]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/super.c
mm, memcg: partially revert "mm/memcontrol.c: keep local VM counters in sync with...
[mirror_ubuntu-eoan-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 /*
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
59 */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
62 {
63 struct super_block *sb;
64 long fs_objects = 0;
65 long total_objects;
66 long freed = 0;
67 long dentries;
68 long inodes;
69
70 sb = container_of(shrink, struct super_block, s_shrink);
71
72 /*
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
75 */
76 if (!(sc->gfp_mask & __GFP_FS))
77 return SHRINK_STOP;
78
79 if (!trylock_super(sb))
80 return SHRINK_STOP;
81
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
88 if (!total_objects)
89 total_objects = 1;
90
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 *
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
102 */
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
107
108 if (fs_objects) {
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
111 }
112
113 up_read(&sb->s_umount);
114 return freed;
115 }
116
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
119 {
120 struct super_block *sb;
121 long total_objects = 0;
122
123 sb = container_of(shrink, struct super_block, s_shrink);
124
125 /*
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
131 * here.
132 *
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
138 */
139 if (!(sb->s_flags & SB_BORN))
140 return 0;
141 smp_rmb();
142
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
145
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148
149 if (!total_objects)
150 return SHRINK_EMPTY;
151
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
154 }
155
156 static void destroy_super_work(struct work_struct *work)
157 {
158 struct super_block *s = container_of(work, struct super_block,
159 destroy_work);
160 int i;
161
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 kfree(s);
165 }
166
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
172 }
173
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 if (!s)
178 return;
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
182 security_sb_free(s);
183 put_user_ns(s->s_user_ns);
184 kfree(s->s_subtype);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
188 }
189
190 /**
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
195 *
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
198 */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
201 {
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
204 int i;
205
206 if (!s)
207 return NULL;
208
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 /*
214 * sget() can have s_umount recursion.
215 *
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
218 * one.
219 *
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
223 * risk of deadlocks.
224 *
225 * Annotate this by putting this lock in a different
226 * subclass.
227 */
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229
230 if (security_sb_alloc(s))
231 goto fail;
232
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 sb_writers_name[i],
236 &type->s_writers_key[i]))
237 goto fail;
238 }
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
241 s->s_flags = flags;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
251
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->cleancache_poolid = CLEANCACHE_NO_POOL;
261
262 s->s_shrink.seeks = DEFAULT_SEEKS;
263 s->s_shrink.scan_objects = super_cache_scan;
264 s->s_shrink.count_objects = super_cache_count;
265 s->s_shrink.batch = 1024;
266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 if (prealloc_shrinker(&s->s_shrink))
268 goto fail;
269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 goto fail;
271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 goto fail;
273 return s;
274
275 fail:
276 destroy_unused_super(s);
277 return NULL;
278 }
279
280 /* Superblock refcounting */
281
282 /*
283 * Drop a superblock's refcount. The caller must hold sb_lock.
284 */
285 static void __put_super(struct super_block *s)
286 {
287 if (!--s->s_count) {
288 list_del_init(&s->s_list);
289 WARN_ON(s->s_dentry_lru.node);
290 WARN_ON(s->s_inode_lru.node);
291 WARN_ON(!list_empty(&s->s_mounts));
292 security_sb_free(s);
293 put_user_ns(s->s_user_ns);
294 kfree(s->s_subtype);
295 call_rcu(&s->rcu, destroy_super_rcu);
296 }
297 }
298
299 /**
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
302 *
303 * Drops a temporary reference, frees superblock if there's no
304 * references left.
305 */
306 static void put_super(struct super_block *sb)
307 {
308 spin_lock(&sb_lock);
309 __put_super(sb);
310 spin_unlock(&sb_lock);
311 }
312
313
314 /**
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
317 *
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
321 * had just acquired.
322 *
323 * Caller holds exclusive lock on superblock; that lock is released.
324 */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 struct file_system_type *fs = s->s_type;
328 if (atomic_dec_and_test(&s->s_active)) {
329 cleancache_invalidate_fs(s);
330 unregister_shrinker(&s->s_shrink);
331 fs->kill_sb(s);
332
333 /*
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
337 */
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
340
341 put_filesystem(fs);
342 put_super(s);
343 } else {
344 up_write(&s->s_umount);
345 }
346 }
347
348 EXPORT_SYMBOL(deactivate_locked_super);
349
350 /**
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
353 *
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
357 */
358 void deactivate_super(struct super_block *s)
359 {
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
363 }
364 }
365
366 EXPORT_SYMBOL(deactivate_super);
367
368 /**
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
371 *
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
380 */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 s->s_count++;
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 put_super(s);
388 return 1;
389 }
390 up_write(&s->s_umount);
391 put_super(s);
392 return 0;
393 }
394
395 /*
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
398 *
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
406 *
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
411 */
412 bool trylock_super(struct super_block *sb)
413 {
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
417 return true;
418 up_read(&sb->s_umount);
419 }
420
421 return false;
422 }
423
424 /**
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
427 *
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
433 *
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
437 */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 const struct super_operations *sop = sb->s_op;
441
442 if (sb->s_root) {
443 shrink_dcache_for_umount(sb);
444 sync_filesystem(sb);
445 sb->s_flags &= ~SB_ACTIVE;
446
447 fsnotify_sb_delete(sb);
448 cgroup_writeback_umount();
449
450 evict_inodes(sb);
451
452 if (sb->s_dio_done_wq) {
453 destroy_workqueue(sb->s_dio_done_wq);
454 sb->s_dio_done_wq = NULL;
455 }
456
457 if (sop->put_super)
458 sop->put_super(sb);
459
460 if (!list_empty(&sb->s_inodes)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
463 sb->s_id);
464 }
465 }
466 spin_lock(&sb_lock);
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb->s_instances);
469 spin_unlock(&sb_lock);
470 up_write(&sb->s_umount);
471 if (sb->s_bdi != &noop_backing_dev_info) {
472 bdi_put(sb->s_bdi);
473 sb->s_bdi = &noop_backing_dev_info;
474 }
475 }
476
477 EXPORT_SYMBOL(generic_shutdown_super);
478
479 bool mount_capable(struct fs_context *fc)
480 {
481 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
482 return capable(CAP_SYS_ADMIN);
483 else
484 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
485 }
486
487 /**
488 * sget_fc - Find or create a superblock
489 * @fc: Filesystem context.
