]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/super.c
io_uring: fix an issue when IOSQE_IO_LINK is inserted into defer list
[mirror_ubuntu-jammy-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 /*
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
59 */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
62 {
63 struct super_block *sb;
64 long fs_objects = 0;
65 long total_objects;
66 long freed = 0;
67 long dentries;
68 long inodes;
69
70 sb = container_of(shrink, struct super_block, s_shrink);
71
72 /*
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
75 */
76 if (!(sc->gfp_mask & __GFP_FS))
77 return SHRINK_STOP;
78
79 if (!trylock_super(sb))
80 return SHRINK_STOP;
81
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
88 if (!total_objects)
89 total_objects = 1;
90
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 *
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
102 */
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
107
108 if (fs_objects) {
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
111 }
112
113 up_read(&sb->s_umount);
114 return freed;
115 }
116
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
119 {
120 struct super_block *sb;
121 long total_objects = 0;
122
123 sb = container_of(shrink, struct super_block, s_shrink);
124
125 /*
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
131 * here.
132 *
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
138 */
139 if (!(sb->s_flags & SB_BORN))
140 return 0;
141 smp_rmb();
142
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
145
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148
149 if (!total_objects)
150 return SHRINK_EMPTY;
151
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
154 }
155
156 static void destroy_super_work(struct work_struct *work)
157 {
158 struct super_block *s = container_of(work, struct super_block,
159 destroy_work);
160 int i;
161
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 kfree(s);
165 }
166
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
172 }
173
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 if (!s)
178 return;
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
182 security_sb_free(s);
183 put_user_ns(s->s_user_ns);
184 kfree(s->s_subtype);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
188 }
189
190 /**
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
195 *
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
198 */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
201 {
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
204 int i;
205
206 if (!s)
207 return NULL;
208
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 /*
214 * sget() can have s_umount recursion.
215 *
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
218 * one.
219 *
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
223 * risk of deadlocks.
224 *
225 * Annotate this by putting this lock in a different
226 * subclass.
227 */
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229
230 if (security_sb_alloc(s))
231 goto fail;
232
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 sb_writers_name[i],
236 &type->s_writers_key[i]))
237 goto fail;
238 }
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
241 s->s_flags = flags;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
251
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->cleancache_poolid = CLEANCACHE_NO_POOL;
261
262 s->s_shrink.seeks = DEFAULT_SEEKS;
263 s->s_shrink.scan_objects = super_cache_scan;
264 s->s_shrink.count_objects = super_cache_count;
265 s->s_shrink.batch = 1024;
266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 if (prealloc_shrinker(&s->s_shrink))
268 goto fail;
269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 goto fail;
271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 goto fail;
273 return s;
274
275 fail:
276 destroy_unused_super(s);
277 return NULL;
278 }
279
280 /* Superblock refcounting */
281
282 /*
283 * Drop a superblock's refcount. The caller must hold sb_lock.
284 */
285 static void __put_super(struct super_block *s)
286 {
287 if (!--s->s_count) {
288 list_del_init(&s->s_list);
289 WARN_ON(s->s_dentry_lru.node);
290 WARN_ON(s->s_inode_lru.node);
291 WARN_ON(!list_empty(&s->s_mounts));
292 security_sb_free(s);
293 put_user_ns(s->s_user_ns);
294 kfree(s->s_subtype);
295 call_rcu(&s->rcu, destroy_super_rcu);
296 }
297 }
298
299 /**
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
302 *
303 * Drops a temporary reference, frees superblock if there's no
304 * references left.
305 */
306 static void put_super(struct super_block *sb)
307 {
308 spin_lock(&sb_lock);
309 __put_super(sb);
310 spin_unlock(&sb_lock);
311 }
312
313
314 /**
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
317 *
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
321 * had just acquired.
322 *
323 * Caller holds exclusive lock on superblock; that lock is released.
324 */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 struct file_system_type *fs = s->s_type;
328 if (atomic_dec_and_test(&s->s_active)) {
329 cleancache_invalidate_fs(s);
330 unregister_shrinker(&s->s_shrink);
331 fs->kill_sb(s);
332
333 /*
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
337 */
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
340
341 put_filesystem(fs);
342 put_super(s);
343 } else {
344 up_write(&s->s_umount);
345 }
346 }
347
348 EXPORT_SYMBOL(deactivate_locked_super);
349
350 /**
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
353 *
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
357 */
358 void deactivate_super(struct super_block *s)
359 {
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
363 }
364 }
365
366 EXPORT_SYMBOL(deactivate_super);
367
368 /**
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
371 *
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
380 */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 s->s_count++;
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 put_super(s);
388 return 1;
389 }
390 up_write(&s->s_umount);
391 put_super(s);
392 return 0;
393 }
394
395 /*
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
398 *
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
406 *
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
411 */
412 bool trylock_super(struct super_block *sb)
413 {
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
417 return true;
418 up_read(&sb->s_umount);
419 }
420
421 return false;
422 }
423
424 /**
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
427 *
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
433 *
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
437 */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 const struct super_operations *sop = sb->s_op;
441
442 if (sb->s_root) {
443 shrink_dcache_for_umount(sb);
444 sync_filesystem(sb);
445 sb->s_flags &= ~SB_ACTIVE;
446
447 fsnotify_sb_delete(sb);
448 cgroup_writeback_umount();
449
450 evict_inodes(sb);
451
452 if (sb->s_dio_done_wq) {
453 destroy_workqueue(sb->s_dio_done_wq);
454 sb->s_dio_done_wq = NULL;
455 }
456
457 if (sop->put_super)
458 sop->put_super(sb);
459
460 if (!list_empty(&sb->s_inodes)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
463 sb->s_id);
464 }
465 }
466 spin_lock(&sb_lock);
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb->s_instances);
469 spin_unlock(&sb_lock);
470 up_write(&sb->s_umount);
471 if (sb->s_bdi != &noop_backing_dev_info) {
472 bdi_put(sb->s_bdi);
473 sb->s_bdi = &noop_backing_dev_info;
474 }
475 }
476
477 EXPORT_SYMBOL(generic_shutdown_super);
478
479 bool mount_capable(struct fs_context *fc)
480 {
481 struct user_namespace *user_ns = fc->global ? &init_user_ns
482 : fc->user_ns;
483
484 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
485 return capable(CAP_SYS_ADMIN);
486 else
487 return ns_capable(user_ns, CAP_SYS_ADMIN);
488 }
489
490 /**
491 * sget_fc - Find or create a superblock
492 * @fc: Filesystem context.
