]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/super.c
UBUNTU: snapcraft.yaml: various improvements
[mirror_ubuntu-artful-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
37 #include "internal.h"
38
39
40 static LIST_HEAD(super_blocks);
41 static DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!trylock_super(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80
81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
86
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 *
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
98 */
99 sc->nr_to_scan = dentries + 1;
100 freed = prune_dcache_sb(sb, sc);
101 sc->nr_to_scan = inodes + 1;
102 freed += prune_icache_sb(sb, sc);
103
104 if (fs_objects) {
105 sc->nr_to_scan = fs_objects + 1;
106 freed += sb->s_op->free_cached_objects(sb, sc);
107 }
108
109 up_read(&sb->s_umount);
110 return freed;
111 }
112
113 static unsigned long super_cache_count(struct shrinker *shrink,
114 struct shrink_control *sc)
115 {
116 struct super_block *sb;
117 long total_objects = 0;
118
119 sb = container_of(shrink, struct super_block, s_shrink);
120
121 /*
122 * Don't call trylock_super as it is a potential
123 * scalability bottleneck. The counts could get updated
124 * between super_cache_count and super_cache_scan anyway.
125 * Call to super_cache_count with shrinker_rwsem held
126 * ensures the safety of call to list_lru_shrink_count() and
127 * s_op->nr_cached_objects().
128 */
129 if (sb->s_op && sb->s_op->nr_cached_objects)
130 total_objects = sb->s_op->nr_cached_objects(sb, sc);
131
132 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
133 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134
135 total_objects = vfs_pressure_ratio(total_objects);
136 return total_objects;
137 }
138
139 static void destroy_super_work(struct work_struct *work)
140 {
141 struct super_block *s = container_of(work, struct super_block,
142 destroy_work);
143 int i;
144
145 for (i = 0; i < SB_FREEZE_LEVELS; i++)
146 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
147 kfree(s);
148 }
149
150 static void destroy_super_rcu(struct rcu_head *head)
151 {
152 struct super_block *s = container_of(head, struct super_block, rcu);
153 INIT_WORK(&s->destroy_work, destroy_super_work);
154 schedule_work(&s->destroy_work);
155 }
156
157 /**
158 * destroy_super - frees a superblock
159 * @s: superblock to free
160 *
161 * Frees a superblock.
162 */
163 static void destroy_super(struct super_block *s)
164 {
165 list_lru_destroy(&s->s_dentry_lru);
166 list_lru_destroy(&s->s_inode_lru);
167 security_sb_free(s);
168 WARN_ON(!list_empty(&s->s_mounts));
169 put_user_ns(s->s_user_ns);
170 kfree(s->s_subtype);
171 kfree(s->s_options);
172 call_rcu(&s->rcu, destroy_super_rcu);
173 }
174
175 /**
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
180 *
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
183 */
184 static struct super_block *alloc_super(struct file_system_type *type, int flags,
185 struct user_namespace *user_ns)
186 {
187 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
188 static const struct super_operations default_op;
189 int i;
190
191 if (!s)
192 return NULL;
193
194 INIT_LIST_HEAD(&s->s_mounts);
195 s->s_user_ns = get_user_ns(user_ns);
196
197 if (security_sb_alloc(s))
198 goto fail;
199
200 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
201 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
202 sb_writers_name[i],
203 &type->s_writers_key[i]))
204 goto fail;
205 }
206 init_waitqueue_head(&s->s_writers.wait_unfrozen);
207 s->s_bdi = &noop_backing_dev_info;
208 s->s_flags = flags;
209 INIT_HLIST_NODE(&s->s_instances);
210 INIT_HLIST_BL_HEAD(&s->s_anon);
211 mutex_init(&s->s_sync_lock);
212 INIT_LIST_HEAD(&s->s_inodes);
213 spin_lock_init(&s->s_inode_list_lock);
214
215 if (list_lru_init_memcg(&s->s_dentry_lru))
216 goto fail;
217 if (list_lru_init_memcg(&s->s_inode_lru))
218 goto fail;
219
220 init_rwsem(&s->s_umount);
221 lockdep_set_class(&s->s_umount, &type->s_umount_key);
222 /*
223 * sget() can have s_umount recursion.
224 *
225 * When it cannot find a suitable sb, it allocates a new
226 * one (this one), and tries again to find a suitable old
227 * one.
228 *
229 * In case that succeeds, it will acquire the s_umount
230 * lock of the old one. Since these are clearly distrinct
231 * locks, and this object isn't exposed yet, there's no
232 * risk of deadlocks.
233 *
234 * Annotate this by putting this lock in a different
235 * subclass.
236 */
237 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
238 s->s_count = 1;
239 atomic_set(&s->s_active, 1);
240 mutex_init(&s->s_vfs_rename_mutex);
241 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
242 mutex_init(&s->s_dquot.dqio_mutex);
243 mutex_init(&s->s_dquot.dqonoff_mutex);
244 s->s_maxbytes = MAX_NON_LFS;
245 s->s_op = &default_op;
246 s->s_time_gran = 1000000000;
247 s->cleancache_poolid = CLEANCACHE_NO_POOL;
248
249 s->s_shrink.seeks = DEFAULT_SEEKS;
250 s->s_shrink.scan_objects = super_cache_scan;
251 s->s_shrink.count_objects = super_cache_count;
252 s->s_shrink.batch = 1024;
253 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
254 return s;
255
256 fail:
257 destroy_super(s);
258 return NULL;
259 }
260
261 /* Superblock refcounting */
262
263 /*
264 * Drop a superblock's refcount. The caller must hold sb_lock.
