]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/super.c
Merge branches 'for-5.1/upstream-fixes' and 'for-5.2/core' into for-linus
[mirror_ubuntu-focal-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <uapi/linux/mount.h>
39 #include "internal.h"
40
41 static int thaw_super_locked(struct super_block *sb);
42
43 static LIST_HEAD(super_blocks);
44 static DEFINE_SPINLOCK(sb_lock);
45
46 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
47 "sb_writers",
48 "sb_pagefaults",
49 "sb_internal",
50 };
51
52 /*
53 * One thing we have to be careful of with a per-sb shrinker is that we don't
54 * drop the last active reference to the superblock from within the shrinker.
55 * If that happens we could trigger unregistering the shrinker from within the
56 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
57 * take a passive reference to the superblock to avoid this from occurring.
58 */
59 static unsigned long super_cache_scan(struct shrinker *shrink,
60 struct shrink_control *sc)
61 {
62 struct super_block *sb;
63 long fs_objects = 0;
64 long total_objects;
65 long freed = 0;
66 long dentries;
67 long inodes;
68
69 sb = container_of(shrink, struct super_block, s_shrink);
70
71 /*
72 * Deadlock avoidance. We may hold various FS locks, and we don't want
73 * to recurse into the FS that called us in clear_inode() and friends..
74 */
75 if (!(sc->gfp_mask & __GFP_FS))
76 return SHRINK_STOP;
77
78 if (!trylock_super(sb))
79 return SHRINK_STOP;
80
81 if (sb->s_op->nr_cached_objects)
82 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
83
84 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
85 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
86 total_objects = dentries + inodes + fs_objects + 1;
87 if (!total_objects)
88 total_objects = 1;
89
90 /* proportion the scan between the caches */
91 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
92 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
93 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
94
95 /*
96 * prune the dcache first as the icache is pinned by it, then
97 * prune the icache, followed by the filesystem specific caches
98 *
99 * Ensure that we always scan at least one object - memcg kmem
100 * accounting uses this to fully empty the caches.
101 */
102 sc->nr_to_scan = dentries + 1;
103 freed = prune_dcache_sb(sb, sc);
104 sc->nr_to_scan = inodes + 1;
105 freed += prune_icache_sb(sb, sc);
106
107 if (fs_objects) {
108 sc->nr_to_scan = fs_objects + 1;
109 freed += sb->s_op->free_cached_objects(sb, sc);
110 }
111
112 up_read(&sb->s_umount);
113 return freed;
114 }
115
116 static unsigned long super_cache_count(struct shrinker *shrink,
117 struct shrink_control *sc)
118 {
119 struct super_block *sb;
120 long total_objects = 0;
121
122 sb = container_of(shrink, struct super_block, s_shrink);
123
124 /*
125 * We don't call trylock_super() here as it is a scalability bottleneck,
126 * so we're exposed to partial setup state. The shrinker rwsem does not
127 * protect filesystem operations backing list_lru_shrink_count() or
128 * s_op->nr_cached_objects(). Counts can change between
129 * super_cache_count and super_cache_scan, so we really don't need locks
130 * here.
131 *
132 * However, if we are currently mounting the superblock, the underlying
133 * filesystem might be in a state of partial construction and hence it
134 * is dangerous to access it. trylock_super() uses a SB_BORN check to
135 * avoid this situation, so do the same here. The memory barrier is
136 * matched with the one in mount_fs() as we don't hold locks here.
137 */
138 if (!(sb->s_flags & SB_BORN))
139 return 0;
140 smp_rmb();
141
142 if (sb->s_op && sb->s_op->nr_cached_objects)
143 total_objects = sb->s_op->nr_cached_objects(sb, sc);
144
145 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
146 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
147
148 if (!total_objects)
149 return SHRINK_EMPTY;
150
151 total_objects = vfs_pressure_ratio(total_objects);
152 return total_objects;
153 }
154
155 static void destroy_super_work(struct work_struct *work)
156 {
157 struct super_block *s = container_of(work, struct super_block,
158 destroy_work);
159 int i;
160
161 for (i = 0; i < SB_FREEZE_LEVELS; i++)
162 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
163 kfree(s);
164 }
165
166 static void destroy_super_rcu(struct rcu_head *head)
167 {
168 struct super_block *s = container_of(head, struct super_block, rcu);
169 INIT_WORK(&s->destroy_work, destroy_super_work);
170 schedule_work(&s->destroy_work);
171 }
172
173 /* Free a superblock that has never been seen by anyone */
174 static void destroy_unused_super(struct super_block *s)
175 {
176 if (!s)
177 return;
178 up_write(&s->s_umount);
179 list_lru_destroy(&s->s_dentry_lru);
180 list_lru_destroy(&s->s_inode_lru);
181 security_sb_free(s);
182 put_user_ns(s->s_user_ns);
183 kfree(s->s_subtype);
184 free_prealloced_shrinker(&s->s_shrink);
185 /* no delays needed */
186 destroy_super_work(&s->destroy_work);
187 }
188
189 /**
190 * alloc_super - create new superblock
191 * @type: filesystem type superblock should belong to
192 * @flags: the mount flags
193 * @user_ns: User namespace for the super_block
194 *
195 * Allocates and initializes a new &struct super_block. alloc_super()
196 * returns a pointer new superblock or %NULL if allocation had failed.
197 */
198 static struct super_block *alloc_super(struct file_system_type *type, int flags,
199 struct user_namespace *user_ns)
200 {
201 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
202 static const struct super_operations default_op;
203 int i;
204
205 if (!s)
206 return NULL;
207
208 INIT_LIST_HEAD(&s->s_mounts);
209 s->s_user_ns = get_user_ns(user_ns);
210 init_rwsem(&s->s_umount);
211 lockdep_set_class(&s->s_umount, &type->s_umount_key);
212 /*
213 * sget() can have s_umount recursion.
214 *
215 * When it cannot find a suitable sb, it allocates a new
216 * one (this one), and tries again to find a suitable old
217 * one.