493 * @test: Comparison callback
494 * @set: Setup callback
495 *
496 * Find or create a superblock using the parameters stored in the filesystem
497 * context and the two callback functions.
498 *
499 * If an extant superblock is matched, then that will be returned with an
500 * elevated reference count that the caller must transfer or discard.
501 *
502 * If no match is made, a new superblock will be allocated and basic
503 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
504 * the set() callback will be invoked), the superblock will be published and it
505 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
506 * as yet unset.
507 */
508 struct super_block *sget_fc(struct fs_context *fc,
509 int (*test)(struct super_block *, struct fs_context *),
510 int (*set)(struct super_block *, struct fs_context *))
511 {
512 struct super_block *s = NULL;
513 struct super_block *old;
514 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
515 int err;
516
517 retry:
518 spin_lock(&sb_lock);
519 if (test) {
520 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
521 if (test(old, fc))
522 goto share_extant_sb;
523 }
524 }
525 if (!s) {
526 spin_unlock(&sb_lock);
527 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
528 if (!s)
529 return ERR_PTR(-ENOMEM);
530 goto retry;
531 }
532
533 s->s_fs_info = fc->s_fs_info;
534 err = set(s, fc);
535 if (err) {
536 s->s_fs_info = NULL;
537 spin_unlock(&sb_lock);
538 destroy_unused_super(s);
539 return ERR_PTR(err);
540 }
541 fc->s_fs_info = NULL;
542 s->s_type = fc->fs_type;
543 s->s_iflags |= fc->s_iflags;
544 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
545 list_add_tail(&s->s_list, &super_blocks);
546 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
547 spin_unlock(&sb_lock);
548 get_filesystem(s->s_type);
549 register_shrinker_prepared(&s->s_shrink);
550 return s;
551
552 share_extant_sb:
553 if (user_ns != old->s_user_ns) {
554 spin_unlock(&sb_lock);
555 destroy_unused_super(s);
556 return ERR_PTR(-EBUSY);
557 }
558 if (!grab_super(old))
559 goto retry;
560 destroy_unused_super(s);
561 return old;
562 }
563 EXPORT_SYMBOL(sget_fc);
564
565 /**
566 * sget - find or create a superblock
567 * @type: filesystem type superblock should belong to
568 * @test: comparison callback
569 * @set: setup callback
570 * @flags: mount flags
571 * @data: argument to each of them
572 */
573 struct super_block *sget(struct file_system_type *type,
574 int (*test)(struct super_block *,void *),
575 int (*set)(struct super_block *,void *),
576 int flags,
577 void *data)
578 {
579 struct user_namespace *user_ns = current_user_ns();
580 struct super_block *s = NULL;
581 struct super_block *old;
582 int err;
583
584 /* We don't yet pass the user namespace of the parent
585 * mount through to here so always use &init_user_ns
586 * until that changes.
587 */
588 if (flags & SB_SUBMOUNT)
589 user_ns = &init_user_ns;
590
591 retry:
592 spin_lock(&sb_lock);
593 if (test) {
594 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
595 if (!test(old, data))
596 continue;
597 if (user_ns != old->s_user_ns) {
598 spin_unlock(&sb_lock);
599 destroy_unused_super(s);
600 return ERR_PTR(-EBUSY);
601 }
602 if (!grab_super(old))
603 goto retry;
604 destroy_unused_super(s);
605 return old;
606 }
607 }
608 if (!s) {
609 spin_unlock(&sb_lock);
610 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
611 if (!s)
612 return ERR_PTR(-ENOMEM);
613 goto retry;
614 }
615
616 err = set(s, data);
617 if (err) {
618 spin_unlock(&sb_lock);
619 destroy_unused_super(s);
620 return ERR_PTR(err);
621 }
622 s->s_type = type;
623 strlcpy(s->s_id, type->name, sizeof(s->s_id));
624 list_add_tail(&s->s_list, &super_blocks);
625 hlist_add_head(&s->s_instances, &type->fs_supers);
626 spin_unlock(&sb_lock);
627 get_filesystem(type);
628 register_shrinker_prepared(&s->s_shrink);
629 return s;
630 }
631 EXPORT_SYMBOL(sget);
632
633 void drop_super(struct super_block *sb)
634 {
635 up_read(&sb->s_umount);
636 put_super(sb);
637 }
638
639 EXPORT_SYMBOL(drop_super);
640
641 void drop_super_exclusive(struct super_block *sb)
642 {
643 up_write(&sb->s_umount);
644 put_super(sb);
645 }
646 EXPORT_SYMBOL(drop_super_exclusive);
647
648 static void __iterate_supers(void (*f)(struct super_block *))
649 {
650 struct super_block *sb, *p = NULL;
651
652 spin_lock(&sb_lock);
653 list_for_each_entry(sb, &super_blocks, s_list) {
654 if (hlist_unhashed(&sb->s_instances))
655 continue;
656 sb->s_count++;
657 spin_unlock(&sb_lock);
658
659 f(sb);
660
661 spin_lock(&sb_lock);
662 if (p)
663 __put_super(p);
664 p = sb;
665 }
666 if (p)
667 __put_super(p);
668 spin_unlock(&sb_lock);
669 }
670 /**
671 * iterate_supers - call function for all active superblocks
672 * @f: function to call
673 * @arg: argument to pass to it
674 *
675 * Scans the superblock list and calls given function, passing it
676 * locked superblock and given argument.
