]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/splice.c
[PATCH] pipe: enable atomic copying of pipe data to/from user space
[mirror_ubuntu-bionic-kernel.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping = page_mapping(page);
59
60 lock_page(page);
61
62 WARN_ON(!PageUptodate(page));
63
64 /*
65 * At least for ext2 with nobh option, we need to wait on writeback
66 * completing on this page, since we'll remove it from the pagecache.
67 * Otherwise truncate wont wait on the page, allowing the disk
68 * blocks to be reused by someone else before we actually wrote our
69 * data to them. fs corruption ensues.
70 */
71 wait_on_page_writeback(page);
72
73 if (PagePrivate(page))
74 try_to_release_page(page, mapping_gfp_mask(mapping));
75
76 if (!remove_mapping(mapping, page)) {
77 unlock_page(page);
78 return 1;
79 }
80
81 buf->flags |= PIPE_BUF_FLAG_LRU;
82 return 0;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->page = NULL;
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 static int page_cache_pipe_buf_pin(struct pipe_inode_info *info,
94 struct pipe_buffer *buf)
95 {
96 struct page *page = buf->page;
97 int err;
98
99 if (!PageUptodate(page)) {
100 lock_page(page);
101
102 /*
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
105 */
106 if (!page->mapping) {
107 err = -ENODATA;
108 goto error;
109 }
110
111 /*
112 * Uh oh, read-error from disk.
113 */
114 if (!PageUptodate(page)) {
115 err = -EIO;
116 goto error;
117 }
118
119 /*
120 * Page is ok afterall, we are done.
121 */
122 unlock_page(page);
123 }
124
125 return 0;
126 error:
127 unlock_page(page);
128 return err;
129 }
130
131 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 .can_merge = 0,
133 .map = generic_pipe_buf_map,
134 .unmap = generic_pipe_buf_unmap,
135 .pin = page_cache_pipe_buf_pin,
136 .release = page_cache_pipe_buf_release,
137 .steal = page_cache_pipe_buf_steal,
138 .get = generic_pipe_buf_get,
139 };
140
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143 {
144 return 1;
145 }
146
147 static struct pipe_buf_operations user_page_pipe_buf_ops = {
148 .can_merge = 0,
149 .map = generic_pipe_buf_map,
150 .unmap = generic_pipe_buf_unmap,
151 .pin = generic_pipe_buf_pin,
152 .release = page_cache_pipe_buf_release,
153 .steal = user_page_pipe_buf_steal,
154 .get = generic_pipe_buf_get,
155 };
156
157 /*
158 * Pipe output worker. This sets up our pipe format with the page cache
159 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
160 */
161 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
162 struct splice_pipe_desc *spd)
163 {
164 int ret, do_wakeup, page_nr;
165
166 ret = 0;
167 do_wakeup = 0;
168 page_nr = 0;
169
170 if (pipe->inode)
171 mutex_lock(&pipe->inode->i_mutex);
172
173 for (;;) {
174 if (!pipe->readers) {
175 send_sig(SIGPIPE, current, 0);
176 if (!ret)
177 ret = -EPIPE;
178 break;
179 }
180
181 if (pipe->nrbufs < PIPE_BUFFERS) {
182 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
183 struct pipe_buffer *buf = pipe->bufs + newbuf;
184
185 buf->page = spd->pages[page_nr];
186 buf->offset = spd->partial[page_nr].offset;
187 buf->len = spd->partial[page_nr].len;
188 buf->ops = spd->ops;
189 pipe->nrbufs++;
190 page_nr++;
191 ret += buf->len;
192
193 if (pipe->inode)
194 do_wakeup = 1;
195
196 if (!--spd->nr_pages)
197 break;
198 if (pipe->nrbufs < PIPE_BUFFERS)
199 continue;
200
201 break;
202 }
203
204 if (spd->flags & SPLICE_F_NONBLOCK) {
205 if (!ret)
206 ret = -EAGAIN;
207 break;
208 }
209
210 if (signal_pending(current)) {
211 if (!ret)
212 ret = -ERESTARTSYS;
213 break;
214 }
215
216 if (do_wakeup) {
217 smp_mb();
218 if (waitqueue_active(&pipe->wait))
219 wake_up_interruptible_sync(&pipe->wait);
220 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
221 do_wakeup = 0;
222 }
223
224 pipe->waiting_writers++;
225 pipe_wait(pipe);
226 pipe->waiting_writers--;
227 }
228
229 if (pipe->inode)
230 mutex_unlock(&pipe->inode->i_mutex);
231
232 if (do_wakeup) {
233 smp_mb();
234 if (waitqueue_active(&pipe->wait))
235 wake_up_interruptible(&pipe->wait);
236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 }
238
239 while (page_nr < spd->nr_pages)
240 page_cache_release(spd->pages[page_nr++]);
241
242 return ret;
243 }
244
245 static int
246 __generic_file_splice_read(struct file *in, loff_t *ppos,
247 struct pipe_inode_info *pipe, size_t len,
248 unsigned int flags)
249 {
250 struct address_space *mapping = in->f_mapping;
251 unsigned int loff, nr_pages;
252 struct page *pages[PIPE_BUFFERS];
253 struct partial_page partial[PIPE_BUFFERS];
254 struct page *page;
255 pgoff_t index, end_index;
256 loff_t isize;
257 size_t total_len;
258 int error, page_nr;
259 struct splice_pipe_desc spd = {
260 .pages = pages,
261 .partial = partial,
262 .flags = flags,
263 .ops = &page_cache_pipe_buf_ops,
264 };
265
266 index = *ppos >> PAGE_CACHE_SHIFT;
267 loff = *ppos & ~PAGE_CACHE_MASK;
268 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
269
270 if (nr_pages > PIPE_BUFFERS)
271 nr_pages = PIPE_BUFFERS;
272
273 /*
274 * Initiate read-ahead on this page range. however, don't call into
275 * read-ahead if this is a non-zero offset (we are likely doing small
276 * chunk splice and the page is already there) for a single page.
