]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/super.c
ARM: dts: bcm283x: Enable the VEC IP on all RaspberryPi boards
[mirror_ubuntu-zesty-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38
39
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!trylock_super(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80
81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
86
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 *
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
98 */
99 sc->nr_to_scan = dentries + 1;
100 freed = prune_dcache_sb(sb, sc);
101 sc->nr_to_scan = inodes + 1;
102 freed += prune_icache_sb(sb, sc);
103
104 if (fs_objects) {
105 sc->nr_to_scan = fs_objects + 1;
106 freed += sb->s_op->free_cached_objects(sb, sc);
107 }
108
109 up_read(&sb->s_umount);
110 return freed;
111 }
112
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 struct shrink_control *sc)
115 {
116 struct super_block *sb;
117 long total_objects = 0;
118
119 sb = container_of(shrink, struct super_block, s_shrink);
120
121 /*
122 * Don't call trylock_super as it is a potential
123 * scalability bottleneck. The counts could get updated
124 * between super_cache_count and super_cache_scan anyway.
125 * Call to super_cache_count with shrinker_rwsem held
126 * ensures the safety of call to list_lru_shrink_count() and
127 * s_op->nr_cached_objects().
128 */
129 if (sb->s_op && sb->s_op->nr_cached_objects)
130 total_objects = sb->s_op->nr_cached_objects(sb, sc);
131
132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134
135 total_objects = vfs_pressure_ratio(total_objects);
136 return total_objects;
137 }
138
139 static void destroy_super_work(struct work_struct *work)
140 {
141 struct super_block *s = container_of(work, struct super_block,
142 destroy_work);
143 int i;
144
145 for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 kfree(s);
148 }
149
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 struct super_block *s = container_of(head, struct super_block, rcu);
153 INIT_WORK(&s->destroy_work, destroy_super_work);
154 schedule_work(&s->destroy_work);
155 }
156
157 /**
158 * destroy_super - frees a superblock
159 * @s: superblock to free
160 *
161 * Frees a superblock.
162 */
163 static void destroy_super(struct super_block *s)
164 {
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
167 security_sb_free(s);
168 WARN_ON(!list_empty(&s->s_mounts));
169 put_user_ns(s->s_user_ns);
170 kfree(s->s_subtype);
171 kfree(s->s_options);
172 call_rcu(&s->rcu, destroy_super_rcu);
173 }
174
175 /**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186 {
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196
197 if (security_sb_alloc(s))
198 goto fail;
199
200 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 sb_writers_name[i],
203 &type->s_writers_key[i]))
204 goto fail;
205 }
206 init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 s->s_bdi = &noop_backing_dev_info;
208 s->s_flags = flags;
209 if (s->s_user_ns != &init_user_ns)
210 s->s_iflags |= SB_I_NODEV;
211 INIT_HLIST_NODE(&s->s_instances);
212 INIT_HLIST_BL_HEAD(&s->s_anon);
213 mutex_init(&s->s_sync_lock);
214 INIT_LIST_HEAD(&s->s_inodes);
215 spin_lock_init(&s->s_inode_list_lock);
216 INIT_LIST_HEAD(&s->s_inodes_wb);
217 spin_lock_init(&s->s_inode_wblist_lock);
218
219 if (list_lru_init_memcg(&s->s_dentry_lru))
220 goto fail;
221 if (list_lru_init_memcg(&s->s_inode_lru))
222 goto fail;
223
224 init_rwsem(&s->s_umount);
225 lockdep_set_class(&s->s_umount, &type->s_umount_key);
226 /*
227 * sget() can have s_umount recursion.
228 *
229 * When it cannot find a suitable sb, it allocates a new
230 * one (this one), and tries again to find a suitable old
231 * one.
232 *
233 * In case that succeeds, it will acquire the s_umount
234 * lock of the old one. Since these are clearly distrinct
235 * locks, and this object isn't exposed yet, there's no
236 * risk of deadlocks.
237 *
238 * Annotate this by putting this lock in a different
239 * subclass.
240 */
241 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
242 s->s_count = 1;
243 atomic_set(&s->s_active, 1);
244 mutex_init(&s->s_vfs_rename_mutex);
245 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
246 mutex_init(&s->s_dquot.dqio_mutex);
247 s->s_maxbytes = MAX_NON_LFS;
248 s->s_op = &default_op;
249 s->s_time_gran = 1000000000;
250 s->cleancache_poolid = CLEANCACHE_NO_POOL;
251
252 s->s_shrink.seeks = DEFAULT_SEEKS;
253 s->s_shrink.scan_objects = super_cache_scan;
254 s->s_shrink.count_objects = super_cache_count;
255 s->s_shrink.batch = 1024;
256 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
257 return s;
258
259 fail:
260 destroy_super(s);
261 return NULL;
262 }
263
264 /* Superblock refcounting */
265
266 /*
267 * Drop a superblock's refcount. The caller must hold sb_lock.
268 */
269 static void __put_super(struct super_block *sb)
270 {
271 if (!--sb->s_count) {
272 list_del_init(&sb->s_list);
273 destroy_super(sb);
274 }
275 }
276
277 /**
278 * put_super - drop a temporary reference to superblock
279 * @sb: superblock in question
280 *
281 * Drops a temporary reference, frees superblock if there's no
282 * references left.
