]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/super.c
7fa0bc5065b95f62a49794407b2acabc5802ee6e
[mirror_ubuntu-bionic-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
129 */
130 if (sb->s_op && sb->s_op->nr_cached_objects)
131 total_objects = sb->s_op->nr_cached_objects(sb, sc);
132
133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135
136 total_objects = vfs_pressure_ratio(total_objects);
137 return total_objects;
138 }
139
140 static void destroy_super_work(struct work_struct *work)
141 {
142 struct super_block *s = container_of(work, struct super_block,
143 destroy_work);
144 int i;
145
146 for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 kfree(s);
149 }
150
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 struct super_block *s = container_of(head, struct super_block, rcu);
154 INIT_WORK(&s->destroy_work, destroy_super_work);
155 schedule_work(&s->destroy_work);
156 }
157
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block *s)
160 {
161 if (!s)
162 return;
163 up_write(&s->s_umount);
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 put_user_ns(s->s_user_ns);
168 kfree(s->s_subtype);
169 free_prealloced_shrinker(&s->s_shrink);
170 /* no delays needed */
171 destroy_super_work(&s->destroy_work);
172 }
173
174 /**
175 * alloc_super - create new superblock
176 * @type: filesystem type superblock should belong to
177 * @flags: the mount flags
178 * @user_ns: User namespace for the super_block
179 *
180 * Allocates and initializes a new &struct super_block. alloc_super()
181 * returns a pointer new superblock or %NULL if allocation had failed.
182 */
183 static struct super_block *alloc_super(struct file_system_type *type, int flags,
184 struct user_namespace *user_ns)
185 {
186 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
187 static const struct super_operations default_op;
188 int i;
189
190 if (!s)
191 return NULL;
192
193 INIT_LIST_HEAD(&s->s_mounts);
194 s->s_user_ns = get_user_ns(user_ns);
195 init_rwsem(&s->s_umount);
196 lockdep_set_class(&s->s_umount, &type->s_umount_key);
197 /*
198 * sget() can have s_umount recursion.
199 *
200 * When it cannot find a suitable sb, it allocates a new
201 * one (this one), and tries again to find a suitable old
202 * one.
203 *
204 * In case that succeeds, it will acquire the s_umount
205 * lock of the old one. Since these are clearly distrinct
206 * locks, and this object isn't exposed yet, there's no
207 * risk of deadlocks.
208 *
209 * Annotate this by putting this lock in a different
210 * subclass.
211 */
212 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
213
214 if (security_sb_alloc(s))
215 goto fail;
216
217 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
218 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
219 sb_writers_name[i],
220 &type->s_writers_key[i]))
221 goto fail;
222 }
223 init_waitqueue_head(&s->s_writers.wait_unfrozen);
224 s->s_bdi = &noop_backing_dev_info;
225 s->s_flags = flags;
226 if (s->s_user_ns != &init_user_ns)
227 s->s_iflags |= SB_I_NODEV;
228 INIT_HLIST_NODE(&s->s_instances);
229 INIT_HLIST_BL_HEAD(&s->s_anon);
230 mutex_init(&s->s_sync_lock);
231 INIT_LIST_HEAD(&s->s_inodes);
232 spin_lock_init(&s->s_inode_list_lock);
233 INIT_LIST_HEAD(&s->s_inodes_wb);
234 spin_lock_init(&s->s_inode_wblist_lock);
235
236 if (list_lru_init_memcg(&s->s_dentry_lru))
237 goto fail;
238 if (list_lru_init_memcg(&s->s_inode_lru))
239 goto fail;
240 s->s_count = 1;
241 atomic_set(&s->s_active, 1);
242 mutex_init(&s->s_vfs_rename_mutex);
243 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
244 init_rwsem(&s->s_dquot.dqio_sem);
245 s->s_maxbytes = MAX_NON_LFS;
246 s->s_op = &default_op;
247 s->s_time_gran = 1000000000;
248 s->cleancache_poolid = CLEANCACHE_NO_POOL;
249
250 s->s_shrink.seeks = DEFAULT_SEEKS;
251 s->s_shrink.scan_objects = super_cache_scan;
252 s->s_shrink.count_objects = super_cache_count;
253 s->s_shrink.batch = 1024;
254 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
255 if (prealloc_shrinker(&s->s_shrink))
256 goto fail;
257 return s;
258
259 fail:
260 destroy_unused_super(s);
261 return NULL;
262 }
263
264 /* Superblock refcounting */
265
266 /*
267 * Drop a superblock's refcount. The caller must hold sb_lock.