265 */
266 static void __put_super(struct super_block *sb)
267 {
268 if (!--sb->s_count) {
269 list_del_init(&sb->s_list);
270 destroy_super(sb);
271 }
272 }
273
274 /**
275 * put_super - drop a temporary reference to superblock
276 * @sb: superblock in question
277 *
278 * Drops a temporary reference, frees superblock if there's no
279 * references left.
280 */
281 static void put_super(struct super_block *sb)
282 {
283 spin_lock(&sb_lock);
284 __put_super(sb);
285 spin_unlock(&sb_lock);
286 }
287
288
289 /**
290 * deactivate_locked_super - drop an active reference to superblock
291 * @s: superblock to deactivate
292 *
293 * Drops an active reference to superblock, converting it into a temprory
294 * one if there is no other active references left. In that case we
295 * tell fs driver to shut it down and drop the temporary reference we
296 * had just acquired.
297 *
298 * Caller holds exclusive lock on superblock; that lock is released.
299 */
300 void deactivate_locked_super(struct super_block *s)
301 {
302 struct file_system_type *fs = s->s_type;
303 if (atomic_dec_and_test(&s->s_active)) {
304 cleancache_invalidate_fs(s);
305 unregister_shrinker(&s->s_shrink);
306 fs->kill_sb(s);
307
308 /*
309 * Since list_lru_destroy() may sleep, we cannot call it from
310 * put_super(), where we hold the sb_lock. Therefore we destroy
311 * the lru lists right now.
312 */
313 list_lru_destroy(&s->s_dentry_lru);
314 list_lru_destroy(&s->s_inode_lru);
315
316 put_filesystem(fs);
317 put_super(s);
318 } else {
319 up_write(&s->s_umount);
320 }
321 }
322
323 EXPORT_SYMBOL(deactivate_locked_super);
324
325 /**
326 * deactivate_super - drop an active reference to superblock
327 * @s: superblock to deactivate
328 *
329 * Variant of deactivate_locked_super(), except that superblock is *not*
330 * locked by caller. If we are going to drop the final active reference,
331 * lock will be acquired prior to that.
332 */
333 void deactivate_super(struct super_block *s)
334 {
335 if (!atomic_add_unless(&s->s_active, -1, 1)) {
336 down_write(&s->s_umount);
337 deactivate_locked_super(s);
338 }
339 }
340
341 EXPORT_SYMBOL(deactivate_super);
342
343 /**
344 * grab_super - acquire an active reference
345 * @s: reference we are trying to make active
346 *
347 * Tries to acquire an active reference. grab_super() is used when we
348 * had just found a superblock in super_blocks or fs_type->fs_supers
349 * and want to turn it into a full-blown active reference. grab_super()
350 * is called with sb_lock held and drops it. Returns 1 in case of
351 * success, 0 if we had failed (superblock contents was already dead or
352 * dying when grab_super() had been called). Note that this is only
353 * called for superblocks not in rundown mode (== ones still on ->fs_supers
354 * of their type), so increment of ->s_count is OK here.
355 */
356 static int grab_super(struct super_block *s) __releases(sb_lock)
357 {
358 s->s_count++;
359 spin_unlock(&sb_lock);
360 down_write(&s->s_umount);
361 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
362 put_super(s);
363 return 1;
364 }
365 up_write(&s->s_umount);
366 put_super(s);
367 return 0;
368 }
369
370 /*
371 * trylock_super - try to grab ->s_umount shared
372 * @sb: reference we are trying to grab
373 *
374 * Try to prevent fs shutdown. This is used in places where we
375 * cannot take an active reference but we need to ensure that the
376 * filesystem is not shut down while we are working on it. It returns
377 * false if we cannot acquire s_umount or if we lose the race and
378 * filesystem already got into shutdown, and returns true with the s_umount
379 * lock held in read mode in case of success. On successful return,
380 * the caller must drop the s_umount lock when done.
381 *
382 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
383 * The reason why it's safe is that we are OK with doing trylock instead
384 * of down_read(). There's a couple of places that are OK with that, but
385 * it's very much not a general-purpose interface.
386 */
387 bool trylock_super(struct super_block *sb)
388 {
389 if (down_read_trylock(&sb->s_umount)) {
390 if (!hlist_unhashed(&sb->s_instances) &&
391 sb->s_root && (sb->s_flags & MS_BORN))
392 return true;
393 up_read(&sb->s_umount);
394 }
395
396 return false;
397 }
398
399 /**
400 * generic_shutdown_super - common helper for ->kill_sb()
401 * @sb: superblock to kill
402 *
403 * generic_shutdown_super() does all fs-independent work on superblock
404 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
405 * that need destruction out of superblock, call generic_shutdown_super()
406 * and release aforementioned objects. Note: dentries and inodes _are_
407 * taken care of and do not need specific handling.
408 *
409 * Upon calling this function, the filesystem may no longer alter or
410 * rearrange the set of dentries belonging to this super_block, nor may it
411 * change the attachments of dentries to inodes.