283 */
284 static void put_super(struct super_block *sb)
285 {
286 spin_lock(&sb_lock);
287 __put_super(sb);
288 spin_unlock(&sb_lock);
289 }
290
291
292 /**
293 * deactivate_locked_super - drop an active reference to superblock
294 * @s: superblock to deactivate
295 *
296 * Drops an active reference to superblock, converting it into a temporary
297 * one if there is no other active references left. In that case we
298 * tell fs driver to shut it down and drop the temporary reference we
299 * had just acquired.
300 *
301 * Caller holds exclusive lock on superblock; that lock is released.
302 */
303 void deactivate_locked_super(struct super_block *s)
304 {
305 struct file_system_type *fs = s->s_type;
306 if (atomic_dec_and_test(&s->s_active)) {
307 cleancache_invalidate_fs(s);
308 unregister_shrinker(&s->s_shrink);
309 fs->kill_sb(s);
310
311 /*
312 * Since list_lru_destroy() may sleep, we cannot call it from
313 * put_super(), where we hold the sb_lock. Therefore we destroy
314 * the lru lists right now.
315 */
316 list_lru_destroy(&s->s_dentry_lru);
317 list_lru_destroy(&s->s_inode_lru);
318
319 put_filesystem(fs);
320 put_super(s);
321 } else {
322 up_write(&s->s_umount);
323 }
324 }
325
326 EXPORT_SYMBOL(deactivate_locked_super);
327
328 /**
329 * deactivate_super - drop an active reference to superblock
330 * @s: superblock to deactivate
331 *
332 * Variant of deactivate_locked_super(), except that superblock is *not*
333 * locked by caller. If we are going to drop the final active reference,
334 * lock will be acquired prior to that.
335 */
336 void deactivate_super(struct super_block *s)
337 {
338 if (!atomic_add_unless(&s->s_active, -1, 1)) {
339 down_write(&s->s_umount);
340 deactivate_locked_super(s);
341 }
342 }
343
344 EXPORT_SYMBOL(deactivate_super);
345
346 /**
347 * grab_super - acquire an active reference
348 * @s: reference we are trying to make active
349 *
350 * Tries to acquire an active reference. grab_super() is used when we
351 * had just found a superblock in super_blocks or fs_type->fs_supers
352 * and want to turn it into a full-blown active reference. grab_super()
353 * is called with sb_lock held and drops it. Returns 1 in case of
354 * success, 0 if we had failed (superblock contents was already dead or
355 * dying when grab_super() had been called). Note that this is only
356 * called for superblocks not in rundown mode (== ones still on ->fs_supers
357 * of their type), so increment of ->s_count is OK here.
358 */
359 static int grab_super(struct super_block *s) __releases(sb_lock)
360 {
361 s->s_count++;
362 spin_unlock(&sb_lock);
363 down_write(&s->s_umount);
364 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
365 put_super(s);
366 return 1;
367 }
368 up_write(&s->s_umount);
369 put_super(s);
370 return 0;
371 }
372
373 /*
374 * trylock_super - try to grab ->s_umount shared
375 * @sb: reference we are trying to grab
376 *
377 * Try to prevent fs shutdown. This is used in places where we
378 * cannot take an active reference but we need to ensure that the
379 * filesystem is not shut down while we are working on it. It returns
380 * false if we cannot acquire s_umount or if we lose the race and
381 * filesystem already got into shutdown, and returns true with the s_umount
382 * lock held in read mode in case of success. On successful return,
383 * the caller must drop the s_umount lock when done.
384 *
385 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386 * The reason why it's safe is that we are OK with doing trylock instead
387 * of down_read(). There's a couple of places that are OK with that, but
388 * it's very much not a general-purpose interface.
389 */
390 bool trylock_super(struct super_block *sb)
391 {
392 if (down_read_trylock(&sb->s_umount)) {
393 if (!hlist_unhashed(&sb->s_instances) &&
394 sb->s_root && (sb->s_flags & MS_BORN))
395 return true;
396 up_read(&sb->s_umount);
397 }
398
399 return false;
400 }
401
402 /**
403 * generic_shutdown_super - common helper for ->kill_sb()
404 * @sb: superblock to kill
405 *
406 * generic_shutdown_super() does all fs-independent work on superblock
407 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
408 * that need destruction out of superblock, call generic_shutdown_super()
409 * and release aforementioned objects. Note: dentries and inodes _are_
410 * taken care of and do not need specific handling.
411 *
412 * Upon calling this function, the filesystem may no longer alter or
413 * rearrange the set of dentries belonging to this super_block, nor may it
414 * change the attachments of dentries to inodes.