218 *
219 * In case that succeeds, it will acquire the s_umount
220 * lock of the old one. Since these are clearly distrinct
221 * locks, and this object isn't exposed yet, there's no
222 * risk of deadlocks.
223 *
224 * Annotate this by putting this lock in a different
225 * subclass.
226 */
227 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
228
229 if (security_sb_alloc(s))
230 goto fail;
231
232 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
233 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
234 sb_writers_name[i],
235 &type->s_writers_key[i]))
236 goto fail;
237 }
238 init_waitqueue_head(&s->s_writers.wait_unfrozen);
239 s->s_bdi = &noop_backing_dev_info;
240 s->s_flags = flags;
241 if (s->s_user_ns != &init_user_ns)
242 s->s_iflags |= SB_I_NODEV;
243 INIT_HLIST_NODE(&s->s_instances);
244 INIT_HLIST_BL_HEAD(&s->s_roots);
245 mutex_init(&s->s_sync_lock);
246 INIT_LIST_HEAD(&s->s_inodes);
247 spin_lock_init(&s->s_inode_list_lock);
248 INIT_LIST_HEAD(&s->s_inodes_wb);
249 spin_lock_init(&s->s_inode_wblist_lock);
250
251 s->s_count = 1;
252 atomic_set(&s->s_active, 1);
253 mutex_init(&s->s_vfs_rename_mutex);
254 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
255 init_rwsem(&s->s_dquot.dqio_sem);
256 s->s_maxbytes = MAX_NON_LFS;
257 s->s_op = &default_op;
258 s->s_time_gran = 1000000000;
259 s->cleancache_poolid = CLEANCACHE_NO_POOL;
260
261 s->s_shrink.seeks = DEFAULT_SEEKS;
262 s->s_shrink.scan_objects = super_cache_scan;
263 s->s_shrink.count_objects = super_cache_count;
264 s->s_shrink.batch = 1024;
265 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
266 if (prealloc_shrinker(&s->s_shrink))
267 goto fail;
268 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
269 goto fail;
270 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
271 goto fail;
272 return s;
273
274 fail:
275 destroy_unused_super(s);
276 return NULL;
277 }
278
279 /* Superblock refcounting */
280
281 /*
282 * Drop a superblock's refcount. The caller must hold sb_lock.
283 */
284 static void __put_super(struct super_block *s)
285 {
286 if (!--s->s_count) {
287 list_del_init(&s->s_list);
288 WARN_ON(s->s_dentry_lru.node);
289 WARN_ON(s->s_inode_lru.node);
290 WARN_ON(!list_empty(&s->s_mounts));
291 security_sb_free(s);
292 put_user_ns(s->s_user_ns);
293 kfree(s->s_subtype);
294 call_rcu(&s->rcu, destroy_super_rcu);
295 }
296 }
297
298 /**
299 * put_super - drop a temporary reference to superblock
300 * @sb: superblock in question
301 *
302 * Drops a temporary reference, frees superblock if there's no
303 * references left.
304 */
305 static void put_super(struct super_block *sb)
306 {
307 spin_lock(&sb_lock);
308 __put_super(sb);
309 spin_unlock(&sb_lock);
310 }
311
312
313 /**
314 * deactivate_locked_super - drop an active reference to superblock
315 * @s: superblock to deactivate
316 *
317 * Drops an active reference to superblock, converting it into a temporary
318 * one if there is no other active references left. In that case we
319 * tell fs driver to shut it down and drop the temporary reference we
320 * had just acquired.
321 *
322 * Caller holds exclusive lock on superblock; that lock is released.
323 */
324 void deactivate_locked_super(struct super_block *s)
325 {
326 struct file_system_type *fs = s->s_type;
327 if (atomic_dec_and_test(&s->s_active)) {
328 cleancache_invalidate_fs(s);
329 unregister_shrinker(&s->s_shrink);
330 fs->kill_sb(s);
331
332 /*
333 * Since list_lru_destroy() may sleep, we cannot call it from
334 * put_super(), where we hold the sb_lock. Therefore we destroy
335 * the lru lists right now.
336 */
337 list_lru_destroy(&s->s_dentry_lru);
338 list_lru_destroy(&s->s_inode_lru);
339
340 put_filesystem(fs);
341 put_super(s);
342 } else {
343 up_write(&s->s_umount);
344 }
345 }
346
347 EXPORT_SYMBOL(deactivate_locked_super);
348
349 /**
350 * deactivate_super - drop an active reference to superblock
351 * @s: superblock to deactivate
352 *
353 * Variant of deactivate_locked_super(), except that superblock is *not*
354 * locked by caller. If we are going to drop the final active reference,
355 * lock will be acquired prior to that.
356 */
357 void deactivate_super(struct super_block *s)
358 {
359 if (!atomic_add_unless(&s->s_active, -1, 1)) {
360 down_write(&s->s_umount);
361 deactivate_locked_super(s);
362 }
363 }
364
365 EXPORT_SYMBOL(deactivate_super);
366
367 /**
368 * grab_super - acquire an active reference
369 * @s: reference we are trying to make active
370 *
371 * Tries to acquire an active reference. grab_super() is used when we
372 * had just found a superblock in super_blocks or fs_type->fs_supers
373 * and want to turn it into a full-blown active reference. grab_super()
374 * is called with sb_lock held and drops it. Returns 1 in case of
375 * success, 0 if we had failed (superblock contents was already dead or
376 * dying when grab_super() had been called). Note that this is only
377 * called for superblocks not in rundown mode (== ones still on ->fs_supers
378 * of their type), so increment of ->s_count is OK here.
379 */
380 static int grab_super(struct super_block *s) __releases(sb_lock)
381 {
382 s->s_count++;
383 spin_unlock(&sb_lock);
384 down_write(&s->s_umount);
385 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
386 put_super(s);
387 return 1;
388 }
389 up_write(&s->s_umount);
390 put_super(s);
391 return 0;
392 }
393
394 /*
395 * trylock_super - try to grab ->s_umount shared
396 * @sb: reference we are trying to grab
397 *
398 * Try to prevent fs shutdown. This is used in places where we
399 * cannot take an active reference but we need to ensure that the
400 * filesystem is not shut down while we are working on it. It returns
401 * false if we cannot acquire s_umount or if we lose the race and
402 * filesystem already got into shutdown, and returns true with the s_umount
403 * lock held in read mode in case of success. On successful return,
404 * the caller must drop the s_umount lock when done.