412 */
413 void generic_shutdown_super(struct super_block *sb)
414 {
415 const struct super_operations *sop = sb->s_op;
416
417 if (sb->s_root) {
418 shrink_dcache_for_umount(sb);
419 sync_filesystem(sb);
420 sb->s_flags &= ~MS_ACTIVE;
421
422 fsnotify_unmount_inodes(sb);
423 cgroup_writeback_umount();
424
425 evict_inodes(sb);
426
427 if (sb->s_dio_done_wq) {
428 destroy_workqueue(sb->s_dio_done_wq);
429 sb->s_dio_done_wq = NULL;
430 }
431
432 if (sop->put_super)
433 sop->put_super(sb);
434
435 if (!list_empty(&sb->s_inodes)) {
436 printk("VFS: Busy inodes after unmount of %s. "
437 "Self-destruct in 5 seconds. Have a nice day...\n",
438 sb->s_id);
439 }
440 }
441 spin_lock(&sb_lock);
442 /* should be initialized for __put_super_and_need_restart() */
443 hlist_del_init(&sb->s_instances);
444 spin_unlock(&sb_lock);
445 up_write(&sb->s_umount);
446 }
447
448 EXPORT_SYMBOL(generic_shutdown_super);
449
450 /**
451 * sget_userns - find or create a superblock
452 * @type: filesystem type superblock should belong to
453 * @test: comparison callback
454 * @set: setup callback
455 * @flags: mount flags
456 * @user_ns: User namespace for the super_block
457 * @data: argument to each of them
458 */
459 struct super_block *sget_userns(struct file_system_type *type,
460 int (*test)(struct super_block *,void *),
461 int (*set)(struct super_block *,void *),
462 int flags, struct user_namespace *user_ns,
463 void *data)
464 {
465 struct super_block *s = NULL;
466 struct super_block *old;
467 int err;
468
469 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
470 !(type->fs_flags & FS_USERNS_MOUNT) &&
471 !capable(CAP_SYS_ADMIN))
472 return ERR_PTR(-EPERM);
473 retry:
474 spin_lock(&sb_lock);
475 if (test) {
476 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
477 if (!test(old, data))
478 continue;
479 if (user_ns != old->s_user_ns) {
480 spin_unlock(&sb_lock);
481 if (s) {
482 up_write(&s->s_umount);
483 destroy_super(s);
484 }
485 return ERR_PTR(-EBUSY);
486 }
487 if (!grab_super(old))
488 goto retry;
489 if (s) {
490 up_write(&s->s_umount);
491 destroy_super(s);
492 s = NULL;
493 }
494 return old;
495 }
496 }
497 if (!s) {
498 spin_unlock(&sb_lock);
499 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
500 if (!s)
501 return ERR_PTR(-ENOMEM);
502 goto retry;
503 }
504
505 err = set(s, data);
506 if (err) {
507 spin_unlock(&sb_lock);
508 up_write(&s->s_umount);
509 destroy_super(s);
510 return ERR_PTR(err);
511 }
512 s->s_type = type;
513 strlcpy(s->s_id, type->name, sizeof(s->s_id));
514 list_add_tail(&s->s_list, &super_blocks);
515 hlist_add_head(&s->s_instances, &type->fs_supers);
516 spin_unlock(&sb_lock);
517 get_filesystem(type);
518 register_shrinker(&s->s_shrink);
519 return s;
520 }
521
522 EXPORT_SYMBOL(sget_userns);
523
524 /**
525 * sget - find or create a superblock
526 * @type: filesystem type superblock should belong to
527 * @test: comparison callback
528 * @set: setup callback
529 * @flags: mount flags
530 * @data: argument to each of them
531 */
532 struct super_block *sget(struct file_system_type *type,
533 int (*test)(struct super_block *,void *),
534 int (*set)(struct super_block *,void *),
535 int flags,
536 void *data)
537 {
538 struct user_namespace *user_ns = current_user_ns();
539
540 /* We don't yet pass the user namespace of the parent
541 * mount through to here so always use &init_user_ns
542 * until that changes.
543 */
544 if (flags & MS_SUBMOUNT)
545 user_ns = &init_user_ns;
546
547 /* Ensure the requestor has permissions over the target filesystem */
548 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
549 return ERR_PTR(-EPERM);
550
551 return sget_userns(type, test, set, flags, user_ns, data);
552 }
553
554 EXPORT_SYMBOL(sget);
555
556 void drop_super(struct super_block *sb)
557 {
558 up_read(&sb->s_umount);
559 put_super(sb);
560 }
561
562 EXPORT_SYMBOL(drop_super);
563
564 /**
565 * iterate_supers - call function for all active superblocks
566 * @f: function to call
567 * @arg: argument to pass to it
568 *
569 * Scans the superblock list and calls given function, passing it
570 * locked superblock and given argument.
571 */
572 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
573 {
574 struct super_block *sb, *p = NULL;
575
576 spin_lock(&sb_lock);
577 list_for_each_entry(sb, &super_blocks, s_list) {
578 if (hlist_unhashed(&sb->s_instances))
579 continue;
580 sb->s_count++;
581 spin_unlock(&sb_lock);
582
583 down_read(&sb->s_umount);
584 if (sb->s_root && (sb->s_flags & MS_BORN))
585 f(sb, arg);
586 up_read(&sb->s_umount);
587
588 spin_lock(&sb_lock);
589 if (p)
590 __put_super(p);
591 p = sb;
592 }
593 if (p)
594 __put_super(p);
595 spin_unlock(&sb_lock);
596 }
597
598 /**
599 * iterate_supers_type - call function for superblocks of given type
600 * @type: fs type
601 * @f: function to call
602 * @arg: argument to pass to it
603 *
604 * Scans the superblock list and calls given function, passing it
605 * locked superblock and given argument.