677 */
678 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
679 {
680 struct super_block *sb, *p = NULL;
681
682 spin_lock(&sb_lock);
683 list_for_each_entry(sb, &super_blocks, s_list) {
684 if (hlist_unhashed(&sb->s_instances))
685 continue;
686 sb->s_count++;
687 spin_unlock(&sb_lock);
688
689 down_read(&sb->s_umount);
690 if (sb->s_root && (sb->s_flags & SB_BORN))
691 f(sb, arg);
692 up_read(&sb->s_umount);
693
694 spin_lock(&sb_lock);
695 if (p)
696 __put_super(p);
697 p = sb;
698 }
699 if (p)
700 __put_super(p);
701 spin_unlock(&sb_lock);
702 }
703
704 /**
705 * iterate_supers_type - call function for superblocks of given type
706 * @type: fs type
707 * @f: function to call
708 * @arg: argument to pass to it
709 *
710 * Scans the superblock list and calls given function, passing it
711 * locked superblock and given argument.
712 */
713 void iterate_supers_type(struct file_system_type *type,
714 void (*f)(struct super_block *, void *), void *arg)
715 {
716 struct super_block *sb, *p = NULL;
717
718 spin_lock(&sb_lock);
719 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
720 sb->s_count++;
721 spin_unlock(&sb_lock);
722
723 down_read(&sb->s_umount);
724 if (sb->s_root && (sb->s_flags & SB_BORN))
725 f(sb, arg);
726 up_read(&sb->s_umount);
727
728 spin_lock(&sb_lock);
729 if (p)
730 __put_super(p);
731 p = sb;
732 }
733 if (p)
734 __put_super(p);
735 spin_unlock(&sb_lock);
736 }
737
738 EXPORT_SYMBOL(iterate_supers_type);
739
740 static struct super_block *__get_super(struct block_device *bdev, bool excl)
741 {
742 struct super_block *sb;
743
744 if (!bdev)
745 return NULL;
746
747 spin_lock(&sb_lock);
748 rescan:
749 list_for_each_entry(sb, &super_blocks, s_list) {
750 if (hlist_unhashed(&sb->s_instances))
751 continue;
752 if (sb->s_bdev == bdev) {
753 sb->s_count++;
754 spin_unlock(&sb_lock);
755 if (!excl)
756 down_read(&sb->s_umount);
757 else
758 down_write(&sb->s_umount);
759 /* still alive? */
760 if (sb->s_root && (sb->s_flags & SB_BORN))
761 return sb;
762 if (!excl)
763 up_read(&sb->s_umount);
764 else
765 up_write(&sb->s_umount);
766 /* nope, got unmounted */
767 spin_lock(&sb_lock);
768 __put_super(sb);
769 goto rescan;
770 }
771 }
772 spin_unlock(&sb_lock);
773 return NULL;
774 }
775
776 /**
777 * get_super - get the superblock of a device
778 * @bdev: device to get the superblock for
779 *
780 * Scans the superblock list and finds the superblock of the file system
781 * mounted on the device given. %NULL is returned if no match is found.
782 */
783 struct super_block *get_super(struct block_device *bdev)
784 {
785 return __get_super(bdev, false);
786 }
787 EXPORT_SYMBOL(get_super);
788
789 static struct super_block *__get_super_thawed(struct block_device *bdev,
790 bool excl)
791 {
792 while (1) {
793 struct super_block *s = __get_super(bdev, excl);
794 if (!s || s->s_writers.frozen == SB_UNFROZEN)
795 return s;
796 if (!excl)
797 up_read(&s->s_umount);
798 else
799 up_write(&s->s_umount);
800 wait_event(s->s_writers.wait_unfrozen,
801 s->s_writers.frozen == SB_UNFROZEN);
802 put_super(s);
803 }
804 }
805
806 /**
807 * get_super_thawed - get thawed superblock of a device
808 * @bdev: device to get the superblock for
809 *
810 * Scans the superblock list and finds the superblock of the file system
811 * mounted on the device. The superblock is returned once it is thawed
812 * (or immediately if it was not frozen). %NULL is returned if no match
813 * is found.
814 */
815 struct super_block *get_super_thawed(struct block_device *bdev)
816 {
817 return __get_super_thawed(bdev, false);
818 }
819 EXPORT_SYMBOL(get_super_thawed);
820
821 /**
822 * get_super_exclusive_thawed - get thawed superblock of a device
823 * @bdev: device to get the superblock for
824 *
825 * Scans the superblock list and finds the superblock of the file system
826 * mounted on the device. The superblock is returned once it is thawed
827 * (or immediately if it was not frozen) and s_umount semaphore is held
828 * in exclusive mode. %NULL is returned if no match is found.