277 */
278 if (!loff || nr_pages > 1)
279 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
280
281 /*
282 * Now fill in the holes:
283 */
284 error = 0;
285 total_len = 0;
286
287 /*
288 * Lookup the (hopefully) full range of pages we need.
289 */
290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291
292 /*
293 * If find_get_pages_contig() returned fewer pages than we needed,
294 * allocate the rest.
295 */
296 index += spd.nr_pages;
297 while (spd.nr_pages < nr_pages) {
298 /*
299 * Page could be there, find_get_pages_contig() breaks on
300 * the first hole.
301 */
302 page = find_get_page(mapping, index);
303 if (!page) {
304 /*
305 * Make sure the read-ahead engine is notified
306 * about this failure.
307 */
308 handle_ra_miss(mapping, &in->f_ra, index);
309
310 /*
311 * page didn't exist, allocate one.
312 */
313 page = page_cache_alloc_cold(mapping);
314 if (!page)
315 break;
316
317 error = add_to_page_cache_lru(page, mapping, index,
318 mapping_gfp_mask(mapping));
319 if (unlikely(error)) {
320 page_cache_release(page);
321 break;
322 }
323 /*
324 * add_to_page_cache() locks the page, unlock it
325 * to avoid convoluting the logic below even more.
326 */
327 unlock_page(page);
328 }
329
330 pages[spd.nr_pages++] = page;
331 index++;
332 }
333
334 /*
335 * Now loop over the map and see if we need to start IO on any
336 * pages, fill in the partial map, etc.
337 */
338 index = *ppos >> PAGE_CACHE_SHIFT;
339 nr_pages = spd.nr_pages;
340 spd.nr_pages = 0;
341 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
342 unsigned int this_len;
343
344 if (!len)
345 break;
346
347 /*
348 * this_len is the max we'll use from this page
349 */
350 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
351 page = pages[page_nr];
352
353 /*
354 * If the page isn't uptodate, we may need to start io on it
355 */
356 if (!PageUptodate(page)) {
357 /*
358 * If in nonblock mode then dont block on waiting
359 * for an in-flight io page
360 */
361 if (flags & SPLICE_F_NONBLOCK)
362 break;
363
364 lock_page(page);
365
366 /*
367 * page was truncated, stop here. if this isn't the
368 * first page, we'll just complete what we already
369 * added
370 */
371 if (!page->mapping) {
372 unlock_page(page);
373 break;
374 }
375 /*
376 * page was already under io and is now done, great
377 */
378 if (PageUptodate(page)) {
379 unlock_page(page);
380 goto fill_it;
381 }
382
383 /*
384 * need to read in the page
385 */
386 error = mapping->a_ops->readpage(in, page);
387 if (unlikely(error)) {
388 /*
389 * We really should re-lookup the page here,
390 * but it complicates things a lot. Instead
391 * lets just do what we already stored, and
392 * we'll get it the next time we are called.
393 */
394 if (error == AOP_TRUNCATED_PAGE)
395 error = 0;
396
397 break;
398 }
399
400 /*
401 * i_size must be checked after ->readpage().
402 */
403 isize = i_size_read(mapping->host);
404 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
405 if (unlikely(!isize || index > end_index))
406 break;
407
408 /*
409 * if this is the last page, see if we need to shrink
410 * the length and stop
411 */
412 if (end_index == index) {
413 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
414 if (total_len + loff > isize)
415 break;
416 /*
417 * force quit after adding this page
418 */
419 len = this_len;
420 this_len = min(this_len, loff);
421 loff = 0;
422 }
423 }
424 fill_it:
425 partial[page_nr].offset = loff;
426 partial[page_nr].len = this_len;
427 len -= this_len;
428 total_len += this_len;
429 loff = 0;
430 spd.nr_pages++;
431 index++;
432 }
433
434 /*
435 * Release any pages at the end, if we quit early. 'i' is how far
436 * we got, 'nr_pages' is how many pages are in the map.