490 * @test: Comparison callback
491 * @set: Setup callback
492 *
493 * Find or create a superblock using the parameters stored in the filesystem
494 * context and the two callback functions.
495 *
496 * If an extant superblock is matched, then that will be returned with an
497 * elevated reference count that the caller must transfer or discard.
498 *
499 * If no match is made, a new superblock will be allocated and basic
500 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
501 * the set() callback will be invoked), the superblock will be published and it
502 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
503 * as yet unset.
504 */
505 struct super_block *sget_fc(struct fs_context *fc,
506 int (*test)(struct super_block *, struct fs_context *),
507 int (*set)(struct super_block *, struct fs_context *))
508 {
509 struct super_block *s = NULL;
510 struct super_block *old;
511 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
512 int err;
513
514 retry:
515 spin_lock(&sb_lock);
516 if (test) {
517 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
518 if (test(old, fc))
519 goto share_extant_sb;
520 }
521 }
522 if (!s) {
523 spin_unlock(&sb_lock);
524 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
525 if (!s)
526 return ERR_PTR(-ENOMEM);
527 goto retry;
528 }
529
530 s->s_fs_info = fc->s_fs_info;
531 err = set(s, fc);
532 if (err) {
533 s->s_fs_info = NULL;
534 spin_unlock(&sb_lock);
535 destroy_unused_super(s);
536 return ERR_PTR(err);
537 }
538 fc->s_fs_info = NULL;
539 s->s_type = fc->fs_type;
540 s->s_iflags |= fc->s_iflags;
541 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
542 list_add_tail(&s->s_list, &super_blocks);
543 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
544 spin_unlock(&sb_lock);
545 get_filesystem(s->s_type);
546 register_shrinker_prepared(&s->s_shrink);
547 return s;
548
549 share_extant_sb:
550 if (user_ns != old->s_user_ns) {
551 spin_unlock(&sb_lock);
552 destroy_unused_super(s);
553 return ERR_PTR(-EBUSY);
554 }
555 if (!grab_super(old))
556 goto retry;
557 destroy_unused_super(s);
558 return old;
559 }
560 EXPORT_SYMBOL(sget_fc);
561
562 /**
563 * sget - find or create a superblock
564 * @type: filesystem type superblock should belong to
565 * @test: comparison callback
566 * @set: setup callback
567 * @flags: mount flags
568 * @data: argument to each of them
569 */
570 struct super_block *sget(struct file_system_type *type,
571 int (*test)(struct super_block *,void *),
572 int (*set)(struct super_block *,void *),
573 int flags,
574 void *data)
575 {
576 struct user_namespace *user_ns = current_user_ns();
577 struct super_block *s = NULL;
578 struct super_block *old;
579 int err;
580
581 /* We don't yet pass the user namespace of the parent
582 * mount through to here so always use &init_user_ns
583 * until that changes.
584 */
585 if (flags & SB_SUBMOUNT)
586 user_ns = &init_user_ns;
587
588 retry:
589 spin_lock(&sb_lock);
590 if (test) {
591 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
592 if (!test(old, data))
593 continue;
594 if (user_ns != old->s_user_ns) {
595 spin_unlock(&sb_lock);
596 destroy_unused_super(s);
597 return ERR_PTR(-EBUSY);
598 }
599 if (!grab_super(old))
600 goto retry;
601 destroy_unused_super(s);
602 return old;
603 }
604 }
605 if (!s) {
606 spin_unlock(&sb_lock);
607 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
608 if (!s)
609 return ERR_PTR(-ENOMEM);
610 goto retry;
611 }
612
613 err = set(s, data);
614 if (err) {
615 spin_unlock(&sb_lock);
616 destroy_unused_super(s);
617 return ERR_PTR(err);
618 }
619 s->s_type = type;
620 strlcpy(s->s_id, type->name, sizeof(s->s_id));
621 list_add_tail(&s->s_list, &super_blocks);
622 hlist_add_head(&s->s_instances, &type->fs_supers);
623 spin_unlock(&sb_lock);
624 get_filesystem(type);
625 register_shrinker_prepared(&s->s_shrink);
626 return s;
627 }
628 EXPORT_SYMBOL(sget);
629
630 void drop_super(struct super_block *sb)
631 {
632 up_read(&sb->s_umount);
633 put_super(sb);
634 }
635
636 EXPORT_SYMBOL(drop_super);
637
638 void drop_super_exclusive(struct super_block *sb)
639 {
640 up_write(&sb->s_umount);
641 put_super(sb);
642 }
643 EXPORT_SYMBOL(drop_super_exclusive);
644
645 static void __iterate_supers(void (*f)(struct super_block *))
646 {
647 struct super_block *sb, *p = NULL;
648
649 spin_lock(&sb_lock);
650 list_for_each_entry(sb, &super_blocks, s_list) {
651 if (hlist_unhashed(&sb->s_instances))
652 continue;
653 sb->s_count++;
654 spin_unlock(&sb_lock);
655
656 f(sb);
657
658 spin_lock(&sb_lock);
659 if (p)
660 __put_super(p);
661 p = sb;
662 }
663 if (p)
664 __put_super(p);
665 spin_unlock(&sb_lock);
666 }
667 /**
668 * iterate_supers - call function for all active superblocks
669 * @f: function to call
670 * @arg: argument to pass to it
671 *
672 * Scans the superblock list and calls given function, passing it
673 * locked superblock and given argument.