829 */
830 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
831 {
832 return __get_super_thawed(bdev, true);
833 }
834 EXPORT_SYMBOL(get_super_exclusive_thawed);
835
836 /**
837 * get_active_super - get an active reference to the superblock of a device
838 * @bdev: device to get the superblock for
839 *
840 * Scans the superblock list and finds the superblock of the file system
841 * mounted on the device given. Returns the superblock with an active
842 * reference or %NULL if none was found.
843 */
844 struct super_block *get_active_super(struct block_device *bdev)
845 {
846 struct super_block *sb;
847
848 if (!bdev)
849 return NULL;
850
851 restart:
852 spin_lock(&sb_lock);
853 list_for_each_entry(sb, &super_blocks, s_list) {
854 if (hlist_unhashed(&sb->s_instances))
855 continue;
856 if (sb->s_bdev == bdev) {
857 if (!grab_super(sb))
858 goto restart;
859 up_write(&sb->s_umount);
860 return sb;
861 }
862 }
863 spin_unlock(&sb_lock);
864 return NULL;
865 }
866
867 struct super_block *user_get_super(dev_t dev)
868 {
869 struct super_block *sb;
870
871 spin_lock(&sb_lock);
872 rescan:
873 list_for_each_entry(sb, &super_blocks, s_list) {
874 if (hlist_unhashed(&sb->s_instances))
875 continue;
876 if (sb->s_dev == dev) {
877 sb->s_count++;
878 spin_unlock(&sb_lock);
879 down_read(&sb->s_umount);
880 /* still alive? */
881 if (sb->s_root && (sb->s_flags & SB_BORN))
882 return sb;
883 up_read(&sb->s_umount);
884 /* nope, got unmounted */
885 spin_lock(&sb_lock);
886 __put_super(sb);
887 goto rescan;
888 }
889 }
890 spin_unlock(&sb_lock);
891 return NULL;
892 }
893
894 /**
895 * reconfigure_super - asks filesystem to change superblock parameters
896 * @fc: The superblock and configuration
897 *
898 * Alters the configuration parameters of a live superblock.
899 */
900 int reconfigure_super(struct fs_context *fc)
901 {
902 struct super_block *sb = fc->root->d_sb;
903 int retval;
904 bool remount_ro = false;
905 bool force = fc->sb_flags & SB_FORCE;
906
907 if (fc->sb_flags_mask & ~MS_RMT_MASK)
908 return -EINVAL;
909 if (sb->s_writers.frozen != SB_UNFROZEN)
910 return -EBUSY;
911
912 retval = security_sb_remount(sb, fc->security);
913 if (retval)
914 return retval;
915
916 if (fc->sb_flags_mask & SB_RDONLY) {
917 #ifdef CONFIG_BLOCK
918 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
919 return -EACCES;
920 #endif
921
922 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
923 }
924
925 if (remount_ro) {
926 if (!hlist_empty(&sb->s_pins)) {
927 up_write(&sb->s_umount);
928 group_pin_kill(&sb->s_pins);
929 down_write(&sb->s_umount);
930 if (!sb->s_root)
931 return 0;
932 if (sb->s_writers.frozen != SB_UNFROZEN)
933 return -EBUSY;
934 remount_ro = !sb_rdonly(sb);
935 }
936 }
937 shrink_dcache_sb(sb);
938
939 /* If we are reconfiguring to RDONLY and current sb is read/write,
940 * make sure there are no files open for writing.
941 */
942 if (remount_ro) {
943 if (force) {
944 sb->s_readonly_remount = 1;
945 smp_wmb();
946 } else {
947 retval = sb_prepare_remount_readonly(sb);
948 if (retval)
949 return retval;
950 }
951 }
952
953 if (fc->ops->reconfigure) {
954 retval = fc->ops->reconfigure(fc);
955 if (retval) {
956 if (!force)
957 goto cancel_readonly;
958 /* If forced remount, go ahead despite any errors */
959 WARN(1, "forced remount of a %s fs returned %i\n",
960 sb->s_type->name, retval);
961 }
962 }
963
964 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
965 (fc->sb_flags & fc->sb_flags_mask)));
966 /* Needs to be ordered wrt mnt_is_readonly() */
967 smp_wmb();
968 sb->s_readonly_remount = 0;
969
970 /*
971 * Some filesystems modify their metadata via some other path than the
972 * bdev buffer cache (eg. use a private mapping, or directories in
973 * pagecache, etc). Also file data modifications go via their own
974 * mappings. So If we try to mount readonly then copy the filesystem
975 * from bdev, we could get stale data, so invalidate it to give a best
976 * effort at coherency.