405 *
406 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
407 * The reason why it's safe is that we are OK with doing trylock instead
408 * of down_read(). There's a couple of places that are OK with that, but
409 * it's very much not a general-purpose interface.
410 */
411 bool trylock_super(struct super_block *sb)
412 {
413 if (down_read_trylock(&sb->s_umount)) {
414 if (!hlist_unhashed(&sb->s_instances) &&
415 sb->s_root && (sb->s_flags & SB_BORN))
416 return true;
417 up_read(&sb->s_umount);
418 }
419
420 return false;
421 }
422
423 /**
424 * generic_shutdown_super - common helper for ->kill_sb()
425 * @sb: superblock to kill
426 *
427 * generic_shutdown_super() does all fs-independent work on superblock
428 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
429 * that need destruction out of superblock, call generic_shutdown_super()
430 * and release aforementioned objects. Note: dentries and inodes _are_
431 * taken care of and do not need specific handling.
432 *
433 * Upon calling this function, the filesystem may no longer alter or
434 * rearrange the set of dentries belonging to this super_block, nor may it
435 * change the attachments of dentries to inodes.
436 */
437 void generic_shutdown_super(struct super_block *sb)
438 {
439 const struct super_operations *sop = sb->s_op;
440
441 if (sb->s_root) {
442 shrink_dcache_for_umount(sb);
443 sync_filesystem(sb);
444 sb->s_flags &= ~SB_ACTIVE;
445
446 fsnotify_sb_delete(sb);
447 cgroup_writeback_umount();
448
449 evict_inodes(sb);
450
451 if (sb->s_dio_done_wq) {
452 destroy_workqueue(sb->s_dio_done_wq);
453 sb->s_dio_done_wq = NULL;
454 }
455
456 if (sop->put_super)
457 sop->put_super(sb);
458
459 if (!list_empty(&sb->s_inodes)) {
460 printk("VFS: Busy inodes after unmount of %s. "
461 "Self-destruct in 5 seconds. Have a nice day...\n",
462 sb->s_id);
463 }
464 }
465 spin_lock(&sb_lock);
466 /* should be initialized for __put_super_and_need_restart() */
467 hlist_del_init(&sb->s_instances);
468 spin_unlock(&sb_lock);
469 up_write(&sb->s_umount);
470 if (sb->s_bdi != &noop_backing_dev_info) {
471 bdi_put(sb->s_bdi);
472 sb->s_bdi = &noop_backing_dev_info;
473 }
474 }
475
476 EXPORT_SYMBOL(generic_shutdown_super);
477
478 /**
479 * sget_userns - find or create a superblock
480 * @type: filesystem type superblock should belong to
481 * @test: comparison callback
482 * @set: setup callback
483 * @flags: mount flags
484 * @user_ns: User namespace for the super_block
485 * @data: argument to each of them
486 */
487 struct super_block *sget_userns(struct file_system_type *type,
488 int (*test)(struct super_block *,void *),
489 int (*set)(struct super_block *,void *),
490 int flags, struct user_namespace *user_ns,
491 void *data)
492 {
493 struct super_block *s = NULL;
494 struct super_block *old;
495 int err;
496
497 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
498 !(type->fs_flags & FS_USERNS_MOUNT) &&
499 !capable(CAP_SYS_ADMIN))
500 return ERR_PTR(-EPERM);
501 retry:
502 spin_lock(&sb_lock);
503 if (test) {
504 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
505 if (!test(old, data))
506 continue;
507 if (user_ns != old->s_user_ns) {
508 spin_unlock(&sb_lock);
509 destroy_unused_super(s);
510 return ERR_PTR(-EBUSY);
511 }
512 if (!grab_super(old))
513 goto retry;
514 destroy_unused_super(s);
515 return old;
516 }
517 }
518 if (!s) {
519 spin_unlock(&sb_lock);
520 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
521 if (!s)
522 return ERR_PTR(-ENOMEM);
523 goto retry;
524 }
525
526 err = set(s, data);
527 if (err) {
528 spin_unlock(&sb_lock);
529 destroy_unused_super(s);
530 return ERR_PTR(err);
531 }
532 s->s_type = type;
533 strlcpy(s->s_id, type->name, sizeof(s->s_id));
534 list_add_tail(&s->s_list, &super_blocks);
535 hlist_add_head(&s->s_instances, &type->fs_supers);
536 spin_unlock(&sb_lock);
537 get_filesystem(type);
538 register_shrinker_prepared(&s->s_shrink);
539 return s;
540 }
541
542 EXPORT_SYMBOL(sget_userns);
543
544 /**
545 * sget - find or create a superblock
546 * @type: filesystem type superblock should belong to
547 * @test: comparison callback
548 * @set: setup callback
549 * @flags: mount flags
550 * @data: argument to each of them
551 */
552 struct super_block *sget(struct file_system_type *type,
553 int (*test)(struct super_block *,void *),
554 int (*set)(struct super_block *,void *),
555 int flags,
556 void *data)
557 {
558 struct user_namespace *user_ns = current_user_ns();
559
560 /* We don't yet pass the user namespace of the parent
561 * mount through to here so always use &init_user_ns
562 * until that changes.