415 */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 const struct super_operations *sop = sb->s_op;
419
420 if (sb->s_root) {
421 shrink_dcache_for_umount(sb);
422 sync_filesystem(sb);
423 sb->s_flags &= ~MS_ACTIVE;
424
425 fsnotify_unmount_inodes(sb);
426 cgroup_writeback_umount();
427
428 evict_inodes(sb);
429
430 if (sb->s_dio_done_wq) {
431 destroy_workqueue(sb->s_dio_done_wq);
432 sb->s_dio_done_wq = NULL;
433 }
434
435 if (sop->put_super)
436 sop->put_super(sb);
437
438 if (!list_empty(&sb->s_inodes)) {
439 printk("VFS: Busy inodes after unmount of %s. "
440 "Self-destruct in 5 seconds. Have a nice day...\n",
441 sb->s_id);
442 }
443 }
444 spin_lock(&sb_lock);
445 /* should be initialized for __put_super_and_need_restart() */
446 hlist_del_init(&sb->s_instances);
447 spin_unlock(&sb_lock);
448 up_write(&sb->s_umount);
449 }
450
451 EXPORT_SYMBOL(generic_shutdown_super);
452
453 /**
454 * sget_userns - find or create a superblock
455 * @type: filesystem type superblock should belong to
456 * @test: comparison callback
457 * @set: setup callback
458 * @flags: mount flags
459 * @user_ns: User namespace for the super_block
460 * @data: argument to each of them
461 */
462 struct super_block *sget_userns(struct file_system_type *type,
463 int (*test)(struct super_block *,void *),
464 int (*set)(struct super_block *,void *),
465 int flags, struct user_namespace *user_ns,
466 void *data)
467 {
468 struct super_block *s = NULL;
469 struct super_block *old;
470 int err;
471
472 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
473 !(type->fs_flags & FS_USERNS_MOUNT) &&
474 !capable(CAP_SYS_ADMIN))
475 return ERR_PTR(-EPERM);
476 retry:
477 spin_lock(&sb_lock);
478 if (test) {
479 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
480 if (!test(old, data))
481 continue;
482 if (user_ns != old->s_user_ns) {
483 spin_unlock(&sb_lock);
484 if (s) {
485 up_write(&s->s_umount);
486 destroy_super(s);
487 }
488 return ERR_PTR(-EBUSY);
489 }
490 if (!grab_super(old))
491 goto retry;
492 if (s) {
493 up_write(&s->s_umount);
494 destroy_super(s);
495 s = NULL;
496 }
497 return old;
498 }
499 }
500 if (!s) {
501 spin_unlock(&sb_lock);
502 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
503 if (!s)
504 return ERR_PTR(-ENOMEM);
505 goto retry;
506 }
507
508 err = set(s, data);
509 if (err) {
510 spin_unlock(&sb_lock);
511 up_write(&s->s_umount);
512 destroy_super(s);
513 return ERR_PTR(err);
514 }
515 s->s_type = type;
516 strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 list_add_tail(&s->s_list, &super_blocks);
518 hlist_add_head(&s->s_instances, &type->fs_supers);
519 spin_unlock(&sb_lock);
520 get_filesystem(type);
521 register_shrinker(&s->s_shrink);
522 return s;
523 }
524
525 EXPORT_SYMBOL(sget_userns);
526
527 /**
528 * sget - find or create a superblock
529 * @type: filesystem type superblock should belong to
530 * @test: comparison callback
531 * @set: setup callback
532 * @flags: mount flags
533 * @data: argument to each of them
534 */
535 struct super_block *sget(struct file_system_type *type,
536 int (*test)(struct super_block *,void *),
537 int (*set)(struct super_block *,void *),
538 int flags,
539 void *data)
540 {
541 struct user_namespace *user_ns = current_user_ns();
542
543 /* We don't yet pass the user namespace of the parent
544 * mount through to here so always use &init_user_ns
545 * until that changes.
546 */
547 if (flags & MS_SUBMOUNT)
548 user_ns = &init_user_ns;
549
550 /* Ensure the requestor has permissions over the target filesystem */
551 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
552 return ERR_PTR(-EPERM);
553
554 return sget_userns(type, test, set, flags, user_ns, data);
555 }
556
557 EXPORT_SYMBOL(sget);
558
559 void drop_super(struct super_block *sb)
560 {
561 up_read(&sb->s_umount);
562 put_super(sb);
563 }
564
565 EXPORT_SYMBOL(drop_super);
566
567 void drop_super_exclusive(struct super_block *sb)
568 {
569 up_write(&sb->s_umount);
570 put_super(sb);
571 }
572 EXPORT_SYMBOL(drop_super_exclusive);
573
574 /**
575 * iterate_supers - call function for all active superblocks
576 * @f: function to call
577 * @arg: argument to pass to it
578 *
579 * Scans the superblock list and calls given function, passing it
580 * locked superblock and given argument.
581 */
582 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
583 {
584 struct super_block *sb, *p = NULL;
585
586 spin_lock(&sb_lock);
587 list_for_each_entry(sb, &super_blocks, s_list) {
588 if (hlist_unhashed(&sb->s_instances))
589 continue;
590 sb->s_count++;
591 spin_unlock(&sb_lock);
592
593 down_read(&sb->s_umount);
594 if (sb->s_root && (sb->s_flags & MS_BORN))
595 f(sb, arg);
596 up_read(&sb->s_umount);
597
598 spin_lock(&sb_lock);
599 if (p)
600 __put_super(p);
601 p = sb;
602 }
603 if (p)
604 __put_super(p);
605 spin_unlock(&sb_lock);
606 }
607
608 /**
609 * iterate_supers_type - call function for superblocks of given type
610 * @type: fs type
611 * @f: function to call
612 * @arg: argument to pass to it
613 *
614 * Scans the superblock list and calls given function, passing it
615 * locked superblock and given argument.