268 */
269 static void __put_super(struct super_block *s)
270 {
271 if (!--s->s_count) {
272 list_del_init(&s->s_list);
273 WARN_ON(s->s_dentry_lru.node);
274 WARN_ON(s->s_inode_lru.node);
275 WARN_ON(!list_empty(&s->s_mounts));
276 security_sb_free(s);
277 put_user_ns(s->s_user_ns);
278 kfree(s->s_subtype);
279 call_rcu(&s->rcu, destroy_super_rcu);
280 }
281 }
282
283 /**
284 * put_super - drop a temporary reference to superblock
285 * @sb: superblock in question
286 *
287 * Drops a temporary reference, frees superblock if there's no
288 * references left.
289 */
290 static void put_super(struct super_block *sb)
291 {
292 spin_lock(&sb_lock);
293 __put_super(sb);
294 spin_unlock(&sb_lock);
295 }
296
297
298 /**
299 * deactivate_locked_super - drop an active reference to superblock
300 * @s: superblock to deactivate
301 *
302 * Drops an active reference to superblock, converting it into a temporary
303 * one if there is no other active references left. In that case we
304 * tell fs driver to shut it down and drop the temporary reference we
305 * had just acquired.
306 *
307 * Caller holds exclusive lock on superblock; that lock is released.
308 */
309 void deactivate_locked_super(struct super_block *s)
310 {
311 struct file_system_type *fs = s->s_type;
312 if (atomic_dec_and_test(&s->s_active)) {
313 cleancache_invalidate_fs(s);
314 unregister_shrinker(&s->s_shrink);
315 fs->kill_sb(s);
316
317 /*
318 * Since list_lru_destroy() may sleep, we cannot call it from
319 * put_super(), where we hold the sb_lock. Therefore we destroy
320 * the lru lists right now.
321 */
322 list_lru_destroy(&s->s_dentry_lru);
323 list_lru_destroy(&s->s_inode_lru);
324
325 put_filesystem(fs);
326 put_super(s);
327 } else {
328 up_write(&s->s_umount);
329 }
330 }
331
332 EXPORT_SYMBOL(deactivate_locked_super);
333
334 /**
335 * deactivate_super - drop an active reference to superblock
336 * @s: superblock to deactivate
337 *
338 * Variant of deactivate_locked_super(), except that superblock is *not*
339 * locked by caller. If we are going to drop the final active reference,
340 * lock will be acquired prior to that.
341 */
342 void deactivate_super(struct super_block *s)
343 {
344 if (!atomic_add_unless(&s->s_active, -1, 1)) {
345 down_write(&s->s_umount);
346 deactivate_locked_super(s);
347 }
348 }
349
350 EXPORT_SYMBOL(deactivate_super);
351
352 /**
353 * grab_super - acquire an active reference
354 * @s: reference we are trying to make active
355 *
356 * Tries to acquire an active reference. grab_super() is used when we
357 * had just found a superblock in super_blocks or fs_type->fs_supers
358 * and want to turn it into a full-blown active reference. grab_super()
359 * is called with sb_lock held and drops it. Returns 1 in case of
360 * success, 0 if we had failed (superblock contents was already dead or
361 * dying when grab_super() had been called). Note that this is only
362 * called for superblocks not in rundown mode (== ones still on ->fs_supers
363 * of their type), so increment of ->s_count is OK here.
364 */
365 static int grab_super(struct super_block *s) __releases(sb_lock)
366 {
367 s->s_count++;
368 spin_unlock(&sb_lock);
369 down_write(&s->s_umount);
370 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
371 put_super(s);
372 return 1;
373 }
374 up_write(&s->s_umount);
375 put_super(s);
376 return 0;
377 }
378
379 /*
380 * trylock_super - try to grab ->s_umount shared
381 * @sb: reference we are trying to grab
382 *
383 * Try to prevent fs shutdown. This is used in places where we
384 * cannot take an active reference but we need to ensure that the
385 * filesystem is not shut down while we are working on it. It returns
386 * false if we cannot acquire s_umount or if we lose the race and
387 * filesystem already got into shutdown, and returns true with the s_umount
388 * lock held in read mode in case of success. On successful return,
389 * the caller must drop the s_umount lock when done.