674 */
675 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
676 {
677 struct super_block *sb, *p = NULL;
678
679 spin_lock(&sb_lock);
680 list_for_each_entry(sb, &super_blocks, s_list) {
681 if (hlist_unhashed(&sb->s_instances))
682 continue;
683 sb->s_count++;
684 spin_unlock(&sb_lock);
685
686 down_read(&sb->s_umount);
687 if (sb->s_root && (sb->s_flags & SB_BORN))
688 f(sb, arg);
689 up_read(&sb->s_umount);
690
691 spin_lock(&sb_lock);
692 if (p)
693 __put_super(p);
694 p = sb;
695 }
696 if (p)
697 __put_super(p);
698 spin_unlock(&sb_lock);
699 }
700
701 /**
702 * iterate_supers_type - call function for superblocks of given type
703 * @type: fs type
704 * @f: function to call
705 * @arg: argument to pass to it
706 *
707 * Scans the superblock list and calls given function, passing it
708 * locked superblock and given argument.
709 */
710 void iterate_supers_type(struct file_system_type *type,
711 void (*f)(struct super_block *, void *), void *arg)
712 {
713 struct super_block *sb, *p = NULL;
714
715 spin_lock(&sb_lock);
716 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
717 sb->s_count++;
718 spin_unlock(&sb_lock);
719
720 down_read(&sb->s_umount);
721 if (sb->s_root && (sb->s_flags & SB_BORN))
722 f(sb, arg);
723 up_read(&sb->s_umount);
724
725 spin_lock(&sb_lock);
726 if (p)
727 __put_super(p);
728 p = sb;
729 }
730 if (p)
731 __put_super(p);
732 spin_unlock(&sb_lock);
733 }
734
735 EXPORT_SYMBOL(iterate_supers_type);
736
737 static struct super_block *__get_super(struct block_device *bdev, bool excl)
738 {
739 struct super_block *sb;
740
741 if (!bdev)
742 return NULL;
743
744 spin_lock(&sb_lock);
745 rescan:
746 list_for_each_entry(sb, &super_blocks, s_list) {
747 if (hlist_unhashed(&sb->s_instances))
748 continue;
749 if (sb->s_bdev == bdev) {
750 sb->s_count++;
751 spin_unlock(&sb_lock);
752 if (!excl)
753 down_read(&sb->s_umount);
754 else
755 down_write(&sb->s_umount);
756 /* still alive? */
757 if (sb->s_root && (sb->s_flags & SB_BORN))
758 return sb;
759 if (!excl)
760 up_read(&sb->s_umount);
761 else
762 up_write(&sb->s_umount);
763 /* nope, got unmounted */
764 spin_lock(&sb_lock);
765 __put_super(sb);
766 goto rescan;
767 }
768 }
769 spin_unlock(&sb_lock);
770 return NULL;
771 }
772
773 /**
774 * get_super - get the superblock of a device
775 * @bdev: device to get the superblock for
776 *
777 * Scans the superblock list and finds the superblock of the file system
778 * mounted on the device given. %NULL is returned if no match is found.
779 */
780 struct super_block *get_super(struct block_device *bdev)
781 {
782 return __get_super(bdev, false);
783 }
784 EXPORT_SYMBOL(get_super);
785
786 static struct super_block *__get_super_thawed(struct block_device *bdev,
787 bool excl)
788 {
789 while (1) {
790 struct super_block *s = __get_super(bdev, excl);
791 if (!s || s->s_writers.frozen == SB_UNFROZEN)
792 return s;
793 if (!excl)
794 up_read(&s->s_umount);
795 else
796 up_write(&s->s_umount);
797 wait_event(s->s_writers.wait_unfrozen,
798 s->s_writers.frozen == SB_UNFROZEN);
799 put_super(s);
800 }
801 }
802
803 /**
804 * get_super_thawed - get thawed superblock of a device
805 * @bdev: device to get the superblock for
806 *
807 * Scans the superblock list and finds the superblock of the file system
808 * mounted on the device. The superblock is returned once it is thawed
809 * (or immediately if it was not frozen). %NULL is returned if no match
810 * is found.
811 */
812 struct super_block *get_super_thawed(struct block_device *bdev)
813 {
814 return __get_super_thawed(bdev, false);
815 }
816 EXPORT_SYMBOL(get_super_thawed);
817
818 /**
819 * get_super_exclusive_thawed - get thawed superblock of a device
820 * @bdev: device to get the superblock for
821 *
822 * Scans the superblock list and finds the superblock of the file system
823 * mounted on the device. The superblock is returned once it is thawed
824 * (or immediately if it was not frozen) and s_umount semaphore is held
825 * in exclusive mode. %NULL is returned if no match is found.
