1540 /*
1541 * Potential ABBA deadlock, work around it by ordering lock
1542 * grabbing by pipe info address. Otherwise two different processes
1543 * could deadlock (one doing tee from A -> B, the other from B -> A).
1544 */
1545 pipe_double_lock(ipipe, opipe);
1546
1547 i_tail = ipipe->tail;
1548 i_mask = ipipe->ring_size - 1;
1549 o_head = opipe->head;
1550 o_mask = opipe->ring_size - 1;
1551
1552 do {
1553 if (!opipe->readers) {
1554 send_sig(SIGPIPE, current, 0);
1555 if (!ret)
1556 ret = -EPIPE;
1557 break;
1558 }
1559
1560 i_head = ipipe->head;
1561 o_tail = opipe->tail;
1562
1563 /*
1564 * If we have iterated all input buffers or run out of
1565 * output room, break.
1566 */
1567 if (pipe_empty(i_head, i_tail) ||
1568 pipe_full(o_head, o_tail, opipe->max_usage))
1569 break;
1570
1571 ibuf = &ipipe->bufs[i_tail & i_mask];
1572 obuf = &opipe->bufs[o_head & o_mask];
1573
1574 /*
1575 * Get a reference to this pipe buffer,
1576 * so we can copy the contents over.
1577 */
1578 if (!pipe_buf_get(ipipe, ibuf)) {
1579 if (ret == 0)
1580 ret = -EFAULT;
1581 break;
1582 }
1583
1584 *obuf = *ibuf;
1585
1586 /*
1587 * Don't inherit the gift and merge flag, we need to prevent
1588 * multiple steals of this page.
1589 */
1590 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1591 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1592
1593 if (obuf->len > len)
1594 obuf->len = len;
1595 ret += obuf->len;
1596 len -= obuf->len;
1597
1598 o_head++;
1599 opipe->head = o_head;
1600 i_tail++;
1601 } while (len);
1602
1603 pipe_unlock(ipipe);
1604 pipe_unlock(opipe);
1605
1606 /*
1607 * If we put data in the output pipe, wakeup any potential readers.
1608 */
1609 if (ret > 0)
1610 wakeup_pipe_readers(opipe);
1611
1612 return ret;
1613 }
1614
1615 /*
1616 * This is a tee(1) implementation that works on pipes. It doesn't copy
1617 * any data, it simply references the 'in' pages on the 'out' pipe.
1618 * The 'flags' used are the SPLICE_F_* variants, currently the only
1619 * applicable one is SPLICE_F_NONBLOCK.
1620 */
1621 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1622 {
1623 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1624 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1625 int ret = -EINVAL;
1626
1627 if (unlikely(!(in->f_mode & FMODE_READ) ||
1628 !(out->f_mode & FMODE_WRITE)))
1629 return -EBADF;
1630
1631 /*
1632 * Duplicate the contents of ipipe to opipe without actually
1633 * copying the data.
1634 */
1635 if (ipipe && opipe && ipipe != opipe) {
1636 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1637 flags |= SPLICE_F_NONBLOCK;
1638
1639 /*
1640 * Keep going, unless we encounter an error. The ipipe/opipe
1641 * ordering doesn't really matter.
1642 */
1643 ret = ipipe_prep(ipipe, flags);
1644 if (!ret) {
1645 ret = opipe_prep(opipe, flags);
1646 if (!ret)
1647 ret = link_pipe(ipipe, opipe, len, flags);
1648 }
1649 }
1650
1651 return ret;
1652 }
1653
1654 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1655 {
1656 struct fd in, out;
1657 int error;
1658
1659 if (unlikely(flags & ~SPLICE_F_ALL))
1660 return -EINVAL;
1661
1662 if (unlikely(!len))
1663 return 0;
1664
1665 error = -EBADF;
1666 in = fdget(fdin);
1667 if (in.file) {
1668 out = fdget(fdout);
1669 if (out.file) {
1670 error = do_tee(in.file, out.file, len, flags);
1671 fdput(out);
1672 }
1673 fdput(in);
1674 }
1675
1676 return error;
1677 }