390 *
391 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
392 * The reason why it's safe is that we are OK with doing trylock instead
393 * of down_read(). There's a couple of places that are OK with that, but
394 * it's very much not a general-purpose interface.
395 */
396 bool trylock_super(struct super_block *sb)
397 {
398 if (down_read_trylock(&sb->s_umount)) {
399 if (!hlist_unhashed(&sb->s_instances) &&
400 sb->s_root && (sb->s_flags & SB_BORN))
401 return true;
402 up_read(&sb->s_umount);
403 }
404
405 return false;
406 }
407
408 /**
409 * generic_shutdown_super - common helper for ->kill_sb()
410 * @sb: superblock to kill
411 *
412 * generic_shutdown_super() does all fs-independent work on superblock
413 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
414 * that need destruction out of superblock, call generic_shutdown_super()
415 * and release aforementioned objects. Note: dentries and inodes _are_
416 * taken care of and do not need specific handling.
417 *
418 * Upon calling this function, the filesystem may no longer alter or
419 * rearrange the set of dentries belonging to this super_block, nor may it
420 * change the attachments of dentries to inodes.
421 */
422 void generic_shutdown_super(struct super_block *sb)
423 {
424 const struct super_operations *sop = sb->s_op;
425
426 if (sb->s_root) {
427 shrink_dcache_for_umount(sb);
428 sync_filesystem(sb);
429 sb->s_flags &= ~SB_ACTIVE;
430
431 fsnotify_unmount_inodes(sb);
432 cgroup_writeback_umount();
433
434 evict_inodes(sb);
435
436 if (sb->s_dio_done_wq) {
437 destroy_workqueue(sb->s_dio_done_wq);
438 sb->s_dio_done_wq = NULL;
439 }
440
441 if (sop->put_super)
442 sop->put_super(sb);
443
444 if (!list_empty(&sb->s_inodes)) {
445 printk("VFS: Busy inodes after unmount of %s. "
446 "Self-destruct in 5 seconds. Have a nice day...\n",
447 sb->s_id);
448 }
449 }
450 spin_lock(&sb_lock);
451 /* should be initialized for __put_super_and_need_restart() */
452 hlist_del_init(&sb->s_instances);
453 spin_unlock(&sb_lock);
454 up_write(&sb->s_umount);
455 if (sb->s_bdi != &noop_backing_dev_info) {
456 bdi_put(sb->s_bdi);
457 sb->s_bdi = &noop_backing_dev_info;
458 }
459 }
460
461 EXPORT_SYMBOL(generic_shutdown_super);
462
463 /**
464 * sget_userns - find or create a superblock
465 * @type: filesystem type superblock should belong to
466 * @test: comparison callback
467 * @set: setup callback
468 * @flags: mount flags
469 * @user_ns: User namespace for the super_block
470 * @data: argument to each of them
471 */
472 struct super_block *sget_userns(struct file_system_type *type,
473 int (*test)(struct super_block *,void *),
474 int (*set)(struct super_block *,void *),
475 int flags, struct user_namespace *user_ns,
476 void *data)
477 {
478 struct super_block *s = NULL;
479 struct super_block *old;
480 int err;
481
482 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
483 !(type->fs_flags & FS_USERNS_MOUNT) &&
484 !capable(CAP_SYS_ADMIN))
485 return ERR_PTR(-EPERM);
486 retry:
487 spin_lock(&sb_lock);
488 if (test) {
489 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
490 if (!test(old, data))
491 continue;
492 if (user_ns != old->s_user_ns) {