826 */
827 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
828 {
829 return __get_super_thawed(bdev, true);
830 }
831 EXPORT_SYMBOL(get_super_exclusive_thawed);
832
833 /**
834 * get_active_super - get an active reference to the superblock of a device
835 * @bdev: device to get the superblock for
836 *
837 * Scans the superblock list and finds the superblock of the file system
838 * mounted on the device given. Returns the superblock with an active
839 * reference or %NULL if none was found.
840 */
841 struct super_block *get_active_super(struct block_device *bdev)
842 {
843 struct super_block *sb;
844
845 if (!bdev)
846 return NULL;
847
848 restart:
849 spin_lock(&sb_lock);
850 list_for_each_entry(sb, &super_blocks, s_list) {
851 if (hlist_unhashed(&sb->s_instances))
852 continue;
853 if (sb->s_bdev == bdev) {
854 if (!grab_super(sb))
855 goto restart;
856 up_write(&sb->s_umount);
857 return sb;
858 }
859 }
860 spin_unlock(&sb_lock);
861 return NULL;
862 }
863
864 struct super_block *user_get_super(dev_t dev)
865 {
866 struct super_block *sb;
867
868 spin_lock(&sb_lock);
869 rescan:
870 list_for_each_entry(sb, &super_blocks, s_list) {
871 if (hlist_unhashed(&sb->s_instances))
872 continue;
873 if (sb->s_dev == dev) {
874 sb->s_count++;
875 spin_unlock(&sb_lock);
876 down_read(&sb->s_umount);
877 /* still alive? */
878 if (sb->s_root && (sb->s_flags & SB_BORN))
879 return sb;
880 up_read(&sb->s_umount);
881 /* nope, got unmounted */
882 spin_lock(&sb_lock);
883 __put_super(sb);
884 goto rescan;
885 }
886 }
887 spin_unlock(&sb_lock);
888 return NULL;
889 }
890
891 /**
892 * reconfigure_super - asks filesystem to change superblock parameters
893 * @fc: The superblock and configuration
894 *
895 * Alters the configuration parameters of a live superblock.
896 */
897 int reconfigure_super(struct fs_context *fc)
898 {
899 struct super_block *sb = fc->root->d_sb;
900 int retval;
901 bool remount_ro = false;
902 bool force = fc->sb_flags & SB_FORCE;
903
904 if (fc->sb_flags_mask & ~MS_RMT_MASK)
905 return -EINVAL;
906 if (sb->s_writers.frozen != SB_UNFROZEN)
907 return -EBUSY;
908
909 retval = security_sb_remount(sb, fc->security);
910 if (retval)
911 return retval;
912
913 if (fc->sb_flags_mask & SB_RDONLY) {
914 #ifdef CONFIG_BLOCK
915 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
916 return -EACCES;
917 #endif
918
919 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
920 }
921
922 if (remount_ro) {
923 if (!hlist_empty(&sb->s_pins)) {
924 up_write(&sb->s_umount);
925 group_pin_kill(&sb->s_pins);
926 down_write(&sb->s_umount);
927 if (!sb->s_root)
928 return 0;
929 if (sb->s_writers.frozen != SB_UNFROZEN)
930 return -EBUSY;
931 remount_ro = !sb_rdonly(sb);
932 }
933 }
934 shrink_dcache_sb(sb);
935
936 /* If we are reconfiguring to RDONLY and current sb is read/write,
937 * make sure there are no files open for writing.
938 */
939 if (remount_ro) {
940 if (force) {
941 sb->s_readonly_remount = 1;
942 smp_wmb();
943 } else {
944 retval = sb_prepare_remount_readonly(sb);
945 if (retval)
946 return retval;
947 }
948 }
949
950 if (fc->ops->reconfigure) {
951 retval = fc->ops->reconfigure(fc);
952 if (retval) {
953 if (!force)
954 goto cancel_readonly;
955 /* If forced remount, go ahead despite any errors */
956 WARN(1, "forced remount of a %s fs returned %i\n",
957 sb->s_type->name, retval);
958 }
959 }
960
961 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
962 (fc->sb_flags & fc->sb_flags_mask)));
963 /* Needs to be ordered wrt mnt_is_readonly() */
964 smp_wmb();
965 sb->s_readonly_remount = 0;
966
967 /*
968 * Some filesystems modify their metadata via some other path than the
969 * bdev buffer cache (eg. use a private mapping, or directories in
970 * pagecache, etc). Also file data modifications go via their own
971 * mappings. So If we try to mount readonly then copy the filesystem
972 * from bdev, we could get stale data, so invalidate it to give a best
973 * effort at coherency.