563 */
564 if (flags & SB_SUBMOUNT)
565 user_ns = &init_user_ns;
566
567 /* Ensure the requestor has permissions over the target filesystem */
568 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
569 return ERR_PTR(-EPERM);
570
571 return sget_userns(type, test, set, flags, user_ns, data);
572 }
573
574 EXPORT_SYMBOL(sget);
575
576 void drop_super(struct super_block *sb)
577 {
578 up_read(&sb->s_umount);
579 put_super(sb);
580 }
581
582 EXPORT_SYMBOL(drop_super);
583
584 void drop_super_exclusive(struct super_block *sb)
585 {
586 up_write(&sb->s_umount);
587 put_super(sb);
588 }
589 EXPORT_SYMBOL(drop_super_exclusive);
590
591 static void __iterate_supers(void (*f)(struct super_block *))
592 {
593 struct super_block *sb, *p = NULL;
594
595 spin_lock(&sb_lock);
596 list_for_each_entry(sb, &super_blocks, s_list) {
597 if (hlist_unhashed(&sb->s_instances))
598 continue;
599 sb->s_count++;
600 spin_unlock(&sb_lock);
601
602 f(sb);
603
604 spin_lock(&sb_lock);
605 if (p)
606 __put_super(p);
607 p = sb;
608 }
609 if (p)
610 __put_super(p);
611 spin_unlock(&sb_lock);
612 }
613 /**
614 * iterate_supers - call function for all active superblocks
615 * @f: function to call
616 * @arg: argument to pass to it
617 *
618 * Scans the superblock list and calls given function, passing it
619 * locked superblock and given argument.
620 */
621 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
622 {
623 struct super_block *sb, *p = NULL;
624
625 spin_lock(&sb_lock);
626 list_for_each_entry(sb, &super_blocks, s_list) {
627 if (hlist_unhashed(&sb->s_instances))
628 continue;
629 sb->s_count++;
630 spin_unlock(&sb_lock);
631
632 down_read(&sb->s_umount);
633 if (sb->s_root && (sb->s_flags & SB_BORN))
634 f(sb, arg);
635 up_read(&sb->s_umount);
636
637 spin_lock(&sb_lock);
638 if (p)
639 __put_super(p);
640 p = sb;
641 }
642 if (p)
643 __put_super(p);
644 spin_unlock(&sb_lock);
645 }
646
647 /**
648 * iterate_supers_type - call function for superblocks of given type
649 * @type: fs type
650 * @f: function to call
651 * @arg: argument to pass to it
652 *
653 * Scans the superblock list and calls given function, passing it
654 * locked superblock and given argument.
655 */
656 void iterate_supers_type(struct file_system_type *type,
657 void (*f)(struct super_block *, void *), void *arg)
658 {
659 struct super_block *sb, *p = NULL;
660
661 spin_lock(&sb_lock);
662 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
663 sb->s_count++;
664 spin_unlock(&sb_lock);
665
666 down_read(&sb->s_umount);
667 if (sb->s_root && (sb->s_flags & SB_BORN))
668 f(sb, arg);
669 up_read(&sb->s_umount);
670
671 spin_lock(&sb_lock);
672 if (p)
673 __put_super(p);
674 p = sb;
675 }
676 if (p)
677 __put_super(p);
678 spin_unlock(&sb_lock);
679 }
680
681 EXPORT_SYMBOL(iterate_supers_type);
682
683 static struct super_block *__get_super(struct block_device *bdev, bool excl)
684 {
685 struct super_block *sb;
686
687 if (!bdev)
688 return NULL;
689
690 spin_lock(&sb_lock);
691 rescan:
692 list_for_each_entry(sb, &super_blocks, s_list) {
693 if (hlist_unhashed(&sb->s_instances))
694 continue;
695 if (sb->s_bdev == bdev) {
696 sb->s_count++;
697 spin_unlock(&sb_lock);
698 if (!excl)
699 down_read(&sb->s_umount);
700 else
701 down_write(&sb->s_umount);
702 /* still alive? */
703 if (sb->s_root && (sb->s_flags & SB_BORN))
704 return sb;
705 if (!excl)
706 up_read(&sb->s_umount);
707 else
708 up_write(&sb->s_umount);
709 /* nope, got unmounted */
710 spin_lock(&sb_lock);
711 __put_super(sb);
712 goto rescan;
713 }
714 }
715 spin_unlock(&sb_lock);
716 return NULL;
717 }
718
719 /**
720 * get_super - get the superblock of a device
721 * @bdev: device to get the superblock for
722 *
723 * Scans the superblock list and finds the superblock of the file system
724 * mounted on the device given. %NULL is returned if no match is found.
725 */
726 struct super_block *get_super(struct block_device *bdev)
727 {
728 return __get_super(bdev, false);
729 }
730 EXPORT_SYMBOL(get_super);
731
732 static struct super_block *__get_super_thawed(struct block_device *bdev,
733 bool excl)
734 {
735 while (1) {
736 struct super_block *s = __get_super(bdev, excl);
737 if (!s || s->s_writers.frozen == SB_UNFROZEN)
738 return s;
739 if (!excl)
740 up_read(&s->s_umount);
741 else
742 up_write(&s->s_umount);
743 wait_event(s->s_writers.wait_unfrozen,
744 s->s_writers.frozen == SB_UNFROZEN);
745 put_super(s);
746 }
747 }
748
749 /**
750 * get_super_thawed - get thawed superblock of a device
751 * @bdev: device to get the superblock for
752 *
753 * Scans the superblock list and finds the superblock of the file system
754 * mounted on the device. The superblock is returned once it is thawed
755 * (or immediately if it was not frozen). %NULL is returned if no match
756 * is found.
757 */
758 struct super_block *get_super_thawed(struct block_device *bdev)
759 {
760 return __get_super_thawed(bdev, false);
761 }
762 EXPORT_SYMBOL(get_super_thawed);
763
764 /**
765 * get_super_exclusive_thawed - get thawed superblock of a device
766 * @bdev: device to get the superblock for
767 *
768 * Scans the superblock list and finds the superblock of the file system
769 * mounted on the device. The superblock is returned once it is thawed
770 * (or immediately if it was not frozen) and s_umount semaphore is held
771 * in exclusive mode. %NULL is returned if no match is found.
772 */
773 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
774 {
775 return __get_super_thawed(bdev, true);
776 }
777 EXPORT_SYMBOL(get_super_exclusive_thawed);
778
779 /**
780 * get_active_super - get an active reference to the superblock of a device
781 * @bdev: device to get the superblock for
782 *
783 * Scans the superblock list and finds the superblock of the file system
784 * mounted on the device given. Returns the superblock with an active
785 * reference or %NULL if none was found.