616 */
617 void iterate_supers_type(struct file_system_type *type,
618 void (*f)(struct super_block *, void *), void *arg)
619 {
620 struct super_block *sb, *p = NULL;
621
622 spin_lock(&sb_lock);
623 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
624 sb->s_count++;
625 spin_unlock(&sb_lock);
626
627 down_read(&sb->s_umount);
628 if (sb->s_root && (sb->s_flags & MS_BORN))
629 f(sb, arg);
630 up_read(&sb->s_umount);
631
632 spin_lock(&sb_lock);
633 if (p)
634 __put_super(p);
635 p = sb;
636 }
637 if (p)
638 __put_super(p);
639 spin_unlock(&sb_lock);
640 }
641
642 EXPORT_SYMBOL(iterate_supers_type);
643
644 static struct super_block *__get_super(struct block_device *bdev, bool excl)
645 {
646 struct super_block *sb;
647
648 if (!bdev)
649 return NULL;
650
651 spin_lock(&sb_lock);
652 rescan:
653 list_for_each_entry(sb, &super_blocks, s_list) {
654 if (hlist_unhashed(&sb->s_instances))
655 continue;
656 if (sb->s_bdev == bdev) {
657 sb->s_count++;
658 spin_unlock(&sb_lock);
659 if (!excl)
660 down_read(&sb->s_umount);
661 else
662 down_write(&sb->s_umount);
663 /* still alive? */
664 if (sb->s_root && (sb->s_flags & MS_BORN))
665 return sb;
666 if (!excl)
667 up_read(&sb->s_umount);
668 else
669 up_write(&sb->s_umount);
670 /* nope, got unmounted */
671 spin_lock(&sb_lock);
672 __put_super(sb);
673 goto rescan;
674 }
675 }
676 spin_unlock(&sb_lock);
677 return NULL;
678 }
679
680 /**
681 * get_super - get the superblock of a device
682 * @bdev: device to get the superblock for
683 *
684 * Scans the superblock list and finds the superblock of the file system
685 * mounted on the device given. %NULL is returned if no match is found.
686 */
687 struct super_block *get_super(struct block_device *bdev)
688 {
689 return __get_super(bdev, false);
690 }
691 EXPORT_SYMBOL(get_super);
692
693 static struct super_block *__get_super_thawed(struct block_device *bdev,
694 bool excl)
695 {
696 while (1) {
697 struct super_block *s = __get_super(bdev, excl);
698 if (!s || s->s_writers.frozen == SB_UNFROZEN)
699 return s;
700 if (!excl)
701 up_read(&s->s_umount);
702 else
703 up_write(&s->s_umount);
704 wait_event(s->s_writers.wait_unfrozen,
705 s->s_writers.frozen == SB_UNFROZEN);
706 put_super(s);
707 }
708 }
709
710 /**
711 * get_super_thawed - get thawed superblock of a device
712 * @bdev: device to get the superblock for
713 *
714 * Scans the superblock list and finds the superblock of the file system
715 * mounted on the device. The superblock is returned once it is thawed
716 * (or immediately if it was not frozen). %NULL is returned if no match
717 * is found.
718 */
719 struct super_block *get_super_thawed(struct block_device *bdev)
720 {
721 return __get_super_thawed(bdev, false);
722 }
723 EXPORT_SYMBOL(get_super_thawed);
724
725 /**
726 * get_super_exclusive_thawed - get thawed superblock of a device
727 * @bdev: device to get the superblock for
728 *
729 * Scans the superblock list and finds the superblock of the file system
730 * mounted on the device. The superblock is returned once it is thawed
731 * (or immediately if it was not frozen) and s_umount semaphore is held
732 * in exclusive mode. %NULL is returned if no match is found.
733 */
734 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
735 {
736 return __get_super_thawed(bdev, true);
737 }
738 EXPORT_SYMBOL(get_super_exclusive_thawed);
739
740 /**
741 * get_active_super - get an active reference to the superblock of a device
742 * @bdev: device to get the superblock for
743 *
744 * Scans the superblock list and finds the superblock of the file system
745 * mounted on the device given. Returns the superblock with an active
746 * reference or %NULL if none was found.
747 */
748 struct super_block *get_active_super(struct block_device *bdev)
749 {
750 struct super_block *sb;
751
752 if (!bdev)
753 return NULL;
754
755 restart:
756 spin_lock(&sb_lock);
757 list_for_each_entry(sb, &super_blocks, s_list) {
758 if (hlist_unhashed(&sb->s_instances))
759 continue;
760 if (sb->s_bdev == bdev) {
761 if (!grab_super(sb))
762 goto restart;
763 up_write(&sb->s_umount);
764 return sb;
765 }
766 }
767 spin_unlock(&sb_lock);
768 return NULL;
769 }
770
771 struct super_block *user_get_super(dev_t dev)
772 {
773 struct super_block *sb;
774
775 spin_lock(&sb_lock);
776 rescan:
777 list_for_each_entry(sb, &super_blocks, s_list) {
778 if (hlist_unhashed(&sb->s_instances))
779 continue;
780 if (sb->s_dev == dev) {
781 sb->s_count++;
782 spin_unlock(&sb_lock);
783 down_read(&sb->s_umount);
784 /* still alive? */
785 if (sb->s_root && (sb->s_flags & MS_BORN))
786 return sb;
787 up_read(&sb->s_umount);
788 /* nope, got unmounted */
789 spin_lock(&sb_lock);
790 __put_super(sb);
791 goto rescan;
792 }
793 }
794 spin_unlock(&sb_lock);
795 return NULL;
796 }
797
798 /**
799 * do_remount_sb - asks filesystem to change mount options.
800 * @sb: superblock in question
801 * @flags: numeric part of options
802 * @data: the rest of options
803 * @force: whether or not to force the change
804 *
805 * Alters the mount options of a mounted file system.