974 */
975 if (remount_ro && sb->s_bdev)
976 invalidate_bdev(sb->s_bdev);
977 return 0;
978
979 cancel_readonly:
980 sb->s_readonly_remount = 0;
981 return retval;
982 }
983
984 static void do_emergency_remount_callback(struct super_block *sb)
985 {
986 down_write(&sb->s_umount);
987 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
988 !sb_rdonly(sb)) {
989 struct fs_context *fc;
990
991 fc = fs_context_for_reconfigure(sb->s_root,
992 SB_RDONLY | SB_FORCE, SB_RDONLY);
993 if (!IS_ERR(fc)) {
994 if (parse_monolithic_mount_data(fc, NULL) == 0)
995 (void)reconfigure_super(fc);
996 put_fs_context(fc);
997 }
998 }
999 up_write(&sb->s_umount);
1000 }
1001
1002 static void do_emergency_remount(struct work_struct *work)
1003 {
1004 __iterate_supers(do_emergency_remount_callback);
1005 kfree(work);
1006 printk("Emergency Remount complete\n");
1007 }
1008
1009 void emergency_remount(void)
1010 {
1011 struct work_struct *work;
1012
1013 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1014 if (work) {
1015 INIT_WORK(work, do_emergency_remount);
1016 schedule_work(work);
1017 }
1018 }
1019
1020 static void do_thaw_all_callback(struct super_block *sb)
1021 {
1022 down_write(&sb->s_umount);
1023 if (sb->s_root && sb->s_flags & SB_BORN) {
1024 emergency_thaw_bdev(sb);
1025 thaw_super_locked(sb);
1026 } else {
1027 up_write(&sb->s_umount);
1028 }
1029 }
1030
1031 static void do_thaw_all(struct work_struct *work)
1032 {
1033 __iterate_supers(do_thaw_all_callback);
1034 kfree(work);
1035 printk(KERN_WARNING "Emergency Thaw complete\n");
1036 }
1037
1038 /**
1039 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1040 *
1041 * Used for emergency unfreeze of all filesystems via SysRq
1042 */
1043 void emergency_thaw_all(void)
1044 {
1045 struct work_struct *work;
1046
1047 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1048 if (work) {
1049 INIT_WORK(work, do_thaw_all);
1050 schedule_work(work);
1051 }
1052 }
1053
1054 static DEFINE_IDA(unnamed_dev_ida);
1055
1056 /**
1057 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1058 * @p: Pointer to a dev_t.
1059 *
1060 * Filesystems which don't use real block devices can call this function
1061 * to allocate a virtual block device.
1062 *
1063 * Context: Any context. Frequently called while holding sb_lock.
1064 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1065 * or -ENOMEM if memory allocation failed.
1066 */
1067 int get_anon_bdev(dev_t *p)
1068 {
1069 int dev;
1070
1071 /*
1072 * Many userspace utilities consider an FSID of 0 invalid.
1073 * Always return at least 1 from get_anon_bdev.
1074 */
1075 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1076 GFP_ATOMIC);
1077 if (dev == -ENOSPC)
1078 dev = -EMFILE;
1079 if (dev < 0)
1080 return dev;
1081
1082 *p = MKDEV(0, dev);
1083 return 0;
1084 }
1085 EXPORT_SYMBOL(get_anon_bdev);
1086
1087 void free_anon_bdev(dev_t dev)
1088 {
1089 ida_free(&unnamed_dev_ida, MINOR(dev));
1090 }
1091 EXPORT_SYMBOL(free_anon_bdev);
1092
1093 int set_anon_super(struct super_block *s, void *data)
1094 {
1095 return get_anon_bdev(&s->s_dev);
1096 }
1097 EXPORT_SYMBOL(set_anon_super);
1098
1099 void kill_anon_super(struct super_block *sb)
1100 {
1101 dev_t dev = sb->s_dev;
1102 generic_shutdown_super(sb);
1103 free_anon_bdev(dev);
1104 }
1105 EXPORT_SYMBOL(kill_anon_super);
1106
1107 void kill_litter_super(struct super_block *sb)
1108 {
1109 if (sb->s_root)
1110 d_genocide(sb->s_root);
1111 kill_anon_super(sb);
1112 }
1113 EXPORT_SYMBOL(kill_litter_super);
1114
1115 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1116 {
1117 return set_anon_super(sb, NULL);
1118 }
1119 EXPORT_SYMBOL(set_anon_super_fc);
1120
1121 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1122 {
1123 return sb->s_fs_info == fc->s_fs_info;
1124 }
1125
1126 static int test_single_super(struct super_block *s, struct fs_context *fc)
1127 {
1128 return 1;
1129 }
1130
1131 /**
1132 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1133 * @fc: The filesystem context holding the parameters
1134 * @keying: How to distinguish superblocks
1135 * @fill_super: Helper to initialise a new superblock
1136 *
1137 * Search for a superblock and create a new one if not found. The search
1138 * criterion is controlled by @keying. If the search fails, a new superblock
1139 * is created and @fill_super() is called to initialise it.
1140 *
1141 * @keying can take one of a number of values:
1142 *
1143 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1144 * system. This is typically used for special system filesystems.
1145 *
1146 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1147 * distinct keys (where the key is in s_fs_info). Searching for the same
1148 * key again will turn up the superblock for that key.
1149 *
1150 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1151 * unkeyed. Each call will get a new superblock.
1152 *
1153 * A permissions check is made by sget_fc() unless we're getting a superblock
1154 * for a kernel-internal mount or a submount.