786 */
787 struct super_block *get_active_super(struct block_device *bdev)
788 {
789 struct super_block *sb;
790
791 if (!bdev)
792 return NULL;
793
794 restart:
795 spin_lock(&sb_lock);
796 list_for_each_entry(sb, &super_blocks, s_list) {
797 if (hlist_unhashed(&sb->s_instances))
798 continue;
799 if (sb->s_bdev == bdev) {
800 if (!grab_super(sb))
801 goto restart;
802 up_write(&sb->s_umount);
803 return sb;
804 }
805 }
806 spin_unlock(&sb_lock);
807 return NULL;
808 }
809
810 struct super_block *user_get_super(dev_t dev)
811 {
812 struct super_block *sb;
813
814 spin_lock(&sb_lock);
815 rescan:
816 list_for_each_entry(sb, &super_blocks, s_list) {
817 if (hlist_unhashed(&sb->s_instances))
818 continue;
819 if (sb->s_dev == dev) {
820 sb->s_count++;
821 spin_unlock(&sb_lock);
822 down_read(&sb->s_umount);
823 /* still alive? */
824 if (sb->s_root && (sb->s_flags & SB_BORN))
825 return sb;
826 up_read(&sb->s_umount);
827 /* nope, got unmounted */
828 spin_lock(&sb_lock);
829 __put_super(sb);
830 goto rescan;
831 }
832 }
833 spin_unlock(&sb_lock);
834 return NULL;
835 }
836
837 /**
838 * do_remount_sb - asks filesystem to change mount options.
839 * @sb: superblock in question
840 * @sb_flags: revised superblock flags
841 * @data: the rest of options
842 * @force: whether or not to force the change
843 *
844 * Alters the mount options of a mounted file system.
845 */
846 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
847 {
848 int retval;
849 int remount_ro;
850
851 if (sb->s_writers.frozen != SB_UNFROZEN)
852 return -EBUSY;
853
854 #ifdef CONFIG_BLOCK
855 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
856 return -EACCES;
857 #endif
858
859 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
860
861 if (remount_ro) {
862 if (!hlist_empty(&sb->s_pins)) {
863 up_write(&sb->s_umount);
864 group_pin_kill(&sb->s_pins);
865 down_write(&sb->s_umount);
866 if (!sb->s_root)
867 return 0;
868 if (sb->s_writers.frozen != SB_UNFROZEN)
869 return -EBUSY;
870 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
871 }
872 }
873 shrink_dcache_sb(sb);
874
875 /* If we are remounting RDONLY and current sb is read/write,
876 make sure there are no rw files opened */
877 if (remount_ro) {
878 if (force) {
879 sb->s_readonly_remount = 1;
880 smp_wmb();
881 } else {
882 retval = sb_prepare_remount_readonly(sb);
883 if (retval)
884 return retval;
885 }
886 }
887
888 if (sb->s_op->remount_fs) {
889 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
890 if (retval) {
891 if (!force)
892 goto cancel_readonly;
893 /* If forced remount, go ahead despite any errors */
894 WARN(1, "forced remount of a %s fs returned %i\n",
895 sb->s_type->name, retval);
896 }
897 }
898 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
899 /* Needs to be ordered wrt mnt_is_readonly() */
900 smp_wmb();
901 sb->s_readonly_remount = 0;
902
903 /*
904 * Some filesystems modify their metadata via some other path than the
905 * bdev buffer cache (eg. use a private mapping, or directories in
906 * pagecache, etc). Also file data modifications go via their own
907 * mappings. So If we try to mount readonly then copy the filesystem
908 * from bdev, we could get stale data, so invalidate it to give a best
909 * effort at coherency.
910 */
911 if (remount_ro && sb->s_bdev)
912 invalidate_bdev(sb->s_bdev);
913 return 0;
914
915 cancel_readonly:
916 sb->s_readonly_remount = 0;
917 return retval;
918 }
919
920 static void do_emergency_remount_callback(struct super_block *sb)
921 {
922 down_write(&sb->s_umount);
923 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
924 !sb_rdonly(sb)) {
925 /*
926 * What lock protects sb->s_flags??
927 */
928 do_remount_sb(sb, SB_RDONLY, NULL, 1);
929 }
930 up_write(&sb->s_umount);
931 }
932
933 static void do_emergency_remount(struct work_struct *work)
934 {
935 __iterate_supers(do_emergency_remount_callback);
936 kfree(work);
937 printk("Emergency Remount complete\n");
938 }
939
940 void emergency_remount(void)
941 {
942 struct work_struct *work;
943
944 work = kmalloc(sizeof(*work), GFP_ATOMIC);
945 if (work) {
946 INIT_WORK(work, do_emergency_remount);
947 schedule_work(work);
948 }
949 }
950
951 static void do_thaw_all_callback(struct super_block *sb)
952 {
953 down_write(&sb->s_umount);
954 if (sb->s_root && sb->s_flags & SB_BORN) {
955 emergency_thaw_bdev(sb);
956 thaw_super_locked(sb);
957 } else {
958 up_write(&sb->s_umount);
959 }
960 }
961
962 static void do_thaw_all(struct work_struct *work)
963 {
964 __iterate_supers(do_thaw_all_callback);
965 kfree(work);
966 printk(KERN_WARNING "Emergency Thaw complete\n");
967 }
968
969 /**
970 * emergency_thaw_all -- forcibly thaw every frozen filesystem
971 *
972 * Used for emergency unfreeze of all filesystems via SysRq
973 */
974 void emergency_thaw_all(void)
975 {
976 struct work_struct *work;
977
978 work = kmalloc(sizeof(*work), GFP_ATOMIC);
979 if (work) {
980 INIT_WORK(work, do_thaw_all);
981 schedule_work(work);
982 }
983 }
984
985 static DEFINE_IDA(unnamed_dev_ida);
986
987 /**
988 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
989 * @p: Pointer to a dev_t.