606 */
607 void iterate_supers_type(struct file_system_type *type,
608 void (*f)(struct super_block *, void *), void *arg)
609 {
610 struct super_block *sb, *p = NULL;
611
612 spin_lock(&sb_lock);
613 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
614 sb->s_count++;
615 spin_unlock(&sb_lock);
616
617 down_read(&sb->s_umount);
618 if (sb->s_root && (sb->s_flags & MS_BORN))
619 f(sb, arg);
620 up_read(&sb->s_umount);
621
622 spin_lock(&sb_lock);
623 if (p)
624 __put_super(p);
625 p = sb;
626 }
627 if (p)
628 __put_super(p);
629 spin_unlock(&sb_lock);
630 }
631
632 EXPORT_SYMBOL(iterate_supers_type);
633
634 /**
635 * get_super - get the superblock of a device
636 * @bdev: device to get the superblock for
637 *
638 * Scans the superblock list and finds the superblock of the file system
639 * mounted on the device given. %NULL is returned if no match is found.
640 */
641
642 struct super_block *get_super(struct block_device *bdev)
643 {
644 struct super_block *sb;
645
646 if (!bdev)
647 return NULL;
648
649 spin_lock(&sb_lock);
650 rescan:
651 list_for_each_entry(sb, &super_blocks, s_list) {
652 if (hlist_unhashed(&sb->s_instances))
653 continue;
654 if (sb->s_bdev == bdev) {
655 sb->s_count++;
656 spin_unlock(&sb_lock);
657 down_read(&sb->s_umount);
658 /* still alive? */
659 if (sb->s_root && (sb->s_flags & MS_BORN))
660 return sb;
661 up_read(&sb->s_umount);
662 /* nope, got unmounted */
663 spin_lock(&sb_lock);
664 __put_super(sb);
665 goto rescan;
666 }
667 }
668 spin_unlock(&sb_lock);
669 return NULL;
670 }
671
672 EXPORT_SYMBOL(get_super);
673
674 /**
675 * get_super_thawed - get thawed superblock of a device
676 * @bdev: device to get the superblock for
677 *
678 * Scans the superblock list and finds the superblock of the file system
679 * mounted on the device. The superblock is returned once it is thawed
680 * (or immediately if it was not frozen). %NULL is returned if no match
681 * is found.
682 */
683 struct super_block *get_super_thawed(struct block_device *bdev)
684 {
685 while (1) {
686 struct super_block *s = get_super(bdev);
687 if (!s || s->s_writers.frozen == SB_UNFROZEN)
688 return s;
689 up_read(&s->s_umount);
690 wait_event(s->s_writers.wait_unfrozen,
691 s->s_writers.frozen == SB_UNFROZEN);
692 put_super(s);
693 }
694 }
695 EXPORT_SYMBOL(get_super_thawed);
696
697 /**
698 * get_active_super - get an active reference to the superblock of a device
699 * @bdev: device to get the superblock for
700 *
701 * Scans the superblock list and finds the superblock of the file system
702 * mounted on the device given. Returns the superblock with an active
703 * reference or %NULL if none was found.
704 */
705 struct super_block *get_active_super(struct block_device *bdev)
706 {
707 struct super_block *sb;
708
709 if (!bdev)
710 return NULL;
711
712 restart:
713 spin_lock(&sb_lock);
714 list_for_each_entry(sb, &super_blocks, s_list) {
715 if (hlist_unhashed(&sb->s_instances))
716 continue;
717 if (sb->s_bdev == bdev) {
718 if (!grab_super(sb))
719 goto restart;
720 up_write(&sb->s_umount);
721 return sb;
722 }
723 }
724 spin_unlock(&sb_lock);
725 return NULL;
726 }
727
728 struct super_block *user_get_super(dev_t dev)
729 {
730 struct super_block *sb;
731
732 spin_lock(&sb_lock);
733 rescan:
734 list_for_each_entry(sb, &super_blocks, s_list) {
735 if (hlist_unhashed(&sb->s_instances))
736 continue;
737 if (sb->s_dev == dev) {
738 sb->s_count++;
739 spin_unlock(&sb_lock);
740 down_read(&sb->s_umount);
741 /* still alive? */
742 if (sb->s_root && (sb->s_flags & MS_BORN))
743 return sb;
744 up_read(&sb->s_umount);
745 /* nope, got unmounted */
746 spin_lock(&sb_lock);
747 __put_super(sb);
748 goto rescan;
749 }
750 }
751 spin_unlock(&sb_lock);
752 return NULL;
753 }
754
755 /**
756 * do_remount_sb - asks filesystem to change mount options.
757 * @sb: superblock in question
758 * @flags: numeric part of options
759 * @data: the rest of options
760 * @force: whether or not to force the change
761 *
762 * Alters the mount options of a mounted file system.