1155 */
1156 int vfs_get_super(struct fs_context *fc,
1157 enum vfs_get_super_keying keying,
1158 int (*fill_super)(struct super_block *sb,
1159 struct fs_context *fc))
1160 {
1161 int (*test)(struct super_block *, struct fs_context *);
1162 struct super_block *sb;
1163
1164 switch (keying) {
1165 case vfs_get_single_super:
1166 test = test_single_super;
1167 break;
1168 case vfs_get_keyed_super:
1169 test = test_keyed_super;
1170 break;
1171 case vfs_get_independent_super:
1172 test = NULL;
1173 break;
1174 default:
1175 BUG();
1176 }
1177
1178 sb = sget_fc(fc, test, set_anon_super_fc);
1179 if (IS_ERR(sb))
1180 return PTR_ERR(sb);
1181
1182 if (!sb->s_root) {
1183 int err = fill_super(sb, fc);
1184 if (err) {
1185 deactivate_locked_super(sb);
1186 return err;
1187 }
1188
1189 sb->s_flags |= SB_ACTIVE;
1190 }
1191
1192 BUG_ON(fc->root);
1193 fc->root = dget(sb->s_root);
1194 return 0;
1195 }
1196 EXPORT_SYMBOL(vfs_get_super);
1197
1198 int get_tree_nodev(struct fs_context *fc,
1199 int (*fill_super)(struct super_block *sb,
1200 struct fs_context *fc))
1201 {
1202 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1203 }
1204 EXPORT_SYMBOL(get_tree_nodev);
1205
1206 int get_tree_single(struct fs_context *fc,
1207 int (*fill_super)(struct super_block *sb,
1208 struct fs_context *fc))
1209 {
1210 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1211 }
1212 EXPORT_SYMBOL(get_tree_single);
1213
1214 #ifdef CONFIG_BLOCK
1215 static int set_bdev_super(struct super_block *s, void *data)
1216 {
1217 s->s_bdev = data;
1218 s->s_dev = s->s_bdev->bd_dev;
1219 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1220
1221 return 0;
1222 }
1223
1224 static int test_bdev_super(struct super_block *s, void *data)
1225 {
1226 return (void *)s->s_bdev == data;
1227 }
1228
1229 struct dentry *mount_bdev(struct file_system_type *fs_type,
1230 int flags, const char *dev_name, void *data,
1231 int (*fill_super)(struct super_block *, void *, int))
1232 {
1233 struct block_device *bdev;
1234 struct super_block *s;
1235 fmode_t mode = FMODE_READ | FMODE_EXCL;
1236 int error = 0;
1237
1238 if (!(flags & SB_RDONLY))
1239 mode |= FMODE_WRITE;
1240
1241 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1242 if (IS_ERR(bdev))
1243 return ERR_CAST(bdev);
1244
1245 /*
1246 * once the super is inserted into the list by sget, s_umount
1247 * will protect the lockfs code from trying to start a snapshot
1248 * while we are mounting
1249 */
1250 mutex_lock(&bdev->bd_fsfreeze_mutex);
1251 if (bdev->bd_fsfreeze_count > 0) {
1252 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1253 error = -EBUSY;
1254 goto error_bdev;
1255 }
1256 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1257 bdev);
1258 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1259 if (IS_ERR(s))
1260 goto error_s;
1261
1262 if (s->s_root) {
1263 if ((flags ^ s->s_flags) & SB_RDONLY) {
1264 deactivate_locked_super(s);
1265 error = -EBUSY;
1266 goto error_bdev;
1267 }
1268
1269 /*
1270 * s_umount nests inside bd_mutex during
1271 * __invalidate_device(). blkdev_put() acquires
1272 * bd_mutex and can't be called under s_umount. Drop
1273 * s_umount temporarily. This is safe as we're
1274 * holding an active reference.
1275 */
1276 up_write(&s->s_umount);
1277 blkdev_put(bdev, mode);
1278 down_write(&s->s_umount);
1279 } else {
1280 s->s_mode = mode;
1281 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1282 sb_set_blocksize(s, block_size(bdev));
1283 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1284 if (error) {
1285 deactivate_locked_super(s);
1286 goto error;
1287 }
1288
1289 s->s_flags |= SB_ACTIVE;
1290 bdev->bd_super = s;
1291 }
1292
1293 return dget(s->s_root);
1294
1295 error_s:
1296 error = PTR_ERR(s);
1297 error_bdev:
1298 blkdev_put(bdev, mode);
1299 error:
1300 return ERR_PTR(error);
1301 }
1302 EXPORT_SYMBOL(mount_bdev);
1303
1304 void kill_block_super(struct super_block *sb)
1305 {
1306 struct block_device *bdev = sb->s_bdev;
1307 fmode_t mode = sb->s_mode;
1308
1309 bdev->bd_super = NULL;
1310 generic_shutdown_super(sb);
1311 sync_blockdev(bdev);
1312 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1313 blkdev_put(bdev, mode | FMODE_EXCL);
1314 }
1315
1316 EXPORT_SYMBOL(kill_block_super);
1317 #endif
1318
1319 struct dentry *mount_nodev(struct file_system_type *fs_type,
1320 int flags, void *data,
1321 int (*fill_super)(struct super_block *, void *, int))
1322 {
1323 int error;
1324 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1325
1326 if (IS_ERR(s))
1327 return ERR_CAST(s);
1328
1329 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1330 if (error) {
1331 deactivate_locked_super(s);
1332 return ERR_PTR(error);
1333 }
1334 s->s_flags |= SB_ACTIVE;
1335 return dget(s->s_root);
1336 }
1337 EXPORT_SYMBOL(mount_nodev);
1338
1339 static int reconfigure_single(struct super_block *s,
1340 int flags, void *data)
1341 {
1342 struct fs_context *fc;
1343 int ret;
1344
1345 /* The caller really need to be passing fc down into mount_single(),
1346 * then a chunk of this can be removed. [Bollocks -- AV]
1347 * Better yet, reconfiguration shouldn't happen, but rather the second
1348 * mount should be rejected if the parameters are not compatible.