977 */
978 if (remount_ro && sb->s_bdev)
979 invalidate_bdev(sb->s_bdev);
980 return 0;
981
982 cancel_readonly:
983 sb->s_readonly_remount = 0;
984 return retval;
985 }
986
987 static void do_emergency_remount_callback(struct super_block *sb)
988 {
989 down_write(&sb->s_umount);
990 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
991 !sb_rdonly(sb)) {
992 struct fs_context *fc;
993
994 fc = fs_context_for_reconfigure(sb->s_root,
995 SB_RDONLY | SB_FORCE, SB_RDONLY);
996 if (!IS_ERR(fc)) {
997 if (parse_monolithic_mount_data(fc, NULL) == 0)
998 (void)reconfigure_super(fc);
999 put_fs_context(fc);
1000 }
1001 }
1002 up_write(&sb->s_umount);
1003 }
1004
1005 static void do_emergency_remount(struct work_struct *work)
1006 {
1007 __iterate_supers(do_emergency_remount_callback);
1008 kfree(work);
1009 printk("Emergency Remount complete\n");
1010 }
1011
1012 void emergency_remount(void)
1013 {
1014 struct work_struct *work;
1015
1016 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1017 if (work) {
1018 INIT_WORK(work, do_emergency_remount);
1019 schedule_work(work);
1020 }
1021 }
1022
1023 static void do_thaw_all_callback(struct super_block *sb)
1024 {
1025 down_write(&sb->s_umount);
1026 if (sb->s_root && sb->s_flags & SB_BORN) {
1027 emergency_thaw_bdev(sb);
1028 thaw_super_locked(sb);
1029 } else {
1030 up_write(&sb->s_umount);
1031 }
1032 }
1033
1034 static void do_thaw_all(struct work_struct *work)
1035 {
1036 __iterate_supers(do_thaw_all_callback);
1037 kfree(work);
1038 printk(KERN_WARNING "Emergency Thaw complete\n");
1039 }
1040
1041 /**
1042 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1043 *
1044 * Used for emergency unfreeze of all filesystems via SysRq
1045 */
1046 void emergency_thaw_all(void)
1047 {
1048 struct work_struct *work;
1049
1050 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1051 if (work) {
1052 INIT_WORK(work, do_thaw_all);
1053 schedule_work(work);
1054 }
1055 }
1056
1057 static DEFINE_IDA(unnamed_dev_ida);
1058
1059 /**
1060 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1061 * @p: Pointer to a dev_t.
1062 *
1063 * Filesystems which don't use real block devices can call this function
1064 * to allocate a virtual block device.
1065 *
1066 * Context: Any context. Frequently called while holding sb_lock.
1067 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1068 * or -ENOMEM if memory allocation failed.
1069 */
1070 int get_anon_bdev(dev_t *p)
1071 {
1072 int dev;
1073
1074 /*
1075 * Many userspace utilities consider an FSID of 0 invalid.
1076 * Always return at least 1 from get_anon_bdev.
1077 */
1078 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1079 GFP_ATOMIC);
1080 if (dev == -ENOSPC)
1081 dev = -EMFILE;
1082 if (dev < 0)
1083 return dev;
1084
1085 *p = MKDEV(0, dev);
1086 return 0;
1087 }
1088 EXPORT_SYMBOL(get_anon_bdev);
1089
1090 void free_anon_bdev(dev_t dev)
1091 {
1092 ida_free(&unnamed_dev_ida, MINOR(dev));
1093 }
1094 EXPORT_SYMBOL(free_anon_bdev);
1095
1096 int set_anon_super(struct super_block *s, void *data)
1097 {
1098 return get_anon_bdev(&s->s_dev);
1099 }
1100 EXPORT_SYMBOL(set_anon_super);
1101
1102 void kill_anon_super(struct super_block *sb)
1103 {
1104 dev_t dev = sb->s_dev;
1105 generic_shutdown_super(sb);
1106 free_anon_bdev(dev);
1107 }
1108 EXPORT_SYMBOL(kill_anon_super);
1109
1110 void kill_litter_super(struct super_block *sb)
1111 {
1112 if (sb->s_root)
1113 d_genocide(sb->s_root);
1114 kill_anon_super(sb);
1115 }
1116 EXPORT_SYMBOL(kill_litter_super);
1117
1118 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1119 {
1120 return set_anon_super(sb, NULL);
1121 }
1122 EXPORT_SYMBOL(set_anon_super_fc);
1123
1124 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1125 {
1126 return sb->s_fs_info == fc->s_fs_info;
1127 }
1128
1129 static int test_single_super(struct super_block *s, struct fs_context *fc)
1130 {
1131 return 1;
1132 }
1133
1134 /**
1135 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1136 * @fc: The filesystem context holding the parameters
1137 * @keying: How to distinguish superblocks
1138 * @fill_super: Helper to initialise a new superblock
1139 *
1140 * Search for a superblock and create a new one if not found. The search
1141 * criterion is controlled by @keying. If the search fails, a new superblock
1142 * is created and @fill_super() is called to initialise it.
1143 *
1144 * @keying can take one of a number of values:
1145 *
1146 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1147 * system. This is typically used for special system filesystems.
1148 *
1149 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1150 * distinct keys (where the key is in s_fs_info). Searching for the same
1151 * key again will turn up the superblock for that key.
1152 *
1153 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1154 * unkeyed. Each call will get a new superblock.
1155 *
1156 * A permissions check is made by sget_fc() unless we're getting a superblock
1157 * for a kernel-internal mount or a submount.