763 */
764 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
765 {
766 int retval;
767 int remount_ro;
768
769 if (sb->s_writers.frozen != SB_UNFROZEN)
770 return -EBUSY;
771
772 #ifdef CONFIG_BLOCK
773 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
774 return -EACCES;
775 #endif
776
777 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
778
779 if (remount_ro) {
780 if (!hlist_empty(&sb->s_pins)) {
781 up_write(&sb->s_umount);
782 group_pin_kill(&sb->s_pins);
783 down_write(&sb->s_umount);
784 if (!sb->s_root)
785 return 0;
786 if (sb->s_writers.frozen != SB_UNFROZEN)
787 return -EBUSY;
788 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
789 }
790 }
791 shrink_dcache_sb(sb);
792
793 /* If we are remounting RDONLY and current sb is read/write,
794 make sure there are no rw files opened */
795 if (remount_ro) {
796 if (force) {
797 sb->s_readonly_remount = 1;
798 smp_wmb();
799 } else {
800 retval = sb_prepare_remount_readonly(sb);
801 if (retval)
802 return retval;
803 }
804 }
805
806 if (sb->s_op->remount_fs) {
807 retval = sb->s_op->remount_fs(sb, &flags, data);
808 if (retval) {
809 if (!force)
810 goto cancel_readonly;
811 /* If forced remount, go ahead despite any errors */
812 WARN(1, "forced remount of a %s fs returned %i\n",
813 sb->s_type->name, retval);
814 }
815 }
816 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
817 /* Needs to be ordered wrt mnt_is_readonly() */
818 smp_wmb();
819 sb->s_readonly_remount = 0;
820
821 /*
822 * Some filesystems modify their metadata via some other path than the
823 * bdev buffer cache (eg. use a private mapping, or directories in
824 * pagecache, etc). Also file data modifications go via their own
825 * mappings. So If we try to mount readonly then copy the filesystem
826 * from bdev, we could get stale data, so invalidate it to give a best
827 * effort at coherency.
828 */
829 if (remount_ro && sb->s_bdev)
830 invalidate_bdev(sb->s_bdev);
831 return 0;
832
833 cancel_readonly:
834 sb->s_readonly_remount = 0;
835 return retval;
836 }
837
838 static void do_emergency_remount(struct work_struct *work)
839 {
840 struct super_block *sb, *p = NULL;
841
842 spin_lock(&sb_lock);
843 list_for_each_entry(sb, &super_blocks, s_list) {
844 if (hlist_unhashed(&sb->s_instances))
845 continue;
846 sb->s_count++;
847 spin_unlock(&sb_lock);
848 down_write(&sb->s_umount);
849 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
850 !(sb->s_flags & MS_RDONLY)) {
851 /*
852 * What lock protects sb->s_flags??
853 */
854 do_remount_sb(sb, MS_RDONLY, NULL, 1);
855 }
856 up_write(&sb->s_umount);
857 spin_lock(&sb_lock);
858 if (p)
859 __put_super(p);
860 p = sb;
861 }
862 if (p)
863 __put_super(p);
864 spin_unlock(&sb_lock);
865 kfree(work);
866 printk("Emergency Remount complete\n");
867 }
868
869 void emergency_remount(void)
870 {
871 struct work_struct *work;
872
873 work = kmalloc(sizeof(*work), GFP_ATOMIC);
874 if (work) {
875 INIT_WORK(work, do_emergency_remount);
876 schedule_work(work);
877 }
878 }
879
880 /*
881 * Unnamed block devices are dummy devices used by virtual
882 * filesystems which don't use real block-devices. -- jrs
883 */
884
885 static DEFINE_IDA(unnamed_dev_ida);
886 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
887 /* Many userspace utilities consider an FSID of 0 invalid.
888 * Always return at least 1 from get_anon_bdev.
889 */
890 static int unnamed_dev_start = 1;
891
892 int get_anon_bdev(dev_t *p)
893 {
894 int dev;
895 int error;
896
897 retry:
898 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
899 return -ENOMEM;
900 spin_lock(&unnamed_dev_lock);
901 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
902 if (!error)
903 unnamed_dev_start = dev + 1;
904 spin_unlock(&unnamed_dev_lock);
905 if (error == -EAGAIN)
906 /* We raced and lost with another CPU. */
907 goto retry;
908 else if (error)
909 return -EAGAIN;
910
911 if (dev >= (1 << MINORBITS)) {
912 spin_lock(&unnamed_dev_lock);
913 ida_remove(&unnamed_dev_ida, dev);
914 if (unnamed_dev_start > dev)
915 unnamed_dev_start = dev;
916 spin_unlock(&unnamed_dev_lock);
917 return -EMFILE;
918 }
919 *p = MKDEV(0, dev & MINORMASK);
920 return 0;
921 }
922 EXPORT_SYMBOL(get_anon_bdev);
923
924 void free_anon_bdev(dev_t dev)
925 {
926 int slot = MINOR(dev);
927 spin_lock(&unnamed_dev_lock);
928 ida_remove(&unnamed_dev_ida, slot);
929 if (slot < unnamed_dev_start)
930 unnamed_dev_start = slot;
931 spin_unlock(&unnamed_dev_lock);
932 }
933 EXPORT_SYMBOL(free_anon_bdev);
934
935 int set_anon_super(struct super_block *s, void *data)
936 {
937 return get_anon_bdev(&s->s_dev);
938 }
939
940 EXPORT_SYMBOL(set_anon_super);
941
942 void kill_anon_super(struct super_block *sb)
943 {
944 dev_t dev = sb->s_dev;
945 generic_shutdown_super(sb);
946 free_anon_bdev(dev);
947 }
948
949 EXPORT_SYMBOL(kill_anon_super);
950
951 void kill_litter_super(struct super_block *sb)
952 {
953 if (sb->s_root)
954 d_genocide(sb->s_root);
955 kill_anon_super(sb);
956 }
957
958 EXPORT_SYMBOL(kill_litter_super);
959
960 static int ns_test_super(struct super_block *sb, void *data)
961 {
962 return sb->s_fs_info == data;
963 }
964
965 static int ns_set_super(struct super_block *sb, void *data)
966 {
967 sb->s_fs_info = data;
968 return set_anon_super(sb, NULL);
969 }
970
971 struct dentry *mount_ns(struct file_system_type *fs_type,
972 int flags, void *data, void *ns, struct user_namespace *user_ns,
973 int (*fill_super)(struct super_block *, void *, int))
974 {
975 struct super_block *sb;
976
977 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
978 * over the namespace.