990 *
991 * Filesystems which don't use real block devices can call this function
992 * to allocate a virtual block device.
993 *
994 * Context: Any context. Frequently called while holding sb_lock.
995 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
996 * or -ENOMEM if memory allocation failed.
997 */
998 int get_anon_bdev(dev_t *p)
999 {
1000 int dev;
1001
1002 /*
1003 * Many userspace utilities consider an FSID of 0 invalid.
1004 * Always return at least 1 from get_anon_bdev.
1005 */
1006 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1007 GFP_ATOMIC);
1008 if (dev == -ENOSPC)
1009 dev = -EMFILE;
1010 if (dev < 0)
1011 return dev;
1012
1013 *p = MKDEV(0, dev);
1014 return 0;
1015 }
1016 EXPORT_SYMBOL(get_anon_bdev);
1017
1018 void free_anon_bdev(dev_t dev)
1019 {
1020 ida_free(&unnamed_dev_ida, MINOR(dev));
1021 }
1022 EXPORT_SYMBOL(free_anon_bdev);
1023
1024 int set_anon_super(struct super_block *s, void *data)
1025 {
1026 return get_anon_bdev(&s->s_dev);
1027 }
1028 EXPORT_SYMBOL(set_anon_super);
1029
1030 void kill_anon_super(struct super_block *sb)
1031 {
1032 dev_t dev = sb->s_dev;
1033 generic_shutdown_super(sb);
1034 free_anon_bdev(dev);
1035 }
1036 EXPORT_SYMBOL(kill_anon_super);
1037
1038 void kill_litter_super(struct super_block *sb)
1039 {
1040 if (sb->s_root)
1041 d_genocide(sb->s_root);
1042 kill_anon_super(sb);
1043 }
1044 EXPORT_SYMBOL(kill_litter_super);
1045
1046 static int ns_test_super(struct super_block *sb, void *data)
1047 {
1048 return sb->s_fs_info == data;
1049 }
1050
1051 static int ns_set_super(struct super_block *sb, void *data)
1052 {
1053 sb->s_fs_info = data;
1054 return set_anon_super(sb, NULL);
1055 }
1056
1057 struct dentry *mount_ns(struct file_system_type *fs_type,
1058 int flags, void *data, void *ns, struct user_namespace *user_ns,
1059 int (*fill_super)(struct super_block *, void *, int))
1060 {
1061 struct super_block *sb;
1062
1063 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1064 * over the namespace.
1065 */
1066 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1067 return ERR_PTR(-EPERM);
1068
1069 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1070 user_ns, ns);
1071 if (IS_ERR(sb))
1072 return ERR_CAST(sb);
1073
1074 if (!sb->s_root) {
1075 int err;
1076 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1077 if (err) {
1078 deactivate_locked_super(sb);
1079 return ERR_PTR(err);
1080 }
1081
1082 sb->s_flags |= SB_ACTIVE;
1083 }
1084
1085 return dget(sb->s_root);
1086 }
1087
1088 EXPORT_SYMBOL(mount_ns);
1089
1090 #ifdef CONFIG_BLOCK
1091 static int set_bdev_super(struct super_block *s, void *data)
1092 {
1093 s->s_bdev = data;
1094 s->s_dev = s->s_bdev->bd_dev;
1095 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1096
1097 return 0;
1098 }
1099
1100 static int test_bdev_super(struct super_block *s, void *data)
1101 {
1102 return (void *)s->s_bdev == data;
1103 }
1104
1105 struct dentry *mount_bdev(struct file_system_type *fs_type,
1106 int flags, const char *dev_name, void *data,
1107 int (*fill_super)(struct super_block *, void *, int))
1108 {
1109 struct block_device *bdev;
1110 struct super_block *s;
1111 fmode_t mode = FMODE_READ | FMODE_EXCL;
1112 int error = 0;
1113
1114 if (!(flags & SB_RDONLY))
1115 mode |= FMODE_WRITE;
1116
1117 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1118 if (IS_ERR(bdev))
1119 return ERR_CAST(bdev);
1120
1121 /*
1122 * once the super is inserted into the list by sget, s_umount
1123 * will protect the lockfs code from trying to start a snapshot
1124 * while we are mounting
1125 */
1126 mutex_lock(&bdev->bd_fsfreeze_mutex);
1127 if (bdev->bd_fsfreeze_count > 0) {
1128 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1129 error = -EBUSY;
1130 goto error_bdev;
1131 }
1132 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1133 bdev);
1134 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1135 if (IS_ERR(s))
1136 goto error_s;
1137
1138 if (s->s_root) {
1139 if ((flags ^ s->s_flags) & SB_RDONLY) {
1140 deactivate_locked_super(s);
1141 error = -EBUSY;
1142 goto error_bdev;
1143 }
1144
1145 /*
1146 * s_umount nests inside bd_mutex during
1147 * __invalidate_device(). blkdev_put() acquires
1148 * bd_mutex and can't be called under s_umount. Drop
1149 * s_umount temporarily. This is safe as we're
1150 * holding an active reference.