1158 */
1159 int vfs_get_super(struct fs_context *fc,
1160 enum vfs_get_super_keying keying,
1161 int (*fill_super)(struct super_block *sb,
1162 struct fs_context *fc))
1163 {
1164 int (*test)(struct super_block *, struct fs_context *);
1165 struct super_block *sb;
1166
1167 switch (keying) {
1168 case vfs_get_single_super:
1169 test = test_single_super;
1170 break;
1171 case vfs_get_keyed_super:
1172 test = test_keyed_super;
1173 break;
1174 case vfs_get_independent_super:
1175 test = NULL;
1176 break;
1177 default:
1178 BUG();
1179 }
1180
1181 sb = sget_fc(fc, test, set_anon_super_fc);
1182 if (IS_ERR(sb))
1183 return PTR_ERR(sb);
1184
1185 if (!sb->s_root) {
1186 int err = fill_super(sb, fc);
1187 if (err) {
1188 deactivate_locked_super(sb);
1189 return err;
1190 }
1191
1192 sb->s_flags |= SB_ACTIVE;
1193 }
1194
1195 BUG_ON(fc->root);
1196 fc->root = dget(sb->s_root);
1197 return 0;
1198 }
1199 EXPORT_SYMBOL(vfs_get_super);
1200
1201 int get_tree_nodev(struct fs_context *fc,
1202 int (*fill_super)(struct super_block *sb,
1203 struct fs_context *fc))
1204 {
1205 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1206 }
1207 EXPORT_SYMBOL(get_tree_nodev);
1208
1209 int get_tree_single(struct fs_context *fc,
1210 int (*fill_super)(struct super_block *sb,
1211 struct fs_context *fc))
1212 {
1213 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1214 }
1215 EXPORT_SYMBOL(get_tree_single);
1216
1217 #ifdef CONFIG_BLOCK
1218 static int set_bdev_super(struct super_block *s, void *data)
1219 {
1220 s->s_bdev = data;
1221 s->s_dev = s->s_bdev->bd_dev;
1222 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1223
1224 return 0;
1225 }
1226
1227 static int test_bdev_super(struct super_block *s, void *data)
1228 {
1229 return (void *)s->s_bdev == data;
1230 }
1231
1232 struct dentry *mount_bdev(struct file_system_type *fs_type,
1233 int flags, const char *dev_name, void *data,
1234 int (*fill_super)(struct super_block *, void *, int))
1235 {
1236 struct block_device *bdev;
1237 struct super_block *s;
1238 fmode_t mode = FMODE_READ | FMODE_EXCL;
1239 int error = 0;
1240
1241 if (!(flags & SB_RDONLY))
1242 mode |= FMODE_WRITE;
1243
1244 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1245 if (IS_ERR(bdev))
1246 return ERR_CAST(bdev);
1247
1248 /*
1249 * once the super is inserted into the list by sget, s_umount
1250 * will protect the lockfs code from trying to start a snapshot
1251 * while we are mounting
1252 */
1253 mutex_lock(&bdev->bd_fsfreeze_mutex);
1254 if (bdev->bd_fsfreeze_count > 0) {
1255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1256 error = -EBUSY;
1257 goto error_bdev;
1258 }
1259 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1260 bdev);
1261 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1262 if (IS_ERR(s))
1263 goto error_s;
1264
1265 if (s->s_root) {
1266 if ((flags ^ s->s_flags) & SB_RDONLY) {
1267 deactivate_locked_super(s);
1268 error = -EBUSY;
1269 goto error_bdev;
1270 }
1271
1272 /*
1273 * s_umount nests inside bd_mutex during
1274 * __invalidate_device(). blkdev_put() acquires
1275 * bd_mutex and can't be called under s_umount. Drop
1276 * s_umount temporarily. This is safe as we're
1277 * holding an active reference.
1278 */
1279 up_write(&s->s_umount);
1280 blkdev_put(bdev, mode);
1281 down_write(&s->s_umount);
1282 } else {
1283 s->s_mode = mode;
1284 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1285 sb_set_blocksize(s, block_size(bdev));
1286 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1287 if (error) {
1288 deactivate_locked_super(s);
1289 goto error;
1290 }
1291
1292 s->s_flags |= SB_ACTIVE;
1293 bdev->bd_super = s;
1294 }
1295
1296 return dget(s->s_root);
1297
1298 error_s:
1299 error = PTR_ERR(s);
1300 error_bdev:
1301 blkdev_put(bdev, mode);
1302 error:
1303 return ERR_PTR(error);
1304 }
1305 EXPORT_SYMBOL(mount_bdev);
1306
1307 void kill_block_super(struct super_block *sb)
1308 {
1309 struct block_device *bdev = sb->s_bdev;
1310 fmode_t mode = sb->s_mode;
1311
1312 bdev->bd_super = NULL;
1313 generic_shutdown_super(sb);
1314 sync_blockdev(bdev);
1315 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1316 blkdev_put(bdev, mode | FMODE_EXCL);
1317 }
1318
1319 EXPORT_SYMBOL(kill_block_super);
1320 #endif
1321
1322 struct dentry *mount_nodev(struct file_system_type *fs_type,
1323 int flags, void *data,
1324 int (*fill_super)(struct super_block *, void *, int))
1325 {
1326 int error;
1327 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1328
1329 if (IS_ERR(s))
1330 return ERR_CAST(s);
1331
1332 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1333 if (error) {
1334 deactivate_locked_super(s);
1335 return ERR_PTR(error);
1336 }
1337 s->s_flags |= SB_ACTIVE;
1338 return dget(s->s_root);
1339 }
1340 EXPORT_SYMBOL(mount_nodev);
1341
1342 static int reconfigure_single(struct super_block *s,
1343 int flags, void *data)
1344 {
1345 struct fs_context *fc;
1346 int ret;
1347
1348 /* The caller really need to be passing fc down into mount_single(),
1349 * then a chunk of this can be removed. [Bollocks -- AV]
1350 * Better yet, reconfiguration shouldn't happen, but rather the second
1351 * mount should be rejected if the parameters are not compatible.