979 */
980 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
981 return ERR_PTR(-EPERM);
982
983 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
984 user_ns, ns);
985 if (IS_ERR(sb))
986 return ERR_CAST(sb);
987
988 if (!sb->s_root) {
989 int err;
990 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
991 if (err) {
992 deactivate_locked_super(sb);
993 return ERR_PTR(err);
994 }
995
996 sb->s_flags |= MS_ACTIVE;
997 }
998
999 return dget(sb->s_root);
1000 }
1001
1002 EXPORT_SYMBOL(mount_ns);
1003
1004 #ifdef CONFIG_BLOCK
1005 static int set_bdev_super(struct super_block *s, void *data)
1006 {
1007 s->s_bdev = data;
1008 s->s_dev = s->s_bdev->bd_dev;
1009
1010 /*
1011 * We set the bdi here to the queue backing, file systems can
1012 * overwrite this in ->fill_super()
1013 */
1014 s->s_bdi = bdev_get_queue(s->s_bdev)->backing_dev_info;
1015 return 0;
1016 }
1017
1018 static int test_bdev_super(struct super_block *s, void *data)
1019 {
1020 return (void *)s->s_bdev == data;
1021 }
1022
1023 struct dentry *mount_bdev(struct file_system_type *fs_type,
1024 int flags, const char *dev_name, void *data,
1025 int (*fill_super)(struct super_block *, void *, int))
1026 {
1027 struct block_device *bdev;
1028 struct super_block *s;
1029 fmode_t mode = FMODE_READ | FMODE_EXCL;
1030 int error = 0;
1031
1032 if (!(flags & MS_RDONLY))
1033 mode |= FMODE_WRITE;
1034
1035 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1036 if (IS_ERR(bdev))
1037 return ERR_CAST(bdev);
1038
1039 if (current_user_ns() != &init_user_ns) {
1040 /*
1041 * For userns mounts, disallow mounting if bdev is open for
1042 * writing
1043 */
1044 if (!atomic_dec_unless_positive(&bdev->bd_inode->i_writecount)) {
1045 error = -EBUSY;
1046 goto error_bdev;
1047 }
1048 if (bdev->bd_contains != bdev &&
1049 !atomic_dec_unless_positive(&bdev->bd_contains->bd_inode->i_writecount)) {
1050 atomic_inc(&bdev->bd_inode->i_writecount);
1051 error = -EBUSY;
1052 goto error_bdev;
1053 }
1054 }
1055
1056 /*
1057 * once the super is inserted into the list by sget, s_umount
1058 * will protect the lockfs code from trying to start a snapshot
1059 * while we are mounting
1060 */
1061 mutex_lock(&bdev->bd_fsfreeze_mutex);
1062 if (bdev->bd_fsfreeze_count > 0) {
1063 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1064 error = -EBUSY;
1065 goto error_inc;
1066 }
1067 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1068 bdev);
1069 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1070 if (IS_ERR(s))
1071 goto error_s;
1072
1073 if (s->s_root) {
1074 if ((flags ^ s->s_flags) & MS_RDONLY) {
1075 deactivate_locked_super(s);
1076 error = -EBUSY;
1077 goto error_inc;
1078 }
1079
1080 /*
1081 * s_umount nests inside bd_mutex during
1082 * __invalidate_device(). blkdev_put() acquires
1083 * bd_mutex and can't be called under s_umount. Drop
1084 * s_umount temporarily. This is safe as we're
1085 * holding an active reference.