1151 */
1152 up_write(&s->s_umount);
1153 blkdev_put(bdev, mode);
1154 down_write(&s->s_umount);
1155 } else {
1156 s->s_mode = mode;
1157 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1158 sb_set_blocksize(s, block_size(bdev));
1159 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1160 if (error) {
1161 deactivate_locked_super(s);
1162 goto error;
1163 }
1164
1165 s->s_flags |= SB_ACTIVE;
1166 bdev->bd_super = s;
1167 }
1168
1169 return dget(s->s_root);
1170
1171 error_s:
1172 error = PTR_ERR(s);
1173 error_bdev:
1174 blkdev_put(bdev, mode);
1175 error:
1176 return ERR_PTR(error);
1177 }
1178 EXPORT_SYMBOL(mount_bdev);
1179
1180 void kill_block_super(struct super_block *sb)
1181 {
1182 struct block_device *bdev = sb->s_bdev;
1183 fmode_t mode = sb->s_mode;
1184
1185 bdev->bd_super = NULL;
1186 generic_shutdown_super(sb);
1187 sync_blockdev(bdev);
1188 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1189 blkdev_put(bdev, mode | FMODE_EXCL);
1190 }
1191
1192 EXPORT_SYMBOL(kill_block_super);
1193 #endif
1194
1195 struct dentry *mount_nodev(struct file_system_type *fs_type,
1196 int flags, void *data,
1197 int (*fill_super)(struct super_block *, void *, int))
1198 {
1199 int error;
1200 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1201
1202 if (IS_ERR(s))
1203 return ERR_CAST(s);
1204
1205 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1206 if (error) {
1207 deactivate_locked_super(s);
1208 return ERR_PTR(error);
1209 }
1210 s->s_flags |= SB_ACTIVE;
1211 return dget(s->s_root);
1212 }
1213 EXPORT_SYMBOL(mount_nodev);
1214
1215 static int compare_single(struct super_block *s, void *p)
1216 {
1217 return 1;
1218 }
1219
1220 struct dentry *mount_single(struct file_system_type *fs_type,
1221 int flags, void *data,
1222 int (*fill_super)(struct super_block *, void *, int))
1223 {
1224 struct super_block *s;
1225 int error;
1226
1227 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1228 if (IS_ERR(s))
1229 return ERR_CAST(s);
1230 if (!s->s_root) {
1231 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1232 if (error) {
1233 deactivate_locked_super(s);
1234 return ERR_PTR(error);
1235 }
1236 s->s_flags |= SB_ACTIVE;
1237 } else {
1238 do_remount_sb(s, flags, data, 0);
1239 }
1240 return dget(s->s_root);
1241 }
1242 EXPORT_SYMBOL(mount_single);
1243
1244 struct dentry *
1245 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1246 {
1247 struct dentry *root;
1248 struct super_block *sb;
1249 int error = -ENOMEM;
1250 void *sec_opts = NULL;
1251
1252 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1253 error = security_sb_eat_lsm_opts(data, &sec_opts);
1254 if (error)
1255 return ERR_PTR(error);
1256 }
1257
1258 root = type->mount(type, flags, name, data);
1259 if (IS_ERR(root)) {
1260 error = PTR_ERR(root);
1261 goto out_free_secdata;
1262 }
1263 sb = root->d_sb;
1264 BUG_ON(!sb);
1265 WARN_ON(!sb->s_bdi);
1266
1267 /*
1268 * Write barrier is for super_cache_count(). We place it before setting
1269 * SB_BORN as the data dependency between the two functions is the
1270 * superblock structure contents that we just set up, not the SB_BORN
1271 * flag.
1272 */
1273 smp_wmb();
1274 sb->s_flags |= SB_BORN;
1275
1276 error = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1277 if (error)
1278 goto out_sb;
1279
1280 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT))) {
1281 error = security_sb_kern_mount(sb);
1282 if (error)
1283 goto out_sb;
1284 }
1285
1286 /*
1287 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1288 * but s_maxbytes was an unsigned long long for many releases. Throw
1289 * this warning for a little while to try and catch filesystems that
1290 * violate this rule.
1291 */
1292 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1293 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1294
1295 up_write(&sb->s_umount);
1296 security_free_mnt_opts(&sec_opts);
1297 return root;
1298 out_sb:
1299 dput(root);
1300 deactivate_locked_super(sb);
1301 out_free_secdata:
1302 security_free_mnt_opts(&sec_opts);
1303 return ERR_PTR(error);
1304 }
1305
1306 /*
1307 * Setup private BDI for given superblock. It gets automatically cleaned up
1308 * in generic_shutdown_super().
1309 */
1310 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1311 {
1312 struct backing_dev_info *bdi;
1313 int err;
1314 va_list args;
1315
1316 bdi = bdi_alloc(GFP_KERNEL);
1317 if (!bdi)
1318 return -ENOMEM;
1319
1320 bdi->name = sb->s_type->name;
1321
1322 va_start(args, fmt);
1323 err = bdi_register_va(bdi, fmt, args);
1324 va_end(args);
1325 if (err) {
1326 bdi_put(bdi);
1327 return err;
1328 }
1329 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1330 sb->s_bdi = bdi;
1331
1332 return 0;
1333 }
1334 EXPORT_SYMBOL(super_setup_bdi_name);
1335
1336 /*
1337 * Setup private BDI for given superblock. I gets automatically cleaned up
1338 * in generic_shutdown_super().
1339 */
1340 int super_setup_bdi(struct super_block *sb)
1341 {
1342 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1343
1344 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1345 atomic_long_inc_return(&bdi_seq));
1346 }
1347 EXPORT_SYMBOL(super_setup_bdi);
1348
1349 /*
1350 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1351 * instead.
1352 */
1353 void __sb_end_write(struct super_block *sb, int level)
1354 {
1355 percpu_up_read(sb->s_writers.rw_sem + level-1);
1356 }
1357 EXPORT_SYMBOL(__sb_end_write);
1358
1359 /*
1360 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1361 * instead.
1362 */
1363 int __sb_start_write(struct super_block *sb, int level, bool wait)
1364 {
1365 bool force_trylock = false;
1366 int ret = 1;
1367
1368 #ifdef CONFIG_LOCKDEP
1369 /*
1370 * We want lockdep to tell us about possible deadlocks with freezing
1371 * but it's it bit tricky to properly instrument it. Getting a freeze
1372 * protection works as getting a read lock but there are subtle
1373 * problems. XFS for example gets freeze protection on internal level
1374 * twice in some cases, which is OK only because we already hold a
1375 * freeze protection also on higher level. Due to these cases we have
1376 * to use wait == F (trylock mode) which must not fail.