1352 */
1353 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1354 if (IS_ERR(fc))
1355 return PTR_ERR(fc);
1356
1357 ret = parse_monolithic_mount_data(fc, data);
1358 if (ret < 0)
1359 goto out;
1360
1361 ret = reconfigure_super(fc);
1362 out:
1363 put_fs_context(fc);
1364 return ret;
1365 }
1366
1367 static int compare_single(struct super_block *s, void *p)
1368 {
1369 return 1;
1370 }
1371
1372 struct dentry *mount_single(struct file_system_type *fs_type,
1373 int flags, void *data,
1374 int (*fill_super)(struct super_block *, void *, int))
1375 {
1376 struct super_block *s;
1377 int error;
1378
1379 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1380 if (IS_ERR(s))
1381 return ERR_CAST(s);
1382 if (!s->s_root) {
1383 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1384 if (!error)
1385 s->s_flags |= SB_ACTIVE;
1386 } else {
1387 error = reconfigure_single(s, flags, data);
1388 }
1389 if (unlikely(error)) {
1390 deactivate_locked_super(s);
1391 return ERR_PTR(error);
1392 }
1393 return dget(s->s_root);
1394 }
1395 EXPORT_SYMBOL(mount_single);
1396
1397 /**
1398 * vfs_get_tree - Get the mountable root
1399 * @fc: The superblock configuration context.
1400 *
1401 * The filesystem is invoked to get or create a superblock which can then later
1402 * be used for mounting. The filesystem places a pointer to the root to be
1403 * used for mounting in @fc->root.
1404 */
1405 int vfs_get_tree(struct fs_context *fc)
1406 {
1407 struct super_block *sb;
1408 int error;
1409
1410 if (fc->root)
1411 return -EBUSY;
1412
1413 /* Get the mountable root in fc->root, with a ref on the root and a ref
1414 * on the superblock.
1415 */
1416 error = fc->ops->get_tree(fc);
1417 if (error < 0)
1418 return error;
1419
1420 if (!fc->root) {
1421 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1422 fc->fs_type->name);
1423 /* We don't know what the locking state of the superblock is -
1424 * if there is a superblock.
1425 */
1426 BUG();
1427 }
1428
1429 sb = fc->root->d_sb;
1430 WARN_ON(!sb->s_bdi);
1431
1432 if (fc->subtype && !sb->s_subtype) {
1433 sb->s_subtype = fc->subtype;
1434 fc->subtype = NULL;
1435 }
1436
1437 /*
1438 * Write barrier is for super_cache_count(). We place it before setting
1439 * SB_BORN as the data dependency between the two functions is the
1440 * superblock structure contents that we just set up, not the SB_BORN
1441 * flag.
1442 */
1443 smp_wmb();
1444 sb->s_flags |= SB_BORN;
1445
1446 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1447 if (unlikely(error)) {
1448 fc_drop_locked(fc);
1449 return error;
1450 }
1451
1452 /*
1453 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1454 * but s_maxbytes was an unsigned long long for many releases. Throw
1455 * this warning for a little while to try and catch filesystems that
1456 * violate this rule.
1457 */
1458 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1459 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1460
1461 return 0;
1462 }
1463 EXPORT_SYMBOL(vfs_get_tree);
1464
1465 /*
1466 * Setup private BDI for given superblock. It gets automatically cleaned up
1467 * in generic_shutdown_super().
1468 */
1469 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1470 {
1471 struct backing_dev_info *bdi;
1472 int err;
1473 va_list args;
1474
1475 bdi = bdi_alloc(GFP_KERNEL);
1476 if (!bdi)
1477 return -ENOMEM;
1478
1479 bdi->name = sb->s_type->name;
1480
1481 va_start(args, fmt);
1482 err = bdi_register_va(bdi, fmt, args);
1483 va_end(args);
1484 if (err) {
1485 bdi_put(bdi);
1486 return err;
1487 }
1488 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1489 sb->s_bdi = bdi;
1490
1491 return 0;
1492 }
1493 EXPORT_SYMBOL(super_setup_bdi_name);
1494
1495 /*
1496 * Setup private BDI for given superblock. I gets automatically cleaned up
1497 * in generic_shutdown_super().
1498 */
1499 int super_setup_bdi(struct super_block *sb)
1500 {
1501 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1502
1503 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1504 atomic_long_inc_return(&bdi_seq));
1505 }
1506 EXPORT_SYMBOL(super_setup_bdi);
1507
1508 /*
1509 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1510 * instead.
1511 */
1512 void __sb_end_write(struct super_block *sb, int level)
1513 {
1514 percpu_up_read(sb->s_writers.rw_sem + level-1);
1515 }
1516 EXPORT_SYMBOL(__sb_end_write);
1517
1518 /*
1519 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1520 * instead.
1521 */
1522 int __sb_start_write(struct super_block *sb, int level, bool wait)
1523 {
1524 bool force_trylock = false;
1525 int ret = 1;
1526
1527 #ifdef CONFIG_LOCKDEP
1528 /*
1529 * We want lockdep to tell us about possible deadlocks with freezing
1530 * but it's it bit tricky to properly instrument it. Getting a freeze
1531 * protection works as getting a read lock but there are subtle
1532 * problems. XFS for example gets freeze protection on internal level
1533 * twice in some cases, which is OK only because we already hold a
1534 * freeze protection also on higher level. Due to these cases we have
1535 * to use wait == F (trylock mode) which must not fail.
1536 */
1537 if (wait) {
1538 int i;
1539
1540 for (i = 0; i < level - 1; i++)
1541 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1542 force_trylock = true;
1543 break;
1544 }
1545 }
1546 #endif
1547 if (wait && !force_trylock)
1548 percpu_down_read(sb->s_writers.rw_sem + level-1);
1549 else
1550 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1551
1552 WARN_ON(force_trylock && !ret);
1553 return ret;
1554 }
1555 EXPORT_SYMBOL(__sb_start_write);
1556
1557 /**
1558 * sb_wait_write - wait until all writers to given file system finish
1559 * @sb: the super for which we wait
1560 * @level: type of writers we wait for (normal vs page fault)
1561 *
1562 * This function waits until there are no writers of given type to given file
1563 * system.