806 */
807 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
808 {
809 int retval;
810 int remount_ro;
811
812 if (sb->s_writers.frozen != SB_UNFROZEN)
813 return -EBUSY;
814
815 #ifdef CONFIG_BLOCK
816 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
817 return -EACCES;
818 #endif
819
820 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
821
822 if (remount_ro) {
823 if (!hlist_empty(&sb->s_pins)) {
824 up_write(&sb->s_umount);
825 group_pin_kill(&sb->s_pins);
826 down_write(&sb->s_umount);
827 if (!sb->s_root)
828 return 0;
829 if (sb->s_writers.frozen != SB_UNFROZEN)
830 return -EBUSY;
831 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
832 }
833 }
834 shrink_dcache_sb(sb);
835
836 /* If we are remounting RDONLY and current sb is read/write,
837 make sure there are no rw files opened */
838 if (remount_ro) {
839 if (force) {
840 sb->s_readonly_remount = 1;
841 smp_wmb();
842 } else {
843 retval = sb_prepare_remount_readonly(sb);
844 if (retval)
845 return retval;
846 }
847 }
848
849 if (sb->s_op->remount_fs) {
850 retval = sb->s_op->remount_fs(sb, &flags, data);
851 if (retval) {
852 if (!force)
853 goto cancel_readonly;
854 /* If forced remount, go ahead despite any errors */
855 WARN(1, "forced remount of a %s fs returned %i\n",
856 sb->s_type->name, retval);
857 }
858 }
859 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
860 /* Needs to be ordered wrt mnt_is_readonly() */
861 smp_wmb();
862 sb->s_readonly_remount = 0;
863
864 /*
865 * Some filesystems modify their metadata via some other path than the
866 * bdev buffer cache (eg. use a private mapping, or directories in
867 * pagecache, etc). Also file data modifications go via their own
868 * mappings. So If we try to mount readonly then copy the filesystem
869 * from bdev, we could get stale data, so invalidate it to give a best
870 * effort at coherency.
871 */
872 if (remount_ro && sb->s_bdev)
873 invalidate_bdev(sb->s_bdev);
874 return 0;
875
876 cancel_readonly:
877 sb->s_readonly_remount = 0;
878 return retval;
879 }
880
881 static void do_emergency_remount(struct work_struct *work)
882 {
883 struct super_block *sb, *p = NULL;
884
885 spin_lock(&sb_lock);
886 list_for_each_entry(sb, &super_blocks, s_list) {
887 if (hlist_unhashed(&sb->s_instances))
888 continue;
889 sb->s_count++;
890 spin_unlock(&sb_lock);
891 down_write(&sb->s_umount);
892 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
893 !(sb->s_flags & MS_RDONLY)) {
894 /*
895 * What lock protects sb->s_flags??
896 */
897 do_remount_sb(sb, MS_RDONLY, NULL, 1);
898 }
899 up_write(&sb->s_umount);
900 spin_lock(&sb_lock);
901 if (p)
902 __put_super(p);
903 p = sb;
904 }
905 if (p)
906 __put_super(p);
907 spin_unlock(&sb_lock);
908 kfree(work);
909 printk("Emergency Remount complete\n");
910 }
911
912 void emergency_remount(void)
913 {
914 struct work_struct *work;
915
916 work = kmalloc(sizeof(*work), GFP_ATOMIC);
917 if (work) {
918 INIT_WORK(work, do_emergency_remount);
919 schedule_work(work);
920 }
921 }
922
923 /*
924 * Unnamed block devices are dummy devices used by virtual
925 * filesystems which don't use real block-devices. -- jrs
926 */
927
928 static DEFINE_IDA(unnamed_dev_ida);
929 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
930 /* Many userspace utilities consider an FSID of 0 invalid.
931 * Always return at least 1 from get_anon_bdev.
932 */
933 static int unnamed_dev_start = 1;
934
935 int get_anon_bdev(dev_t *p)
936 {
937 int dev;
938 int error;
939
940 retry:
941 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
942 return -ENOMEM;
943 spin_lock(&unnamed_dev_lock);
944 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
945 if (!error)
946 unnamed_dev_start = dev + 1;
947 spin_unlock(&unnamed_dev_lock);
948 if (error == -EAGAIN)
949 /* We raced and lost with another CPU. */
950 goto retry;
951 else if (error)
952 return -EAGAIN;
953
954 if (dev >= (1 << MINORBITS)) {
955 spin_lock(&unnamed_dev_lock);
956 ida_remove(&unnamed_dev_ida, dev);
957 if (unnamed_dev_start > dev)
958 unnamed_dev_start = dev;
959 spin_unlock(&unnamed_dev_lock);
960 return -EMFILE;
961 }
962 *p = MKDEV(0, dev & MINORMASK);
963 return 0;
964 }
965 EXPORT_SYMBOL(get_anon_bdev);
966
967 void free_anon_bdev(dev_t dev)
968 {
969 int slot = MINOR(dev);
970 spin_lock(&unnamed_dev_lock);
971 ida_remove(&unnamed_dev_ida, slot);
972 if (slot < unnamed_dev_start)
973 unnamed_dev_start = slot;
974 spin_unlock(&unnamed_dev_lock);
975 }
976 EXPORT_SYMBOL(free_anon_bdev);
977
978 int set_anon_super(struct super_block *s, void *data)
979 {
980 return get_anon_bdev(&s->s_dev);
981 }
982
983 EXPORT_SYMBOL(set_anon_super);
984
985 void kill_anon_super(struct super_block *sb)
986 {
987 dev_t dev = sb->s_dev;
988 generic_shutdown_super(sb);
989 free_anon_bdev(dev);
990 }
991
992 EXPORT_SYMBOL(kill_anon_super);
993
994 void kill_litter_super(struct super_block *sb)
995 {
996 if (sb->s_root)
997 d_genocide(sb->s_root);
998 kill_anon_super(sb);
999 }
1000
1001 EXPORT_SYMBOL(kill_litter_super);
1002
1003 static int ns_test_super(struct super_block *sb, void *data)
1004 {
1005 return sb->s_fs_info == data;
1006 }
1007
1008 static int ns_set_super(struct super_block *sb, void *data)
1009 {
1010 sb->s_fs_info = data;
1011 return set_anon_super(sb, NULL);
1012 }
1013
1014 struct dentry *mount_ns(struct file_system_type *fs_type,
1015 int flags, void *data, void *ns, struct user_namespace *user_ns,
1016 int (*fill_super)(struct super_block *, void *, int))
1017 {
1018 struct super_block *sb;
1019
1020 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1021 * over the namespace.