493 spin_unlock(&sb_lock);
494 destroy_unused_super(s);
495 return ERR_PTR(-EBUSY);
496 }
497 if (!grab_super(old))
498 goto retry;
499 destroy_unused_super(s);
500 return old;
501 }
502 }
503 if (!s) {
504 spin_unlock(&sb_lock);
505 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
506 if (!s)
507 return ERR_PTR(-ENOMEM);
508 goto retry;
509 }
510
511 err = set(s, data);
512 if (err) {
513 spin_unlock(&sb_lock);
514 destroy_unused_super(s);
515 return ERR_PTR(err);
516 }
517 s->s_type = type;
518 strlcpy(s->s_id, type->name, sizeof(s->s_id));
519 list_add_tail(&s->s_list, &super_blocks);
520 hlist_add_head(&s->s_instances, &type->fs_supers);
521 spin_unlock(&sb_lock);
522 get_filesystem(type);
523 register_shrinker_prepared(&s->s_shrink);
524 return s;
525 }
526
527 EXPORT_SYMBOL(sget_userns);
528
529 /**
530 * sget - find or create a superblock
531 * @type: filesystem type superblock should belong to
532 * @test: comparison callback
533 * @set: setup callback
534 * @flags: mount flags
535 * @data: argument to each of them
536 */
537 struct super_block *sget(struct file_system_type *type,
538 int (*test)(struct super_block *,void *),
539 int (*set)(struct super_block *,void *),
540 int flags,
541 void *data)
542 {
543 struct user_namespace *user_ns = current_user_ns();
544
545 /* We don't yet pass the user namespace of the parent
546 * mount through to here so always use &init_user_ns
547 * until that changes.
548 */
549 if (flags & SB_SUBMOUNT)
550 user_ns = &init_user_ns;
551
552 /* Ensure the requestor has permissions over the target filesystem */
553 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
554 return ERR_PTR(-EPERM);
555
556 return sget_userns(type, test, set, flags, user_ns, data);
557 }
558
559 EXPORT_SYMBOL(sget);
560
561 void drop_super(struct super_block *sb)
562 {
563 up_read(&sb->s_umount);
564 put_super(sb);
565 }
566
567 EXPORT_SYMBOL(drop_super);
568
569 void drop_super_exclusive(struct super_block *sb)
570 {
571 up_write(&sb->s_umount);
572 put_super(sb);
573 }
574 EXPORT_SYMBOL(drop_super_exclusive);
575
576 /**
577 * iterate_supers - call function for all active superblocks
578 * @f: function to call
579 * @arg: argument to pass to it
580 *
581 * Scans the superblock list and calls given function, passing it
582 * locked superblock and given argument.
583 */
584 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
585 {
586 struct super_block *sb, *p = NULL;
587
588 spin_lock(&sb_lock);
589 list_for_each_entry(sb, &super_blocks, s_list) {
590 if (hlist_unhashed(&sb->s_instances))
591 continue;
592 sb->s_count++;
593 spin_unlock(&sb_lock);
594
595 down_read(&sb->s_umount);
596 if (sb->s_root && (sb->s_flags & SB_BORN))
597 f(sb, arg);
598 up_read(&sb->s_umount);
599
600 spin_lock(&sb_lock);
601 if (p)
602 __put_super(p);
603 p = sb;
604 }
605 if (p)
606 __put_super(p);
607 spin_unlock(&sb_lock);
608 }
609
610 /**
611 * iterate_supers_type - call function for superblocks of given type
612 * @type: fs type
613 * @f: function to call
614 * @arg: argument to pass to it
615 *
616 * Scans the superblock list and calls given function, passing it
617 * locked superblock and given argument.