1349 */
1350 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1351 if (IS_ERR(fc))
1352 return PTR_ERR(fc);
1353
1354 ret = parse_monolithic_mount_data(fc, data);
1355 if (ret < 0)
1356 goto out;
1357
1358 ret = reconfigure_super(fc);
1359 out:
1360 put_fs_context(fc);
1361 return ret;
1362 }
1363
1364 static int compare_single(struct super_block *s, void *p)
1365 {
1366 return 1;
1367 }
1368
1369 struct dentry *mount_single(struct file_system_type *fs_type,
1370 int flags, void *data,
1371 int (*fill_super)(struct super_block *, void *, int))
1372 {
1373 struct super_block *s;
1374 int error;
1375
1376 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1377 if (IS_ERR(s))
1378 return ERR_CAST(s);
1379 if (!s->s_root) {
1380 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1381 if (!error)
1382 s->s_flags |= SB_ACTIVE;
1383 } else {
1384 error = reconfigure_single(s, flags, data);
1385 }
1386 if (unlikely(error)) {
1387 deactivate_locked_super(s);
1388 return ERR_PTR(error);
1389 }
1390 return dget(s->s_root);
1391 }
1392 EXPORT_SYMBOL(mount_single);
1393
1394 /**
1395 * vfs_get_tree - Get the mountable root
1396 * @fc: The superblock configuration context.
1397 *
1398 * The filesystem is invoked to get or create a superblock which can then later
1399 * be used for mounting. The filesystem places a pointer to the root to be
1400 * used for mounting in @fc->root.
1401 */
1402 int vfs_get_tree(struct fs_context *fc)
1403 {
1404 struct super_block *sb;
1405 int error;
1406
1407 if (fc->root)
1408 return -EBUSY;
1409
1410 /* Get the mountable root in fc->root, with a ref on the root and a ref
1411 * on the superblock.
1412 */
1413 error = fc->ops->get_tree(fc);
1414 if (error < 0)
1415 return error;
1416
1417 if (!fc->root) {
1418 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1419 fc->fs_type->name);
1420 /* We don't know what the locking state of the superblock is -
1421 * if there is a superblock.
1422 */
1423 BUG();
1424 }
1425
1426 sb = fc->root->d_sb;
1427 WARN_ON(!sb->s_bdi);
1428
1429 if (fc->subtype && !sb->s_subtype) {
1430 sb->s_subtype = fc->subtype;
1431 fc->subtype = NULL;
1432 }
1433
1434 /*
1435 * Write barrier is for super_cache_count(). We place it before setting
1436 * SB_BORN as the data dependency between the two functions is the
1437 * superblock structure contents that we just set up, not the SB_BORN
1438 * flag.
1439 */
1440 smp_wmb();
1441 sb->s_flags |= SB_BORN;
1442
1443 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1444 if (unlikely(error)) {
1445 fc_drop_locked(fc);
1446 return error;
1447 }
1448
1449 /*
1450 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1451 * but s_maxbytes was an unsigned long long for many releases. Throw
1452 * this warning for a little while to try and catch filesystems that
1453 * violate this rule.
1454 */
1455 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1456 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(vfs_get_tree);
1461
1462 /*
1463 * Setup private BDI for given superblock. It gets automatically cleaned up
1464 * in generic_shutdown_super().
1465 */
1466 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1467 {
1468 struct backing_dev_info *bdi;
1469 int err;
1470 va_list args;
1471
1472 bdi = bdi_alloc(GFP_KERNEL);
1473 if (!bdi)
1474 return -ENOMEM;
1475
1476 bdi->name = sb->s_type->name;
1477
1478 va_start(args, fmt);
1479 err = bdi_register_va(bdi, fmt, args);
1480 va_end(args);
1481 if (err) {
1482 bdi_put(bdi);
1483 return err;
1484 }
1485 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1486 sb->s_bdi = bdi;
1487
1488 return 0;
1489 }
1490 EXPORT_SYMBOL(super_setup_bdi_name);
1491
1492 /*
1493 * Setup private BDI for given superblock. I gets automatically cleaned up
1494 * in generic_shutdown_super().
1495 */
1496 int super_setup_bdi(struct super_block *sb)
1497 {
1498 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1499
1500 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1501 atomic_long_inc_return(&bdi_seq));
1502 }
1503 EXPORT_SYMBOL(super_setup_bdi);
1504
1505 /*
1506 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1507 * instead.
1508 */
1509 void __sb_end_write(struct super_block *sb, int level)
1510 {
1511 percpu_up_read(sb->s_writers.rw_sem + level-1);
1512 }
1513 EXPORT_SYMBOL(__sb_end_write);
1514
1515 /*
1516 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1517 * instead.
1518 */
1519 int __sb_start_write(struct super_block *sb, int level, bool wait)
1520 {
1521 bool force_trylock = false;
1522 int ret = 1;
1523
1524 #ifdef CONFIG_LOCKDEP
1525 /*
1526 * We want lockdep to tell us about possible deadlocks with freezing
1527 * but it's it bit tricky to properly instrument it. Getting a freeze
1528 * protection works as getting a read lock but there are subtle
1529 * problems. XFS for example gets freeze protection on internal level
1530 * twice in some cases, which is OK only because we already hold a
1531 * freeze protection also on higher level. Due to these cases we have
1532 * to use wait == F (trylock mode) which must not fail.
1533 */
1534 if (wait) {
1535 int i;
1536
1537 for (i = 0; i < level - 1; i++)
1538 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1539 force_trylock = true;
1540 break;
1541 }
1542 }
1543 #endif
1544 if (wait && !force_trylock)
1545 percpu_down_read(sb->s_writers.rw_sem + level-1);
1546 else
1547 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1548
1549 WARN_ON(force_trylock && !ret);
1550 return ret;
1551 }
1552 EXPORT_SYMBOL(__sb_start_write);
1553
1554 /**
1555 * sb_wait_write - wait until all writers to given file system finish
1556 * @sb: the super for which we wait
1557 * @level: type of writers we wait for (normal vs page fault)
1558 *
1559 * This function waits until there are no writers of given type to given file
1560 * system.