437 */
438 while (page_nr < nr_pages)
439 page_cache_release(pages[page_nr++]);
440
441 if (spd.nr_pages)
442 return splice_to_pipe(pipe, &spd);
443
444 return error;
445 }
446
447 /**
448 * generic_file_splice_read - splice data from file to a pipe
449 * @in: file to splice from
450 * @pipe: pipe to splice to
451 * @len: number of bytes to splice
452 * @flags: splice modifier flags
453 *
454 * Will read pages from given file and fill them into a pipe.
455 */
456 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
457 struct pipe_inode_info *pipe, size_t len,
458 unsigned int flags)
459 {
460 ssize_t spliced;
461 int ret;
462
463 ret = 0;
464 spliced = 0;
465
466 while (len) {
467 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
468
469 if (ret < 0)
470 break;
471 else if (!ret) {
472 if (spliced)
473 break;
474 if (flags & SPLICE_F_NONBLOCK) {
475 ret = -EAGAIN;
476 break;
477 }
478 }
479
480 *ppos += ret;
481 len -= ret;
482 spliced += ret;
483 }
484
485 if (spliced)
486 return spliced;
487
488 return ret;
489 }
490
491 EXPORT_SYMBOL(generic_file_splice_read);
492
493 /*
494 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
495 * using sendpage(). Return the number of bytes sent.
496 */
497 static int pipe_to_sendpage(struct pipe_inode_info *info,
498 struct pipe_buffer *buf, struct splice_desc *sd)
499 {
500 struct file *file = sd->file;
501 loff_t pos = sd->pos;
502 int ret, more;
503
504 ret = buf->ops->pin(info, buf);
505 if (!ret) {
506 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
507
508 ret = file->f_op->sendpage(file, buf->page, buf->offset,
509 sd->len, &pos, more);
510 }
511
512 return ret;
513 }
514
515 /*
516 * This is a little more tricky than the file -> pipe splicing. There are
517 * basically three cases:
518 *
519 * - Destination page already exists in the address space and there
520 * are users of it. For that case we have no other option that
521 * copying the data. Tough luck.
522 * - Destination page already exists in the address space, but there
523 * are no users of it. Make sure it's uptodate, then drop it. Fall
524 * through to last case.
525 * - Destination page does not exist, we can add the pipe page to
526 * the page cache and avoid the copy.
527 *
528 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
529 * sd->flags), we attempt to migrate pages from the pipe to the output
530 * file address space page cache. This is possible if no one else has
531 * the pipe page referenced outside of the pipe and page cache. If
532 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
533 * a new page in the output file page cache and fill/dirty that.
534 */
535 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
536 struct splice_desc *sd)
537 {
538 struct file *file = sd->file;
539 struct address_space *mapping = file->f_mapping;
540 gfp_t gfp_mask = mapping_gfp_mask(mapping);
541 unsigned int offset, this_len;
542 struct page *page;
543 pgoff_t index;
544 int ret;
545
546 /*
547 * make sure the data in this buffer is uptodate
548 */
549 ret = buf->ops->pin(info, buf);
550 if (unlikely(ret))
551 return ret;
552
553 index = sd->pos >> PAGE_CACHE_SHIFT;
554 offset = sd->pos & ~PAGE_CACHE_MASK;
555
556 this_len = sd->len;
557 if (this_len + offset > PAGE_CACHE_SIZE)
558 this_len = PAGE_CACHE_SIZE - offset;
559
560 /*
561 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
562 * page.
563 */
564 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
565 /*
566 * If steal succeeds, buf->page is now pruned from the vm
567 * side (LRU and page cache) and we can reuse it. The page
568 * will also be looked on successful return.
569 */
570 if (buf->ops->steal(info, buf))
571 goto find_page;
572
573 page = buf->page;
574 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
575 unlock_page(page);
576 goto find_page;
577 }
578
579 page_cache_get(page);
580
581 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
582 lru_cache_add(page);
583 } else {
584 find_page:
585 page = find_lock_page(mapping, index);
586 if (!page) {
587 ret = -ENOMEM;
588 page = page_cache_alloc_cold(mapping);
589 if (unlikely(!page))
590 goto out_nomem;
591
592 /*
593 * This will also lock the page
594 */
595 ret = add_to_page_cache_lru(page, mapping, index,
596 gfp_mask);
597 if (unlikely(ret))
598 goto out;
599 }
600
601 /*
602 * We get here with the page locked. If the page is also
603 * uptodate, we don't need to do more. If it isn't, we
604 * may need to bring it in if we are not going to overwrite
605 * the full page.