618 */
619 void iterate_supers_type(struct file_system_type *type,
620 void (*f)(struct super_block *, void *), void *arg)
621 {
622 struct super_block *sb, *p = NULL;
623
624 spin_lock(&sb_lock);
625 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
626 sb->s_count++;
627 spin_unlock(&sb_lock);
628
629 down_read(&sb->s_umount);
630 if (sb->s_root && (sb->s_flags & SB_BORN))
631 f(sb, arg);
632 up_read(&sb->s_umount);
633
634 spin_lock(&sb_lock);
635 if (p)
636 __put_super(p);
637 p = sb;
638 }
639 if (p)
640 __put_super(p);
641 spin_unlock(&sb_lock);
642 }
643
644 EXPORT_SYMBOL(iterate_supers_type);
645
646 static struct super_block *__get_super(struct block_device *bdev, bool excl)
647 {
648 struct super_block *sb;
649
650 if (!bdev)
651 return NULL;
652
653 spin_lock(&sb_lock);
654 rescan:
655 list_for_each_entry(sb, &super_blocks, s_list) {
656 if (hlist_unhashed(&sb->s_instances))
657 continue;
658 if (sb->s_bdev == bdev) {
659 sb->s_count++;
660 spin_unlock(&sb_lock);
661 if (!excl)
662 down_read(&sb->s_umount);
663 else
664 down_write(&sb->s_umount);
665 /* still alive? */
666 if (sb->s_root && (sb->s_flags & SB_BORN))
667 return sb;
668 if (!excl)
669 up_read(&sb->s_umount);
670 else
671 up_write(&sb->s_umount);
672 /* nope, got unmounted */
673 spin_lock(&sb_lock);
674 __put_super(sb);
675 goto rescan;
676 }
677 }
678 spin_unlock(&sb_lock);
679 return NULL;
680 }
681
682 /**
683 * get_super - get the superblock of a device
684 * @bdev: device to get the superblock for
685 *
686 * Scans the superblock list and finds the superblock of the file system
687 * mounted on the device given. %NULL is returned if no match is found.
688 */
689 struct super_block *get_super(struct block_device *bdev)
690 {
691 return __get_super(bdev, false);
692 }
693 EXPORT_SYMBOL(get_super);
694
695 static struct super_block *__get_super_thawed(struct block_device *bdev,
696 bool excl)
697 {
698 while (1) {
699 struct super_block *s = __get_super(bdev, excl);
700 if (!s || s->s_writers.frozen == SB_UNFROZEN)
701 return s;
702 if (!excl)
703 up_read(&s->s_umount);
704 else
705 up_write(&s->s_umount);
706 wait_event(s->s_writers.wait_unfrozen,
707 s->s_writers.frozen == SB_UNFROZEN);
708 put_super(s);
709 }
710 }
711
712 /**
713 * get_super_thawed - get thawed superblock of a device
714 * @bdev: device to get the superblock for
715 *
716 * Scans the superblock list and finds the superblock of the file system
717 * mounted on the device. The superblock is returned once it is thawed
718 * (or immediately if it was not frozen). %NULL is returned if no match
719 * is found.
720 */
721 struct super_block *get_super_thawed(struct block_device *bdev)
722 {
723 return __get_super_thawed(bdev, false);
724 }
725 EXPORT_SYMBOL(get_super_thawed);
726
727 /**
728 * get_super_exclusive_thawed - get thawed superblock of a device
729 * @bdev: device to get the superblock for
730 *
731 * Scans the superblock list and finds the superblock of the file system
732 * mounted on the device. The superblock is returned once it is thawed
733 * (or immediately if it was not frozen) and s_umount semaphore is held
734 * in exclusive mode. %NULL is returned if no match is found.
735 */
736 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
737 {
738 return __get_super_thawed(bdev, true);
739 }
740 EXPORT_SYMBOL(get_super_exclusive_thawed);
741
742 /**
743 * get_active_super - get an active reference to the superblock of a device
744 * @bdev: device to get the superblock for
745 *
746 * Scans the superblock list and finds the superblock of the file system
747 * mounted on the device given. Returns the superblock with an active
748 * reference or %NULL if none was found.
749 */
750 struct super_block *get_active_super(struct block_device *bdev)
751 {
752 struct super_block *sb;
753
754 if (!bdev)
755 return NULL;
756
757 restart:
758 spin_lock(&sb_lock);
759 list_for_each_entry(sb, &super_blocks, s_list) {
760 if (hlist_unhashed(&sb->s_instances))
761 continue;
762 if (sb->s_bdev == bdev) {
763 if (!grab_super(sb))
764 goto restart;
765 up_write(&sb->s_umount);
766 return sb;
767 }
768 }
769 spin_unlock(&sb_lock);
770 return NULL;
771 }
772
773 struct super_block *user_get_super(dev_t dev)
774 {
775 struct super_block *sb;
776
777 spin_lock(&sb_lock);
778 rescan:
779 list_for_each_entry(sb, &super_blocks, s_list) {
780 if (hlist_unhashed(&sb->s_instances))
781 continue;
782 if (sb->s_dev == dev) {
783 sb->s_count++;
784 spin_unlock(&sb_lock);
785 down_read(&sb->s_umount);
786 /* still alive? */
787 if (sb->s_root && (sb->s_flags & SB_BORN))
788 return sb;
789 up_read(&sb->s_umount);
790 /* nope, got unmounted */
791 spin_lock(&sb_lock);
792 __put_super(sb);
793 goto rescan;
794 }
795 }
796 spin_unlock(&sb_lock);
797 return NULL;
798 }
799
800 /**
801 * do_remount_sb - asks filesystem to change mount options.