1086 */
1087 up_write(&s->s_umount);
1088 blkdev_put(bdev, mode);
1089 down_write(&s->s_umount);
1090 } else {
1091 char b[BDEVNAME_SIZE];
1092
1093 s->s_mode = mode;
1094 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1095 sb_set_blocksize(s, block_size(bdev));
1096 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1097 if (error) {
1098 deactivate_locked_super(s);
1099 goto error;
1100 }
1101
1102 s->s_flags |= MS_ACTIVE;
1103 bdev->bd_super = s;
1104 }
1105
1106 return dget(s->s_root);
1107
1108 error_s:
1109 error = PTR_ERR(s);
1110 error_inc:
1111 if (current_user_ns() != &init_user_ns) {
1112 atomic_inc(&bdev->bd_inode->i_writecount);
1113 if (bdev->bd_contains != bdev)
1114 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1115 }
1116 error_bdev:
1117 blkdev_put(bdev, mode);
1118 error:
1119 return ERR_PTR(error);
1120 }
1121 EXPORT_SYMBOL(mount_bdev);
1122
1123 void kill_block_super(struct super_block *sb)
1124 {
1125 struct block_device *bdev = sb->s_bdev;
1126 fmode_t mode = sb->s_mode;
1127
1128 bdev->bd_super = NULL;
1129 generic_shutdown_super(sb);
1130 sync_blockdev(bdev);
1131 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1132 if (sb->s_user_ns != &init_user_ns) {
1133 atomic_inc(&bdev->bd_inode->i_writecount);
1134 if (bdev->bd_contains != bdev)
1135 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1136 }
1137 blkdev_put(bdev, mode | FMODE_EXCL);
1138 }
1139
1140 EXPORT_SYMBOL(kill_block_super);
1141 #endif
1142
1143 struct dentry *mount_nodev(struct file_system_type *fs_type,
1144 int flags, void *data,
1145 int (*fill_super)(struct super_block *, void *, int))
1146 {
1147 int error;
1148 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1149
1150 if (IS_ERR(s))
1151 return ERR_CAST(s);
1152
1153 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1154 if (error) {
1155 deactivate_locked_super(s);
1156 return ERR_PTR(error);
1157 }
1158 s->s_flags |= MS_ACTIVE;
1159 return dget(s->s_root);
1160 }
1161 EXPORT_SYMBOL(mount_nodev);
1162
1163 static int compare_single(struct super_block *s, void *p)
1164 {
1165 return 1;
1166 }
1167
1168 struct dentry *mount_single(struct file_system_type *fs_type,
1169 int flags, void *data,
1170 int (*fill_super)(struct super_block *, void *, int))
1171 {
1172 struct super_block *s;
1173 int error;
1174
1175 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1176 if (IS_ERR(s))
1177 return ERR_CAST(s);
1178 if (!s->s_root) {
1179 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1180 if (error) {
1181 deactivate_locked_super(s);
1182 return ERR_PTR(error);
1183 }
1184 s->s_flags |= MS_ACTIVE;
1185 } else {
1186 do_remount_sb(s, flags, data, 0);
1187 }
1188 return dget(s->s_root);
1189 }
1190 EXPORT_SYMBOL(mount_single);
1191
1192 struct dentry *
1193 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1194 {
1195 struct dentry *root;
1196 struct super_block *sb;
1197 char *secdata = NULL;
1198 int error = -ENOMEM;
1199
1200 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1201 secdata = alloc_secdata();
1202 if (!secdata)
1203 goto out;
1204
1205 error = security_sb_copy_data(data, secdata);
1206 if (error)
1207 goto out_free_secdata;
1208 }
1209
1210 root = type->mount(type, flags, name, data);
1211 if (IS_ERR(root)) {
1212 error = PTR_ERR(root);
1213 goto out_free_secdata;
1214 }
1215 sb = root->d_sb;
1216 BUG_ON(!sb);
1217 WARN_ON(!sb->s_bdi);
1218 sb->s_flags |= MS_BORN;
1219
1220 error = security_sb_kern_mount(sb, flags, secdata);
1221 if (error)
1222 goto out_sb;
1223
1224 /*
1225 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1226 * but s_maxbytes was an unsigned long long for many releases. Throw
1227 * this warning for a little while to try and catch filesystems that
1228 * violate this rule.
1229 */
1230 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1231 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1232
1233 up_write(&sb->s_umount);
1234 free_secdata(secdata);
1235 return root;
1236 out_sb:
1237 dput(root);
1238 deactivate_locked_super(sb);
1239 out_free_secdata:
1240 free_secdata(secdata);
1241 out:
1242 return ERR_PTR(error);
1243 }
1244
1245 /*
1246 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1247 * instead.
1248 */
1249 void __sb_end_write(struct super_block *sb, int level)
1250 {
1251 percpu_up_read(sb->s_writers.rw_sem + level-1);
1252 }
1253 EXPORT_SYMBOL(__sb_end_write);
1254
1255 /*
1256 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1257 * instead.
1258 */
1259 int __sb_start_write(struct super_block *sb, int level, bool wait)
1260 {
1261 bool force_trylock = false;
1262 int ret = 1;
1263
1264 #ifdef CONFIG_LOCKDEP
1265 /*
1266 * We want lockdep to tell us about possible deadlocks with freezing
1267 * but it's it bit tricky to properly instrument it. Getting a freeze
1268 * protection works as getting a read lock but there are subtle
1269 * problems. XFS for example gets freeze protection on internal level
1270 * twice in some cases, which is OK only because we already hold a
1271 * freeze protection also on higher level. Due to these cases we have
1272 * to use wait == F (trylock mode) which must not fail.
1273 */
1274 if (wait) {
1275 int i;
1276
1277 for (i = 0; i < level - 1; i++)
1278 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1279 force_trylock = true;
1280 break;
1281 }
1282 }
1283 #endif
1284 if (wait && !force_trylock)
1285 percpu_down_read(sb->s_writers.rw_sem + level-1);
1286 else
1287 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1288
1289 WARN_ON(force_trylock & !ret);
1290 return ret;
1291 }
1292 EXPORT_SYMBOL(__sb_start_write);
1293
1294 /**
1295 * sb_wait_write - wait until all writers to given file system finish
1296 * @sb: the super for which we wait
1297 * @level: type of writers we wait for (normal vs page fault)
1298 *
1299 * This function waits until there are no writers of given type to given file
1300 * system.