606 */
607 if (!PageUptodate(page)) {
608 if (this_len < PAGE_CACHE_SIZE) {
609 ret = mapping->a_ops->readpage(file, page);
610 if (unlikely(ret))
611 goto out;
612
613 lock_page(page);
614
615 if (!PageUptodate(page)) {
616 /*
617 * Page got invalidated, repeat.
618 */
619 if (!page->mapping) {
620 unlock_page(page);
621 page_cache_release(page);
622 goto find_page;
623 }
624 ret = -EIO;
625 goto out;
626 }
627 } else
628 SetPageUptodate(page);
629 }
630 }
631
632 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
633 if (ret == AOP_TRUNCATED_PAGE) {
634 page_cache_release(page);
635 goto find_page;
636 } else if (ret)
637 goto out;
638
639 if (buf->page != page) {
640 /*
641 * Careful, ->map() uses KM_USER0!
642 */
643 char *src = buf->ops->map(info, buf, 1);
644 char *dst = kmap_atomic(page, KM_USER1);
645
646 memcpy(dst + offset, src + buf->offset, this_len);
647 flush_dcache_page(page);
648 kunmap_atomic(dst, KM_USER1);
649 buf->ops->unmap(info, buf, src);
650 }
651
652 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
653 if (!ret) {
654 /*
655 * Return the number of bytes written and mark page as
656 * accessed, we are now done!
657 */
658 ret = this_len;
659 mark_page_accessed(page);
660 balance_dirty_pages_ratelimited(mapping);
661 } else if (ret == AOP_TRUNCATED_PAGE) {
662 page_cache_release(page);
663 goto find_page;
664 }
665 out:
666 page_cache_release(page);
667 unlock_page(page);
668 out_nomem:
669 return ret;
670 }
671
672 /*
673 * Pipe input worker. Most of this logic works like a regular pipe, the
674 * key here is the 'actor' worker passed in that actually moves the data
675 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
676 */
677 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
678 loff_t *ppos, size_t len, unsigned int flags,
679 splice_actor *actor)
680 {
681 int ret, do_wakeup, err;
682 struct splice_desc sd;
683
684 ret = 0;
685 do_wakeup = 0;
686
687 sd.total_len = len;
688 sd.flags = flags;
689 sd.file = out;
690 sd.pos = *ppos;
691
692 if (pipe->inode)
693 mutex_lock(&pipe->inode->i_mutex);
694
695 for (;;) {
696 if (pipe->nrbufs) {
697 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
698 struct pipe_buf_operations *ops = buf->ops;
699
700 sd.len = buf->len;
701 if (sd.len > sd.total_len)
702 sd.len = sd.total_len;
703
704 err = actor(pipe, buf, &sd);
705 if (err <= 0) {
706 if (!ret && err != -ENODATA)
707 ret = err;
708
709 break;
710 }
711
712 ret += err;
713 buf->offset += err;
714 buf->len -= err;
715
716 sd.len -= err;
717 sd.pos += err;
718 sd.total_len -= err;
719 if (sd.len)
720 continue;
721
722 if (!buf->len) {
723 buf->ops = NULL;
724 ops->release(pipe, buf);
725 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
726 pipe->nrbufs--;
727 if (pipe->inode)
728 do_wakeup = 1;
729 }
730
731 if (!sd.total_len)
732 break;
733 }
734
735 if (pipe->nrbufs)
736 continue;
737 if (!pipe->writers)
738 break;
739 if (!pipe->waiting_writers) {
740 if (ret)
741 break;
742 }
743
744 if (flags & SPLICE_F_NONBLOCK) {
745 if (!ret)
746 ret = -EAGAIN;
747 break;
748 }
749
750 if (signal_pending(current)) {
751 if (!ret)
752 ret = -ERESTARTSYS;
753 break;
754 }
755
756 if (do_wakeup) {
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible_sync(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 do_wakeup = 0;
762 }
763
764 pipe_wait(pipe);
765 }
766
767 if (pipe->inode)
768 mutex_unlock(&pipe->inode->i_mutex);
769
770 if (do_wakeup) {
771 smp_mb();
772 if (waitqueue_active(&pipe->wait))
773 wake_up_interruptible(&pipe->wait);
774 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
775 }
776
777 return ret;
778 }
779
780 /**
781 * generic_file_splice_write - splice data from a pipe to a file
782 * @pipe: pipe info
783 * @out: file to write to
784 * @len: number of bytes to splice
785 * @flags: splice modifier flags
786 *
787 * Will either move or copy pages (determined by @flags options) from
788 * the given pipe inode to the given file.