1561 */
1562 static void sb_wait_write(struct super_block *sb, int level)
1563 {
1564 percpu_down_write(sb->s_writers.rw_sem + level-1);
1565 }
1566
1567 /*
1568 * We are going to return to userspace and forget about these locks, the
1569 * ownership goes to the caller of thaw_super() which does unlock().
1570 */
1571 static void lockdep_sb_freeze_release(struct super_block *sb)
1572 {
1573 int level;
1574
1575 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1576 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1577 }
1578
1579 /*
1580 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1581 */
1582 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1583 {
1584 int level;
1585
1586 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1587 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1588 }
1589
1590 static void sb_freeze_unlock(struct super_block *sb)
1591 {
1592 int level;
1593
1594 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1595 percpu_up_write(sb->s_writers.rw_sem + level);
1596 }
1597
1598 /**
1599 * freeze_super - lock the filesystem and force it into a consistent state
1600 * @sb: the super to lock
1601 *
1602 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1603 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1604 * -EBUSY.
1605 *
1606 * During this function, sb->s_writers.frozen goes through these values:
1607 *
1608 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1609 *
1610 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1611 * writes should be blocked, though page faults are still allowed. We wait for
1612 * all writes to complete and then proceed to the next stage.
1613 *
1614 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1615 * but internal fs threads can still modify the filesystem (although they
1616 * should not dirty new pages or inodes), writeback can run etc. After waiting
1617 * for all running page faults we sync the filesystem which will clean all
1618 * dirty pages and inodes (no new dirty pages or inodes can be created when
1619 * sync is running).
1620 *
1621 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1622 * modification are blocked (e.g. XFS preallocation truncation on inode
1623 * reclaim). This is usually implemented by blocking new transactions for
1624 * filesystems that have them and need this additional guard. After all
1625 * internal writers are finished we call ->freeze_fs() to finish filesystem
1626 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1627 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1628 *
1629 * sb->s_writers.frozen is protected by sb->s_umount.
1630 */
1631 int freeze_super(struct super_block *sb)
1632 {
1633 int ret;
1634
1635 atomic_inc(&sb->s_active);
1636 down_write(&sb->s_umount);
1637 if (sb->s_writers.frozen != SB_UNFROZEN) {
1638 deactivate_locked_super(sb);
1639 return -EBUSY;
1640 }
1641
1642 if (!(sb->s_flags & SB_BORN)) {
1643 up_write(&sb->s_umount);
1644 return 0; /* sic - it's "nothing to do" */
1645 }
1646
1647 if (sb_rdonly(sb)) {
1648 /* Nothing to do really... */
1649 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1650 up_write(&sb->s_umount);
1651 return 0;
1652 }
1653
1654 sb->s_writers.frozen = SB_FREEZE_WRITE;
1655 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1656 up_write(&sb->s_umount);
1657 sb_wait_write(sb, SB_FREEZE_WRITE);
1658 down_write(&sb->s_umount);
1659
1660 /* Now we go and block page faults... */
1661 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1662 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1663
1664 /* All writers are done so after syncing there won't be dirty data */
1665 sync_filesystem(sb);
1666
1667 /* Now wait for internal filesystem counter */
1668 sb->s_writers.frozen = SB_FREEZE_FS;
1669 sb_wait_write(sb, SB_FREEZE_FS);
1670
1671 if (sb->s_op->freeze_fs) {
1672 ret = sb->s_op->freeze_fs(sb);
1673 if (ret) {
1674 printk(KERN_ERR
1675 "VFS:Filesystem freeze failed\n");
1676 sb->s_writers.frozen = SB_UNFROZEN;
1677 sb_freeze_unlock(sb);
1678 wake_up(&sb->s_writers.wait_unfrozen);
1679 deactivate_locked_super(sb);
1680 return ret;
1681 }
1682 }
1683 /*
1684 * For debugging purposes so that fs can warn if it sees write activity
1685 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1686 */
1687 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1688 lockdep_sb_freeze_release(sb);
1689 up_write(&sb->s_umount);
1690 return 0;
1691 }
1692 EXPORT_SYMBOL(freeze_super);
1693
1694 /**
1695 * thaw_super -- unlock filesystem
1696 * @sb: the super to thaw
1697 *
1698 * Unlocks the filesystem and marks it writeable again after freeze_super().
1699 */
1700 static int thaw_super_locked(struct super_block *sb)
1701 {
1702 int error;
1703
1704 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1705 up_write(&sb->s_umount);
1706 return -EINVAL;
1707 }
1708
1709 if (sb_rdonly(sb)) {
1710 sb->s_writers.frozen = SB_UNFROZEN;
1711 goto out;
1712 }
1713
1714 lockdep_sb_freeze_acquire(sb);
1715
1716 if (sb->s_op->unfreeze_fs) {
1717 error = sb->s_op->unfreeze_fs(sb);
1718 if (error) {
1719 printk(KERN_ERR
1720 "VFS:Filesystem thaw failed\n");
1721 lockdep_sb_freeze_release(sb);
1722 up_write(&sb->s_umount);
1723 return error;
1724 }
1725 }
1726
1727 sb->s_writers.frozen = SB_UNFROZEN;
1728 sb_freeze_unlock(sb);
1729 out:
1730 wake_up(&sb->s_writers.wait_unfrozen);
1731 deactivate_locked_super(sb);
1732 return 0;
1733 }
1734
1735 int thaw_super(struct super_block *sb)
1736 {
1737 down_write(&sb->s_umount);
1738 return thaw_super_locked(sb);
1739 }
1740 EXPORT_SYMBOL(thaw_super);