1301 */
1302 static void sb_wait_write(struct super_block *sb, int level)
1303 {
1304 percpu_down_write(sb->s_writers.rw_sem + level-1);
1305 /*
1306 * We are going to return to userspace and forget about this lock, the
1307 * ownership goes to the caller of thaw_super() which does unlock.
1308 *
1309 * FIXME: we should do this before return from freeze_super() after we
1310 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1311 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1312 * this leads to lockdep false-positives, so currently we do the early
1313 * release right after acquire.
1314 */
1315 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1316 }
1317
1318 static void sb_freeze_unlock(struct super_block *sb)
1319 {
1320 int level;
1321
1322 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1323 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1324
1325 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1326 percpu_up_write(sb->s_writers.rw_sem + level);
1327 }
1328
1329 /**
1330 * freeze_super - lock the filesystem and force it into a consistent state
1331 * @sb: the super to lock
1332 *
1333 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1334 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1335 * -EBUSY.
1336 *
1337 * During this function, sb->s_writers.frozen goes through these values:
1338 *
1339 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1340 *
1341 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1342 * writes should be blocked, though page faults are still allowed. We wait for
1343 * all writes to complete and then proceed to the next stage.
1344 *
1345 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1346 * but internal fs threads can still modify the filesystem (although they
1347 * should not dirty new pages or inodes), writeback can run etc. After waiting
1348 * for all running page faults we sync the filesystem which will clean all
1349 * dirty pages and inodes (no new dirty pages or inodes can be created when
1350 * sync is running).
1351 *
1352 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1353 * modification are blocked (e.g. XFS preallocation truncation on inode
1354 * reclaim). This is usually implemented by blocking new transactions for
1355 * filesystems that have them and need this additional guard. After all
1356 * internal writers are finished we call ->freeze_fs() to finish filesystem
1357 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1358 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1359 *
1360 * sb->s_writers.frozen is protected by sb->s_umount.
1361 */
1362 int freeze_super(struct super_block *sb)
1363 {
1364 int ret;
1365
1366 atomic_inc(&sb->s_active);
1367 down_write(&sb->s_umount);
1368 if (sb->s_writers.frozen != SB_UNFROZEN) {
1369 deactivate_locked_super(sb);
1370 return -EBUSY;
1371 }
1372
1373 if (!(sb->s_flags & MS_BORN)) {
1374 up_write(&sb->s_umount);
1375 return 0; /* sic - it's "nothing to do" */
1376 }
1377
1378 if (sb->s_flags & MS_RDONLY) {
1379 /* Nothing to do really... */
1380 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1381 up_write(&sb->s_umount);
1382 return 0;
1383 }
1384
1385 sb->s_writers.frozen = SB_FREEZE_WRITE;
1386 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1387 up_write(&sb->s_umount);
1388 sb_wait_write(sb, SB_FREEZE_WRITE);
1389 down_write(&sb->s_umount);
1390
1391 /* Now we go and block page faults... */
1392 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1393 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1394
1395 /* All writers are done so after syncing there won't be dirty data */
1396 sync_filesystem(sb);
1397
1398 /* Now wait for internal filesystem counter */
1399 sb->s_writers.frozen = SB_FREEZE_FS;
1400 sb_wait_write(sb, SB_FREEZE_FS);
1401
1402 if (sb->s_op->freeze_fs) {
1403 ret = sb->s_op->freeze_fs(sb);
1404 if (ret) {
1405 printk(KERN_ERR
1406 "VFS:Filesystem freeze failed\n");
1407 sb->s_writers.frozen = SB_UNFROZEN;
1408 sb_freeze_unlock(sb);
1409 wake_up(&sb->s_writers.wait_unfrozen);
1410 deactivate_locked_super(sb);
1411 return ret;
1412 }
1413 }
1414 /*
1415 * For debugging purposes so that fs can warn if it sees write activity
1416 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1417 */
1418 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1419 up_write(&sb->s_umount);
1420 return 0;
1421 }
1422 EXPORT_SYMBOL(freeze_super);
1423
1424 /**
1425 * thaw_super -- unlock filesystem
1426 * @sb: the super to thaw
1427 *
1428 * Unlocks the filesystem and marks it writeable again after freeze_super().
1429 */
1430 int thaw_super(struct super_block *sb)
1431 {
1432 int error;
1433
1434 down_write(&sb->s_umount);
1435 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1436 up_write(&sb->s_umount);
1437 return -EINVAL;
1438 }
1439
1440 if (sb->s_flags & MS_RDONLY) {
1441 sb->s_writers.frozen = SB_UNFROZEN;
1442 goto out;
1443 }
1444
1445 if (sb->s_op->unfreeze_fs) {
1446 error = sb->s_op->unfreeze_fs(sb);
1447 if (error) {
1448 printk(KERN_ERR
1449 "VFS:Filesystem thaw failed\n");
1450 up_write(&sb->s_umount);
1451 return error;
1452 }
1453 }
1454
1455 sb->s_writers.frozen = SB_UNFROZEN;
1456 sb_freeze_unlock(sb);
1457 out:
1458 wake_up(&sb->s_writers.wait_unfrozen);
1459 deactivate_locked_super(sb);
1460 return 0;
1461 }
1462 EXPORT_SYMBOL(thaw_super);