1022 */
1023 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1024 return ERR_PTR(-EPERM);
1025
1026 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1027 user_ns, ns);
1028 if (IS_ERR(sb))
1029 return ERR_CAST(sb);
1030
1031 if (!sb->s_root) {
1032 int err;
1033 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1034 if (err) {
1035 deactivate_locked_super(sb);
1036 return ERR_PTR(err);
1037 }
1038
1039 sb->s_flags |= MS_ACTIVE;
1040 }
1041
1042 return dget(sb->s_root);
1043 }
1044
1045 EXPORT_SYMBOL(mount_ns);
1046
1047 #ifdef CONFIG_BLOCK
1048 static int set_bdev_super(struct super_block *s, void *data)
1049 {
1050 s->s_bdev = data;
1051 s->s_dev = s->s_bdev->bd_dev;
1052
1053 /*
1054 * We set the bdi here to the queue backing, file systems can
1055 * overwrite this in ->fill_super()
1056 */
1057 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1058 return 0;
1059 }
1060
1061 static int test_bdev_super(struct super_block *s, void *data)
1062 {
1063 return (void *)s->s_bdev == data;
1064 }
1065
1066 struct dentry *mount_bdev(struct file_system_type *fs_type,
1067 int flags, const char *dev_name, void *data,
1068 int (*fill_super)(struct super_block *, void *, int))
1069 {
1070 struct block_device *bdev;
1071 struct super_block *s;
1072 fmode_t mode = FMODE_READ | FMODE_EXCL;
1073 int error = 0;
1074
1075 if (!(flags & MS_RDONLY))
1076 mode |= FMODE_WRITE;
1077
1078 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1079 if (IS_ERR(bdev))
1080 return ERR_CAST(bdev);
1081
1082 if (current_user_ns() != &init_user_ns) {
1083 /*
1084 * For userns mounts, disallow mounting if bdev is open for
1085 * writing
1086 */
1087 if (!atomic_dec_unless_positive(&bdev->bd_inode->i_writecount)) {
1088 error = -EBUSY;
1089 goto error_bdev;
1090 }
1091 if (bdev->bd_contains != bdev &&
1092 !atomic_dec_unless_positive(&bdev->bd_contains->bd_inode->i_writecount)) {
1093 atomic_inc(&bdev->bd_inode->i_writecount);
1094 error = -EBUSY;
1095 goto error_bdev;
1096 }
1097 }
1098
1099 /*
1100 * once the super is inserted into the list by sget, s_umount
1101 * will protect the lockfs code from trying to start a snapshot
1102 * while we are mounting
1103 */
1104 mutex_lock(&bdev->bd_fsfreeze_mutex);
1105 if (bdev->bd_fsfreeze_count > 0) {
1106 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1107 error = -EBUSY;
1108 goto error_inc;
1109 }
1110 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1111 bdev);
1112 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1113 if (IS_ERR(s))
1114 goto error_s;
1115
1116 if (s->s_root) {
1117 if ((flags ^ s->s_flags) & MS_RDONLY) {
1118 deactivate_locked_super(s);
1119 error = -EBUSY;
1120 goto error_inc;
1121 }
1122
1123 /*
1124 * s_umount nests inside bd_mutex during
1125 * __invalidate_device(). blkdev_put() acquires
1126 * bd_mutex and can't be called under s_umount. Drop
1127 * s_umount temporarily. This is safe as we're
1128 * holding an active reference.