802 * @sb: superblock in question
803 * @sb_flags: revised superblock flags
804 * @data: the rest of options
805 * @force: whether or not to force the change
806 *
807 * Alters the mount options of a mounted file system.
808 */
809 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
810 {
811 int retval;
812 int remount_ro;
813
814 if (sb->s_writers.frozen != SB_UNFROZEN)
815 return -EBUSY;
816
817 #ifdef CONFIG_BLOCK
818 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
819 return -EACCES;
820 #endif
821
822 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
823
824 if (remount_ro) {
825 if (!hlist_empty(&sb->s_pins)) {
826 up_write(&sb->s_umount);
827 group_pin_kill(&sb->s_pins);
828 down_write(&sb->s_umount);
829 if (!sb->s_root)
830 return 0;
831 if (sb->s_writers.frozen != SB_UNFROZEN)
832 return -EBUSY;
833 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
834 }
835 }
836 shrink_dcache_sb(sb);
837
838 /* If we are remounting RDONLY and current sb is read/write,
839 make sure there are no rw files opened */
840 if (remount_ro) {
841 if (force) {
842 sb->s_readonly_remount = 1;
843 smp_wmb();
844 } else {
845 retval = sb_prepare_remount_readonly(sb);
846 if (retval)
847 return retval;
848 }
849 }
850
851 if (sb->s_op->remount_fs) {
852 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
853 if (retval) {
854 if (!force)
855 goto cancel_readonly;
856 /* If forced remount, go ahead despite any errors */
857 WARN(1, "forced remount of a %s fs returned %i\n",
858 sb->s_type->name, retval);
859 }
860 }
861 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
862 /* Needs to be ordered wrt mnt_is_readonly() */
863 smp_wmb();
864 sb->s_readonly_remount = 0;
865
866 /*
867 * Some filesystems modify their metadata via some other path than the
868 * bdev buffer cache (eg. use a private mapping, or directories in
869 * pagecache, etc). Also file data modifications go via their own
870 * mappings. So If we try to mount readonly then copy the filesystem
871 * from bdev, we could get stale data, so invalidate it to give a best
872 * effort at coherency.
873 */
874 if (remount_ro && sb->s_bdev)
875 invalidate_bdev(sb->s_bdev);
876 return 0;
877
878 cancel_readonly:
879 sb->s_readonly_remount = 0;
880 return retval;
881 }
882
883 static void do_emergency_remount(struct work_struct *work)
884 {
885 struct super_block *sb, *p = NULL;
886
887 spin_lock(&sb_lock);
888 list_for_each_entry(sb, &super_blocks, s_list) {
889 if (hlist_unhashed(&sb->s_instances))
890 continue;
891 sb->s_count++;
892 spin_unlock(&sb_lock);
893 down_write(&sb->s_umount);
894 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
895 !sb_rdonly(sb)) {
896 /*
897 * What lock protects sb->s_flags??
898 */
899 do_remount_sb(sb, SB_RDONLY, NULL, 1);
900 }
901 up_write(&sb->s_umount);
902 spin_lock(&sb_lock);
903 if (p)
904 __put_super(p);
905 p = sb;
906 }
907 if (p)
908 __put_super(p);
909 spin_unlock(&sb_lock);
910 kfree(work);
911 printk("Emergency Remount complete\n");
912 }
913
914 void emergency_remount(void)
915 {
916 struct work_struct *work;
917
918 work = kmalloc(sizeof(*work), GFP_ATOMIC);
919 if (work) {
920 INIT_WORK(work, do_emergency_remount);
921 schedule_work(work);
922 }
923 }
924
925 /*
926 * Unnamed block devices are dummy devices used by virtual
927 * filesystems which don't use real block-devices. -- jrs
928 */
929
930 static DEFINE_IDA(unnamed_dev_ida);
931 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
932 /* Many userspace utilities consider an FSID of 0 invalid.