1377 */
1378 if (wait) {
1379 int i;
1380
1381 for (i = 0; i < level - 1; i++)
1382 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1383 force_trylock = true;
1384 break;
1385 }
1386 }
1387 #endif
1388 if (wait && !force_trylock)
1389 percpu_down_read(sb->s_writers.rw_sem + level-1);
1390 else
1391 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1392
1393 WARN_ON(force_trylock && !ret);
1394 return ret;
1395 }
1396 EXPORT_SYMBOL(__sb_start_write);
1397
1398 /**
1399 * sb_wait_write - wait until all writers to given file system finish
1400 * @sb: the super for which we wait
1401 * @level: type of writers we wait for (normal vs page fault)
1402 *
1403 * This function waits until there are no writers of given type to given file
1404 * system.
1405 */
1406 static void sb_wait_write(struct super_block *sb, int level)
1407 {
1408 percpu_down_write(sb->s_writers.rw_sem + level-1);
1409 }
1410
1411 /*
1412 * We are going to return to userspace and forget about these locks, the
1413 * ownership goes to the caller of thaw_super() which does unlock().
1414 */
1415 static void lockdep_sb_freeze_release(struct super_block *sb)
1416 {
1417 int level;
1418
1419 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1420 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1421 }
1422
1423 /*
1424 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1425 */
1426 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1427 {
1428 int level;
1429
1430 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1431 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1432 }
1433
1434 static void sb_freeze_unlock(struct super_block *sb)
1435 {
1436 int level;
1437
1438 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1439 percpu_up_write(sb->s_writers.rw_sem + level);
1440 }
1441
1442 /**
1443 * freeze_super - lock the filesystem and force it into a consistent state
1444 * @sb: the super to lock
1445 *
1446 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1447 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1448 * -EBUSY.
1449 *
1450 * During this function, sb->s_writers.frozen goes through these values:
1451 *
1452 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1453 *
1454 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1455 * writes should be blocked, though page faults are still allowed. We wait for
1456 * all writes to complete and then proceed to the next stage.
1457 *
1458 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1459 * but internal fs threads can still modify the filesystem (although they
1460 * should not dirty new pages or inodes), writeback can run etc. After waiting
1461 * for all running page faults we sync the filesystem which will clean all
1462 * dirty pages and inodes (no new dirty pages or inodes can be created when
1463 * sync is running).
1464 *
1465 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1466 * modification are blocked (e.g. XFS preallocation truncation on inode
1467 * reclaim). This is usually implemented by blocking new transactions for
1468 * filesystems that have them and need this additional guard. After all
1469 * internal writers are finished we call ->freeze_fs() to finish filesystem
1470 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1471 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1472 *
1473 * sb->s_writers.frozen is protected by sb->s_umount.
1474 */
1475 int freeze_super(struct super_block *sb)
1476 {
1477 int ret;
1478
1479 atomic_inc(&sb->s_active);
1480 down_write(&sb->s_umount);
1481 if (sb->s_writers.frozen != SB_UNFROZEN) {
1482 deactivate_locked_super(sb);
1483 return -EBUSY;
1484 }
1485
1486 if (!(sb->s_flags & SB_BORN)) {
1487 up_write(&sb->s_umount);
1488 return 0; /* sic - it's "nothing to do" */
1489 }
1490
1491 if (sb_rdonly(sb)) {
1492 /* Nothing to do really... */
1493 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1494 up_write(&sb->s_umount);
1495 return 0;
1496 }
1497
1498 sb->s_writers.frozen = SB_FREEZE_WRITE;
1499 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1500 up_write(&sb->s_umount);
1501 sb_wait_write(sb, SB_FREEZE_WRITE);
1502 down_write(&sb->s_umount);
1503
1504 /* Now we go and block page faults... */
1505 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1506 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1507
1508 /* All writers are done so after syncing there won't be dirty data */
1509 sync_filesystem(sb);
1510
1511 /* Now wait for internal filesystem counter */
1512 sb->s_writers.frozen = SB_FREEZE_FS;
1513 sb_wait_write(sb, SB_FREEZE_FS);
1514
1515 if (sb->s_op->freeze_fs) {
1516 ret = sb->s_op->freeze_fs(sb);
1517 if (ret) {
1518 printk(KERN_ERR
1519 "VFS:Filesystem freeze failed\n");
1520 sb->s_writers.frozen = SB_UNFROZEN;
1521 sb_freeze_unlock(sb);
1522 wake_up(&sb->s_writers.wait_unfrozen);
1523 deactivate_locked_super(sb);
1524 return ret;
1525 }
1526 }
1527 /*
1528 * For debugging purposes so that fs can warn if it sees write activity
1529 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1530 */
1531 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1532 lockdep_sb_freeze_release(sb);
1533 up_write(&sb->s_umount);
1534 return 0;
1535 }
1536 EXPORT_SYMBOL(freeze_super);
1537
1538 /**
1539 * thaw_super -- unlock filesystem
1540 * @sb: the super to thaw
1541 *
1542 * Unlocks the filesystem and marks it writeable again after freeze_super().
1543 */
1544 static int thaw_super_locked(struct super_block *sb)
1545 {
1546 int error;
1547
1548 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1549 up_write(&sb->s_umount);
1550 return -EINVAL;
1551 }
1552
1553 if (sb_rdonly(sb)) {
1554 sb->s_writers.frozen = SB_UNFROZEN;
1555 goto out;
1556 }
1557
1558 lockdep_sb_freeze_acquire(sb);
1559
1560 if (sb->s_op->unfreeze_fs) {
1561 error = sb->s_op->unfreeze_fs(sb);
1562 if (error) {
1563 printk(KERN_ERR
1564 "VFS:Filesystem thaw failed\n");
1565 lockdep_sb_freeze_release(sb);
1566 up_write(&sb->s_umount);
1567 return error;
1568 }
1569 }
1570
1571 sb->s_writers.frozen = SB_UNFROZEN;
1572 sb_freeze_unlock(sb);
1573 out:
1574 wake_up(&sb->s_writers.wait_unfrozen);
1575 deactivate_locked_super(sb);
1576 return 0;
1577 }
1578
1579 int thaw_super(struct super_block *sb)
1580 {
1581 down_write(&sb->s_umount);
1582 return thaw_super_locked(sb);
1583 }
1584 EXPORT_SYMBOL(thaw_super);