1129 */
1130 up_write(&s->s_umount);
1131 blkdev_put(bdev, mode);
1132 down_write(&s->s_umount);
1133 } else {
1134 s->s_mode = mode;
1135 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1136 sb_set_blocksize(s, block_size(bdev));
1137 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1138 if (error) {
1139 deactivate_locked_super(s);
1140 goto error;
1141 }
1142
1143 s->s_flags |= MS_ACTIVE;
1144 bdev->bd_super = s;
1145 }
1146
1147 return dget(s->s_root);
1148
1149 error_s:
1150 error = PTR_ERR(s);
1151 error_inc:
1152 if (current_user_ns() != &init_user_ns) {
1153 atomic_inc(&bdev->bd_inode->i_writecount);
1154 if (bdev->bd_contains != bdev)
1155 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1156 }
1157 error_bdev:
1158 blkdev_put(bdev, mode);
1159 error:
1160 return ERR_PTR(error);
1161 }
1162 EXPORT_SYMBOL(mount_bdev);
1163
1164 void kill_block_super(struct super_block *sb)
1165 {
1166 struct block_device *bdev = sb->s_bdev;
1167 fmode_t mode = sb->s_mode;
1168
1169 bdev->bd_super = NULL;
1170 generic_shutdown_super(sb);
1171 sync_blockdev(bdev);
1172 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1173 if (sb->s_user_ns != &init_user_ns) {
1174 atomic_inc(&bdev->bd_inode->i_writecount);
1175 if (bdev->bd_contains != bdev)
1176 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1177 }
1178 blkdev_put(bdev, mode | FMODE_EXCL);
1179 }
1180
1181 EXPORT_SYMBOL(kill_block_super);
1182 #endif
1183
1184 struct dentry *mount_nodev(struct file_system_type *fs_type,
1185 int flags, void *data,
1186 int (*fill_super)(struct super_block *, void *, int))
1187 {
1188 int error;
1189 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1190
1191 if (IS_ERR(s))
1192 return ERR_CAST(s);
1193
1194 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1195 if (error) {
1196 deactivate_locked_super(s);
1197 return ERR_PTR(error);
1198 }
1199 s->s_flags |= MS_ACTIVE;
1200 return dget(s->s_root);
1201 }
1202 EXPORT_SYMBOL(mount_nodev);
1203
1204 static int compare_single(struct super_block *s, void *p)
1205 {
1206 return 1;
1207 }
1208
1209 struct dentry *mount_single(struct file_system_type *fs_type,
1210 int flags, void *data,
1211 int (*fill_super)(struct super_block *, void *, int))
1212 {
1213 struct super_block *s;
1214 int error;
1215
1216 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1217 if (IS_ERR(s))
1218 return ERR_CAST(s);
1219 if (!s->s_root) {
1220 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1221 if (error) {
1222 deactivate_locked_super(s);
1223 return ERR_PTR(error);
1224 }
1225 s->s_flags |= MS_ACTIVE;
1226 } else {
1227 do_remount_sb(s, flags, data, 0);
1228 }
1229 return dget(s->s_root);
1230 }
1231 EXPORT_SYMBOL(mount_single);
1232
1233 struct dentry *
1234 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1235 {
1236 struct dentry *root;
1237 struct super_block *sb;
1238 char *secdata = NULL;
1239 int error = -ENOMEM;
1240
1241 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1242 secdata = alloc_secdata();
1243 if (!secdata)
1244 goto out;
1245
1246 error = security_sb_copy_data(data, secdata);
1247 if (error)
1248 goto out_free_secdata;
1249 }
1250
1251 root = type->mount(type, flags, name, data);
1252 if (IS_ERR(root)) {
1253 error = PTR_ERR(root);
1254 goto out_free_secdata;
1255 }
1256 sb = root->d_sb;
1257 BUG_ON(!sb);
1258 WARN_ON(!sb->s_bdi);
1259 sb->s_flags |= MS_BORN;
1260
1261 error = security_sb_kern_mount(sb, flags, secdata);
1262 if (error)
1263 goto out_sb;
1264
1265 /*
1266 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1267 * but s_maxbytes was an unsigned long long for many releases. Throw
1268 * this warning for a little while to try and catch filesystems that
1269 * violate this rule.
1270 */
1271 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1272 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1273
1274 up_write(&sb->s_umount);
1275 free_secdata(secdata);
1276 return root;
1277 out_sb:
1278 dput(root);
1279 deactivate_locked_super(sb);
1280 out_free_secdata:
1281 free_secdata(secdata);
1282 out:
1283 return ERR_PTR(error);
1284 }
1285
1286 /*
1287 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1288 * instead.
1289 */
1290 void __sb_end_write(struct super_block *sb, int level)
1291 {
1292 percpu_up_read(sb->s_writers.rw_sem + level-1);
1293 }
1294 EXPORT_SYMBOL(__sb_end_write);
1295
1296 /*
1297 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1298 * instead.
1299 */
1300 int __sb_start_write(struct super_block *sb, int level, bool wait)
1301 {
1302 bool force_trylock = false;
1303 int ret = 1;
1304
1305 #ifdef CONFIG_LOCKDEP
1306 /*
1307 * We want lockdep to tell us about possible deadlocks with freezing
1308 * but it's it bit tricky to properly instrument it. Getting a freeze
1309 * protection works as getting a read lock but there are subtle
1310 * problems. XFS for example gets freeze protection on internal level
1311 * twice in some cases, which is OK only because we already hold a
1312 * freeze protection also on higher level. Due to these cases we have
1313 * to use wait == F (trylock mode) which must not fail.
1314 */
1315 if (wait) {
1316 int i;
1317
1318 for (i = 0; i < level - 1; i++)
1319 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1320 force_trylock = true;
1321 break;
1322 }
1323 }
1324 #endif
1325 if (wait && !force_trylock)
1326 percpu_down_read(sb->s_writers.rw_sem + level-1);
1327 else
1328 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1329
1330 WARN_ON(force_trylock && !ret);
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(__sb_start_write);
1334
1335 /**
1336 * sb_wait_write - wait until all writers to given file system finish
1337 * @sb: the super for which we wait
1338 * @level: type of writers we wait for (normal vs page fault)
1339 *
1340 * This function waits until there are no writers of given type to given file
1341 * system.