1564 */
1565 static void sb_wait_write(struct super_block *sb, int level)
1566 {
1567 percpu_down_write(sb->s_writers.rw_sem + level-1);
1568 }
1569
1570 /*
1571 * We are going to return to userspace and forget about these locks, the
1572 * ownership goes to the caller of thaw_super() which does unlock().
1573 */
1574 static void lockdep_sb_freeze_release(struct super_block *sb)
1575 {
1576 int level;
1577
1578 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1579 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1580 }
1581
1582 /*
1583 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1584 */
1585 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1586 {
1587 int level;
1588
1589 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1590 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1591 }
1592
1593 static void sb_freeze_unlock(struct super_block *sb)
1594 {
1595 int level;
1596
1597 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1598 percpu_up_write(sb->s_writers.rw_sem + level);
1599 }
1600
1601 /**
1602 * freeze_super - lock the filesystem and force it into a consistent state
1603 * @sb: the super to lock
1604 *
1605 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1606 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1607 * -EBUSY.
1608 *
1609 * During this function, sb->s_writers.frozen goes through these values:
1610 *
1611 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1612 *
1613 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1614 * writes should be blocked, though page faults are still allowed. We wait for
1615 * all writes to complete and then proceed to the next stage.
1616 *
1617 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1618 * but internal fs threads can still modify the filesystem (although they
1619 * should not dirty new pages or inodes), writeback can run etc. After waiting
1620 * for all running page faults we sync the filesystem which will clean all
1621 * dirty pages and inodes (no new dirty pages or inodes can be created when
1622 * sync is running).
1623 *
1624 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1625 * modification are blocked (e.g. XFS preallocation truncation on inode
1626 * reclaim). This is usually implemented by blocking new transactions for
1627 * filesystems that have them and need this additional guard. After all
1628 * internal writers are finished we call ->freeze_fs() to finish filesystem
1629 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1630 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1631 *
1632 * sb->s_writers.frozen is protected by sb->s_umount.
1633 */
1634 int freeze_super(struct super_block *sb)
1635 {
1636 int ret;
1637
1638 atomic_inc(&sb->s_active);
1639 down_write(&sb->s_umount);
1640 if (sb->s_writers.frozen != SB_UNFROZEN) {
1641 deactivate_locked_super(sb);
1642 return -EBUSY;
1643 }
1644
1645 if (!(sb->s_flags & SB_BORN)) {
1646 up_write(&sb->s_umount);
1647 return 0; /* sic - it's "nothing to do" */
1648 }
1649
1650 if (sb_rdonly(sb)) {
1651 /* Nothing to do really... */
1652 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1653 up_write(&sb->s_umount);
1654 return 0;
1655 }
1656
1657 sb->s_writers.frozen = SB_FREEZE_WRITE;
1658 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1659 up_write(&sb->s_umount);
1660 sb_wait_write(sb, SB_FREEZE_WRITE);
1661 down_write(&sb->s_umount);
1662
1663 /* Now we go and block page faults... */
1664 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1665 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1666
1667 /* All writers are done so after syncing there won't be dirty data */
1668 sync_filesystem(sb);
1669
1670 /* Now wait for internal filesystem counter */
1671 sb->s_writers.frozen = SB_FREEZE_FS;
1672 sb_wait_write(sb, SB_FREEZE_FS);
1673
1674 if (sb->s_op->freeze_fs) {
1675 ret = sb->s_op->freeze_fs(sb);
1676 if (ret) {
1677 printk(KERN_ERR
1678 "VFS:Filesystem freeze failed\n");
1679 sb->s_writers.frozen = SB_UNFROZEN;
1680 sb_freeze_unlock(sb);
1681 wake_up(&sb->s_writers.wait_unfrozen);
1682 deactivate_locked_super(sb);
1683 return ret;
1684 }
1685 }
1686 /*
1687 * For debugging purposes so that fs can warn if it sees write activity
1688 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1689 */
1690 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1691 lockdep_sb_freeze_release(sb);
1692 up_write(&sb->s_umount);
1693 return 0;
1694 }
1695 EXPORT_SYMBOL(freeze_super);
1696
1697 /**
1698 * thaw_super -- unlock filesystem
1699 * @sb: the super to thaw
1700 *
1701 * Unlocks the filesystem and marks it writeable again after freeze_super().
1702 */
1703 static int thaw_super_locked(struct super_block *sb)
1704 {
1705 int error;
1706
1707 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1708 up_write(&sb->s_umount);
1709 return -EINVAL;
1710 }
1711
1712 if (sb_rdonly(sb)) {
1713 sb->s_writers.frozen = SB_UNFROZEN;
1714 goto out;
1715 }
1716
1717 lockdep_sb_freeze_acquire(sb);
1718
1719 if (sb->s_op->unfreeze_fs) {
1720 error = sb->s_op->unfreeze_fs(sb);
1721 if (error) {
1722 printk(KERN_ERR
1723 "VFS:Filesystem thaw failed\n");
1724 lockdep_sb_freeze_release(sb);
1725 up_write(&sb->s_umount);
1726 return error;
1727 }
1728 }
1729
1730 sb->s_writers.frozen = SB_UNFROZEN;
1731 sb_freeze_unlock(sb);
1732 out:
1733 wake_up(&sb->s_writers.wait_unfrozen);
1734 deactivate_locked_super(sb);
1735 return 0;
1736 }
1737
1738 int thaw_super(struct super_block *sb)
1739 {
1740 down_write(&sb->s_umount);
1741 return thaw_super_locked(sb);
1742 }
1743 EXPORT_SYMBOL(thaw_super);