789 *
790 */
791 ssize_t
792 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
793 loff_t *ppos, size_t len, unsigned int flags)
794 {
795 struct address_space *mapping = out->f_mapping;
796 ssize_t ret;
797
798 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
799 if (ret > 0) {
800 struct inode *inode = mapping->host;
801
802 *ppos += ret;
803
804 /*
805 * If file or inode is SYNC and we actually wrote some data,
806 * sync it.
807 */
808 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
809 int err;
810
811 mutex_lock(&inode->i_mutex);
812 err = generic_osync_inode(inode, mapping,
813 OSYNC_METADATA|OSYNC_DATA);
814 mutex_unlock(&inode->i_mutex);
815
816 if (err)
817 ret = err;
818 }
819 }
820
821 return ret;
822 }
823
824 EXPORT_SYMBOL(generic_file_splice_write);
825
826 /**
827 * generic_splice_sendpage - splice data from a pipe to a socket
828 * @inode: pipe inode
829 * @out: socket to write to
830 * @len: number of bytes to splice
831 * @flags: splice modifier flags
832 *
833 * Will send @len bytes from the pipe to a network socket. No data copying
834 * is involved.
835 *
836 */
837 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
838 loff_t *ppos, size_t len, unsigned int flags)
839 {
840 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
841 }
842
843 EXPORT_SYMBOL(generic_splice_sendpage);
844
845 /*
846 * Attempt to initiate a splice from pipe to file.
847 */
848 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
849 loff_t *ppos, size_t len, unsigned int flags)
850 {
851 int ret;
852
853 if (unlikely(!out->f_op || !out->f_op->splice_write))
854 return -EINVAL;
855
856 if (unlikely(!(out->f_mode & FMODE_WRITE)))
857 return -EBADF;
858
859 ret = rw_verify_area(WRITE, out, ppos, len);
860 if (unlikely(ret < 0))
861 return ret;
862
863 return out->f_op->splice_write(pipe, out, ppos, len, flags);
864 }
865
866 /*
867 * Attempt to initiate a splice from a file to a pipe.
868 */
869 static long do_splice_to(struct file *in, loff_t *ppos,
870 struct pipe_inode_info *pipe, size_t len,
871 unsigned int flags)
872 {
873 loff_t isize, left;
874 int ret;
875
876 if (unlikely(!in->f_op || !in->f_op->splice_read))
877 return -EINVAL;
878
879 if (unlikely(!(in->f_mode & FMODE_READ)))
880 return -EBADF;
881
882 ret = rw_verify_area(READ, in, ppos, len);
883 if (unlikely(ret < 0))
884 return ret;
885
886 isize = i_size_read(in->f_mapping->host);
887 if (unlikely(*ppos >= isize))
888 return 0;
889
890 left = isize - *ppos;
891 if (unlikely(left < len))
892 len = left;
893
894 return in->f_op->splice_read(in, ppos, pipe, len, flags);
895 }
896
897 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
898 size_t len, unsigned int flags)
899 {
900 struct pipe_inode_info *pipe;
901 long ret, bytes;
902 loff_t out_off;
903 umode_t i_mode;
904 int i;
905
906 /*
907 * We require the input being a regular file, as we don't want to
908 * randomly drop data for eg socket -> socket splicing. Use the
909 * piped splicing for that!
910 */
911 i_mode = in->f_dentry->d_inode->i_mode;
912 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
913 return -EINVAL;
914
915 /*
916 * neither in nor out is a pipe, setup an internal pipe attached to
917 * 'out' and transfer the wanted data from 'in' to 'out' through that
918 */
919 pipe = current->splice_pipe;
920 if (unlikely(!pipe)) {
921 pipe = alloc_pipe_info(NULL);
922 if (!pipe)
923 return -ENOMEM;
924
925 /*
926 * We don't have an immediate reader, but we'll read the stuff
927 * out of the pipe right after the splice_to_pipe(). So set
928 * PIPE_READERS appropriately.
929 */
930 pipe->readers = 1;
931
932 current->splice_pipe = pipe;
933 }
934
935 /*
936 * Do the splice.