1342 */
1343 static void sb_wait_write(struct super_block *sb, int level)
1344 {
1345 percpu_down_write(sb->s_writers.rw_sem + level-1);
1346 }
1347
1348 /*
1349 * We are going to return to userspace and forget about these locks, the
1350 * ownership goes to the caller of thaw_super() which does unlock().
1351 */
1352 static void lockdep_sb_freeze_release(struct super_block *sb)
1353 {
1354 int level;
1355
1356 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1357 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1358 }
1359
1360 /*
1361 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1362 */
1363 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1364 {
1365 int level;
1366
1367 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1368 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1369 }
1370
1371 static void sb_freeze_unlock(struct super_block *sb)
1372 {
1373 int level;
1374
1375 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1376 percpu_up_write(sb->s_writers.rw_sem + level);
1377 }
1378
1379 /**
1380 * freeze_super - lock the filesystem and force it into a consistent state
1381 * @sb: the super to lock
1382 *
1383 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1384 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1385 * -EBUSY.
1386 *
1387 * During this function, sb->s_writers.frozen goes through these values:
1388 *
1389 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1390 *
1391 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1392 * writes should be blocked, though page faults are still allowed. We wait for
1393 * all writes to complete and then proceed to the next stage.
1394 *
1395 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1396 * but internal fs threads can still modify the filesystem (although they
1397 * should not dirty new pages or inodes), writeback can run etc. After waiting
1398 * for all running page faults we sync the filesystem which will clean all
1399 * dirty pages and inodes (no new dirty pages or inodes can be created when
1400 * sync is running).
1401 *
1402 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1403 * modification are blocked (e.g. XFS preallocation truncation on inode
1404 * reclaim). This is usually implemented by blocking new transactions for
1405 * filesystems that have them and need this additional guard. After all
1406 * internal writers are finished we call ->freeze_fs() to finish filesystem
1407 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1408 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1409 *
1410 * sb->s_writers.frozen is protected by sb->s_umount.
1411 */
1412 int freeze_super(struct super_block *sb)
1413 {
1414 int ret;
1415
1416 atomic_inc(&sb->s_active);
1417 down_write(&sb->s_umount);
1418 if (sb->s_writers.frozen != SB_UNFROZEN) {
1419 deactivate_locked_super(sb);
1420 return -EBUSY;
1421 }
1422
1423 if (!(sb->s_flags & MS_BORN)) {
1424 up_write(&sb->s_umount);
1425 return 0; /* sic - it's "nothing to do" */
1426 }
1427
1428 if (sb->s_flags & MS_RDONLY) {
1429 /* Nothing to do really... */
1430 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1431 up_write(&sb->s_umount);
1432 return 0;
1433 }
1434
1435 sb->s_writers.frozen = SB_FREEZE_WRITE;
1436 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1437 up_write(&sb->s_umount);
1438 sb_wait_write(sb, SB_FREEZE_WRITE);
1439 down_write(&sb->s_umount);
1440
1441 /* Now we go and block page faults... */
1442 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1443 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1444
1445 /* All writers are done so after syncing there won't be dirty data */
1446 sync_filesystem(sb);
1447
1448 /* Now wait for internal filesystem counter */
1449 sb->s_writers.frozen = SB_FREEZE_FS;
1450 sb_wait_write(sb, SB_FREEZE_FS);
1451
1452 if (sb->s_op->freeze_fs) {
1453 ret = sb->s_op->freeze_fs(sb);
1454 if (ret) {
1455 printk(KERN_ERR
1456 "VFS:Filesystem freeze failed\n");
1457 sb->s_writers.frozen = SB_UNFROZEN;
1458 sb_freeze_unlock(sb);
1459 wake_up(&sb->s_writers.wait_unfrozen);
1460 deactivate_locked_super(sb);
1461 return ret;
1462 }
1463 }
1464 /*
1465 * For debugging purposes so that fs can warn if it sees write activity
1466 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1467 */
1468 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1469 lockdep_sb_freeze_release(sb);
1470 up_write(&sb->s_umount);
1471 return 0;
1472 }
1473 EXPORT_SYMBOL(freeze_super);
1474
1475 /**
1476 * thaw_super -- unlock filesystem
1477 * @sb: the super to thaw
1478 *
1479 * Unlocks the filesystem and marks it writeable again after freeze_super().
1480 */
1481 int thaw_super(struct super_block *sb)
1482 {
1483 int error;
1484
1485 down_write(&sb->s_umount);
1486 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1487 up_write(&sb->s_umount);
1488 return -EINVAL;
1489 }
1490
1491 if (sb->s_flags & MS_RDONLY) {
1492 sb->s_writers.frozen = SB_UNFROZEN;
1493 goto out;
1494 }
1495
1496 lockdep_sb_freeze_acquire(sb);
1497
1498 if (sb->s_op->unfreeze_fs) {
1499 error = sb->s_op->unfreeze_fs(sb);
1500 if (error) {
1501 printk(KERN_ERR
1502 "VFS:Filesystem thaw failed\n");
1503 lockdep_sb_freeze_release(sb);
1504 up_write(&sb->s_umount);
1505 return error;
1506 }
1507 }
1508
1509 sb->s_writers.frozen = SB_UNFROZEN;
1510 sb_freeze_unlock(sb);
1511 out:
1512 wake_up(&sb->s_writers.wait_unfrozen);
1513 deactivate_locked_super(sb);
1514 return 0;
1515 }
1516 EXPORT_SYMBOL(thaw_super);