937 */
938 ret = 0;
939 bytes = 0;
940 out_off = 0;
941
942 while (len) {
943 size_t read_len, max_read_len;
944
945 /*
946 * Do at most PIPE_BUFFERS pages worth of transfer:
947 */
948 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
949
950 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
951 if (unlikely(ret < 0))
952 goto out_release;
953
954 read_len = ret;
955
956 /*
957 * NOTE: nonblocking mode only applies to the input. We
958 * must not do the output in nonblocking mode as then we
959 * could get stuck data in the internal pipe:
960 */
961 ret = do_splice_from(pipe, out, &out_off, read_len,
962 flags & ~SPLICE_F_NONBLOCK);
963 if (unlikely(ret < 0))
964 goto out_release;
965
966 bytes += ret;
967 len -= ret;
968
969 /*
970 * In nonblocking mode, if we got back a short read then
971 * that was due to either an IO error or due to the
972 * pagecache entry not being there. In the IO error case
973 * the _next_ splice attempt will produce a clean IO error
974 * return value (not a short read), so in both cases it's
975 * correct to break out of the loop here:
976 */
977 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
978 break;
979 }
980
981 pipe->nrbufs = pipe->curbuf = 0;
982
983 return bytes;
984
985 out_release:
986 /*
987 * If we did an incomplete transfer we must release
988 * the pipe buffers in question:
989 */
990 for (i = 0; i < PIPE_BUFFERS; i++) {
991 struct pipe_buffer *buf = pipe->bufs + i;
992
993 if (buf->ops) {
994 buf->ops->release(pipe, buf);
995 buf->ops = NULL;
996 }
997 }
998 pipe->nrbufs = pipe->curbuf = 0;
999
1000 /*
1001 * If we transferred some data, return the number of bytes:
1002 */
1003 if (bytes > 0)
1004 return bytes;
1005
1006 return ret;
1007 }
1008
1009 EXPORT_SYMBOL(do_splice_direct);
1010
1011 /*
1012 * Determine where to splice to/from.
1013 */
1014 static long do_splice(struct file *in, loff_t __user *off_in,
1015 struct file *out, loff_t __user *off_out,
1016 size_t len, unsigned int flags)
1017 {
1018 struct pipe_inode_info *pipe;
1019 loff_t offset, *off;
1020 long ret;
1021
1022 pipe = in->f_dentry->d_inode->i_pipe;
1023 if (pipe) {
1024 if (off_in)
1025 return -ESPIPE;
1026 if (off_out) {
1027 if (out->f_op->llseek == no_llseek)
1028 return -EINVAL;
1029 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1030 return -EFAULT;
1031 off = &offset;
1032 } else
1033 off = &out->f_pos;
1034
1035 ret = do_splice_from(pipe, out, off, len, flags);
1036
1037 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1038 ret = -EFAULT;
1039
1040 return ret;
1041 }
1042
1043 pipe = out->f_dentry->d_inode->i_pipe;
1044 if (pipe) {
1045 if (off_out)
1046 return -ESPIPE;
1047 if (off_in) {
1048 if (in->f_op->llseek == no_llseek)
1049 return -EINVAL;
1050 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1051 return -EFAULT;
1052 off = &offset;
1053 } else
1054 off = &in->f_pos;
1055
1056 ret = do_splice_to(in, off, pipe, len, flags);
1057
1058 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1059 ret = -EFAULT;
1060
1061 return ret;
1062 }
1063
1064 return -EINVAL;
1065 }
1066
1067 /*
1068 * Map an iov into an array of pages and offset/length tupples. With the
1069 * partial_page structure, we can map several non-contiguous ranges into
1070 * our ones pages[] map instead of splitting that operation into pieces.
1071 * Could easily be exported as a generic helper for other users, in which
1072 * case one would probably want to add a 'max_nr_pages' parameter as well.
1073 */
1074 static int get_iovec_page_array(const struct iovec __user *iov,
1075 unsigned int nr_vecs, struct page **pages,
1076 struct partial_page *partial)
1077 {
1078 int buffers = 0, error = 0;
1079
1080 /*
1081 * It's ok to take the mmap_sem for reading, even
1082 * across a "get_user()".
1083 */
1084 down_read(&current->mm->mmap_sem);
1085
1086 while (nr_vecs) {
1087 unsigned long off, npages;
1088 void __user *base;
1089 size_t len;
1090 int i;
1091
1092 /*
1093 * Get user address base and length for this iovec.
1094 */
1095 error = get_user(base, &iov->iov_base);
1096 if (unlikely(error))
1097 break;
1098 error = get_user(len, &iov->iov_len);
1099 if (unlikely(error))
1100 break;
1101
1102 /*
1103 * Sanity check this iovec. 0 read succeeds.
1104 */
1105 if (unlikely(!len))
1106 break;
1107 error = -EFAULT;
1108 if (unlikely(!base))
1109 break;
1110
1111 /*
1112 * Get this base offset and number of pages, then map
1113 * in the user pages.
1114 */
1115 off = (unsigned long) base & ~PAGE_MASK;
1116 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1117 if (npages > PIPE_BUFFERS - buffers)
1118 npages = PIPE_BUFFERS - buffers;
1119
1120 error = get_user_pages(current, current->mm,
1121 (unsigned long) base, npages, 0, 0,
1122 &pages[buffers], NULL);
1123
1124 if (unlikely(error <= 0))
1125 break;
1126
1127 /*
1128 * Fill this contiguous range into the partial page map.
1129 */
1130 for (i = 0; i < error; i++) {
1131 const int plen = min_t(size_t, len, PAGE_SIZE) - off;
1132
1133 partial[buffers].offset = off;
1134 partial[buffers].len = plen;
1135
1136 off = 0;
1137 len -= plen;
1138 buffers++;
1139 }
1140
1141 /*
1142 * We didn't complete this iov, stop here since it probably
1143 * means we have to move some of this into a pipe to
1144 * be able to continue.
1145 */
1146 if (len)
1147 break;
1148
1149 /*
1150 * Don't continue if we mapped fewer pages than we asked for,
1151 * or if we mapped the max number of pages that we have
1152 * room for.
1153 */
1154 if (error < npages || buffers == PIPE_BUFFERS)
1155 break;
1156
1157 nr_vecs--;
1158 iov++;
1159 }
1160
1161 up_read(&current->mm->mmap_sem);
1162
1163 if (buffers)
1164 return buffers;
1165
1166 return error;
1167 }
1168
1169 /*
1170 * vmsplice splices a user address range into a pipe. It can be thought of
1171 * as splice-from-memory, where the regular splice is splice-from-file (or
1172 * to file). In both cases the output is a pipe, naturally.
1173 *
1174 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1175 * not the other way around. Splicing from user memory is a simple operation
1176 * that can be supported without any funky alignment restrictions or nasty
1177 * vm tricks. We simply map in the user memory and fill them into a pipe.
1178 * The reverse isn't quite as easy, though. There are two possible solutions
1179 * for that:
1180 *
1181 * - memcpy() the data internally, at which point we might as well just
1182 * do a regular read() on the buffer anyway.
1183 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1184 * has restriction limitations on both ends of the pipe).
1185 *
1186 * Alas, it isn't here.
1187 *
1188 */
1189 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1190 unsigned long nr_segs, unsigned int flags)
1191 {
1192 struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1193 struct page *pages[PIPE_BUFFERS];
1194 struct partial_page partial[PIPE_BUFFERS];
1195 struct splice_pipe_desc spd = {
1196 .pages = pages,
1197 .partial = partial,
1198 .flags = flags,
1199 .ops = &user_page_pipe_buf_ops,
1200 };
1201
1202 if (unlikely(!pipe))
1203 return -EBADF;
1204 if (unlikely(nr_segs > UIO_MAXIOV))
1205 return -EINVAL;
1206 else if (unlikely(!nr_segs))
1207 return 0;
1208
1209 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial);
1210 if (spd.nr_pages <= 0)
1211 return spd.nr_pages;
1212
1213 return splice_to_pipe(pipe, &spd);
1214 }
1215
1216 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1217 unsigned long nr_segs, unsigned int flags)
1218 {
1219 struct file *file;
1220 long error;
1221 int fput;
1222
1223 error = -EBADF;
1224 file = fget_light(fd, &fput);
1225 if (file) {
1226 if (file->f_mode & FMODE_WRITE)
1227 error = do_vmsplice(file, iov, nr_segs, flags);
1228
1229 fput_light(file, fput);
1230 }
1231
1232 return error;
1233 }
1234
1235 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1236 int fd_out, loff_t __user *off_out,
1237 size_t len, unsigned int flags)
1238 {
1239 long error;
1240 struct file *in, *out;
1241 int fput_in, fput_out;
1242
1243 if (unlikely(!len))
1244 return 0;
1245
1246 error = -EBADF;
1247 in = fget_light(fd_in, &fput_in);
1248 if (in) {
1249 if (in->f_mode & FMODE_READ) {
1250 out = fget_light(fd_out, &fput_out);
1251 if (out) {
1252 if (out->f_mode & FMODE_WRITE)
1253 error = do_splice(in, off_in,
1254 out, off_out,
1255 len, flags);
1256 fput_light(out, fput_out);
1257 }
1258 }
1259
1260 fput_light(in, fput_in);
1261 }
1262
1263 return error;
1264 }
1265
1266 /*
1267 * Link contents of ipipe to opipe.
1268 */
1269 static int link_pipe(struct pipe_inode_info *ipipe,
1270 struct pipe_inode_info *opipe,
1271 size_t len, unsigned int flags)
1272 {
1273 struct pipe_buffer *ibuf, *obuf;
1274 int ret, do_wakeup, i, ipipe_first;
1275
1276 ret = do_wakeup = ipipe_first = 0;
1277
1278 /*
1279 * Potential ABBA deadlock, work around it by ordering lock
1280 * grabbing by inode address. Otherwise two different processes
1281 * could deadlock (one doing tee from A -> B, the other from B -> A).
1282 */
1283 if (ipipe->inode < opipe->inode) {
1284 ipipe_first = 1;
1285 mutex_lock(&ipipe->inode->i_mutex);
1286 mutex_lock(&opipe->inode->i_mutex);
1287 } else {
1288 mutex_lock(&opipe->inode->i_mutex);
1289 mutex_lock(&ipipe->inode->i_mutex);
1290 }
1291
1292 for (i = 0;; i++) {
1293 if (!opipe->readers) {
1294 send_sig(SIGPIPE, current, 0);
1295 if (!ret)
1296 ret = -EPIPE;
1297 break;
1298 }
1299 if (ipipe->nrbufs - i) {
1300 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1301
1302 /*
1303 * If we have room, fill this buffer
1304 */
1305 if (opipe->nrbufs < PIPE_BUFFERS) {
1306 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1307
1308 /*
1309 * Get a reference to this pipe buffer,
1310 * so we can copy the contents over.
1311 */
1312 ibuf->ops->get(ipipe, ibuf);
1313
1314 obuf = opipe->bufs + nbuf;
1315 *obuf = *ibuf;
1316
1317 if (obuf->len > len)
1318 obuf->len = len;
1319
1320 opipe->nrbufs++;
1321 do_wakeup = 1;
1322 ret += obuf->len;
1323 len -= obuf->len;
1324
1325 if (!len)
1326 break;
1327 if (opipe->nrbufs < PIPE_BUFFERS)
1328 continue;
1329 }
1330
1331 /*
1332 * We have input available, but no output room.
1333 * If we already copied data, return that. If we
1334 * need to drop the opipe lock, it must be ordered
1335 * last to avoid deadlocks.
1336 */
1337 if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1338 if (!ret)
1339 ret = -EAGAIN;
1340 break;
1341 }
1342 if (signal_pending(current)) {
1343 if (!ret)
1344 ret = -ERESTARTSYS;
1345 break;
1346 }
1347 if (do_wakeup) {
1348 smp_mb();
1349 if (waitqueue_active(&opipe->wait))
1350 wake_up_interruptible(&opipe->wait);
1351 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1352 do_wakeup = 0;
1353 }
1354
1355 opipe->waiting_writers++;
1356 pipe_wait(opipe);
1357 opipe->waiting_writers--;
1358 continue;
1359 }
1360
1361 /*
1362 * No input buffers, do the usual checks for available
1363 * writers and blocking and wait if necessary
1364 */
1365 if (!ipipe->writers)
1366 break;
1367 if (!ipipe->waiting_writers) {
1368 if (ret)
1369 break;
1370 }
1371 /*
1372 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1373 * with another process, we can only safely do that if
1374 * the ipipe lock is ordered last.
1375 */
1376 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1377 if (!ret)
1378 ret = -EAGAIN;
1379 break;
1380 }
1381 if (signal_pending(current)) {
1382 if (!ret)
1383 ret = -ERESTARTSYS;
1384 break;
1385 }
1386
1387 if (waitqueue_active(&ipipe->wait))
1388 wake_up_interruptible_sync(&ipipe->wait);
1389 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1390
1391 pipe_wait(ipipe);
1392 }
1393
1394 mutex_unlock(&ipipe->inode->i_mutex);
1395 mutex_unlock(&opipe->inode->i_mutex);
1396
1397 if (do_wakeup) {
1398 smp_mb();
1399 if (waitqueue_active(&opipe->wait))
1400 wake_up_interruptible(&opipe->wait);
1401 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1402 }
1403
1404 return ret;
1405 }
1406
1407 /*
1408 * This is a tee(1) implementation that works on pipes. It doesn't copy
1409 * any data, it simply references the 'in' pages on the 'out' pipe.
1410 * The 'flags' used are the SPLICE_F_* variants, currently the only
1411 * applicable one is SPLICE_F_NONBLOCK.
1412 */
1413 static long do_tee(struct file *in, struct file *out, size_t len,
1414 unsigned int flags)
1415 {
1416 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1417 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1418
1419 /*
1420 * Link ipipe to the two output pipes, consuming as we go along.
1421 */
1422 if (ipipe && opipe)
1423 return link_pipe(ipipe, opipe, len, flags);
1424
1425 return -EINVAL;
1426 }
1427
1428 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1429 {
1430 struct file *in;
1431 int error, fput_in;
1432
1433 if (unlikely(!len))
1434 return 0;
1435
1436 error = -EBADF;
1437 in = fget_light(fdin, &fput_in);
1438 if (in) {
1439 if (in->f_mode & FMODE_READ) {
1440 int fput_out;
1441 struct file *out = fget_light(fdout, &fput_out);
1442
1443 if (out) {
1444 if (out->f_mode & FMODE_WRITE)
1445 error = do_tee(in, out, len, flags);
1446 fput_light(out, fput_out);
1447 }
1448 }
1449 fput_light(in, fput_in);
1450 }
1451
1452 return error;
1453 }