933 * Always return at least 1 from get_anon_bdev.
934 */
935 static int unnamed_dev_start = 1;
936
937 int get_anon_bdev(dev_t *p)
938 {
939 int dev;
940 int error;
941
942 retry:
943 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
944 return -ENOMEM;
945 spin_lock(&unnamed_dev_lock);
946 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
947 if (!error)
948 unnamed_dev_start = dev + 1;
949 spin_unlock(&unnamed_dev_lock);
950 if (error == -EAGAIN)
951 /* We raced and lost with another CPU. */
952 goto retry;
953 else if (error)
954 return -EAGAIN;
955
956 if (dev >= (1 << MINORBITS)) {
957 spin_lock(&unnamed_dev_lock);
958 ida_remove(&unnamed_dev_ida, dev);
959 if (unnamed_dev_start > dev)
960 unnamed_dev_start = dev;
961 spin_unlock(&unnamed_dev_lock);
962 return -EMFILE;
963 }
964 *p = MKDEV(0, dev & MINORMASK);
965 return 0;
966 }
967 EXPORT_SYMBOL(get_anon_bdev);
968
969 void free_anon_bdev(dev_t dev)
970 {
971 int slot = MINOR(dev);
972 spin_lock(&unnamed_dev_lock);
973 ida_remove(&unnamed_dev_ida, slot);
974 if (slot < unnamed_dev_start)
975 unnamed_dev_start = slot;
976 spin_unlock(&unnamed_dev_lock);
977 }
978 EXPORT_SYMBOL(free_anon_bdev);
979
980 int set_anon_super(struct super_block *s, void *data)
981 {
982 return get_anon_bdev(&s->s_dev);
983 }
984
985 EXPORT_SYMBOL(set_anon_super);
986
987 void kill_anon_super(struct super_block *sb)
988 {
989 dev_t dev = sb->s_dev;
990 generic_shutdown_super(sb);
991 free_anon_bdev(dev);
992 }
993
994 EXPORT_SYMBOL(kill_anon_super);
995
996 void kill_litter_super(struct super_block *sb)
997 {
998 if (sb->s_root)
999 d_genocide(sb->s_root);
1000 kill_anon_super(sb);
1001 }
1002
1003 EXPORT_SYMBOL(kill_litter_super);
1004
1005 static int ns_test_super(struct super_block *sb, void *data)
1006 {
1007 return sb->s_fs_info == data;
1008 }
1009
1010 static int ns_set_super(struct super_block *sb, void *data)
1011 {
1012 sb->s_fs_info = data;
1013 return set_anon_super(sb, NULL);
1014 }
1015
1016 struct dentry *mount_ns(struct file_system_type *fs_type,
1017 int flags, void *data, void *ns, struct user_namespace *user_ns,
1018 int (*fill_super)(struct super_block *, void *, int))
1019 {
1020 struct super_block *sb;
1021
1022 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1023 * over the namespace.
1024 */
1025 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1026 return ERR_PTR(-EPERM);
1027
1028 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1029 user_ns, ns);
1030 if (IS_ERR(sb))
1031 return ERR_CAST(sb);
1032
1033 if (!sb->s_root) {
1034 int err;
1035 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1036 if (err) {
1037 deactivate_locked_super(sb);
1038 return ERR_PTR(err);
1039 }
1040
1041 sb->s_flags |= SB_ACTIVE;
1042 }
1043
1044 return dget(sb->s_root);
1045 }
1046
1047 EXPORT_SYMBOL(mount_ns);
1048
1049 #ifdef CONFIG_BLOCK
1050 static int set_bdev_super(struct super_block *s, void *data)
1051 {
1052 s->s_bdev = data;
1053 s->s_dev = s->s_bdev->bd_dev;
1054 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1055
1056 return 0;
1057 }
1058
1059 static int test_bdev_super(struct super_block *s, void *data)
1060 {
1061 return (void *)s->s_bdev == data;
1062 }
1063
1064 struct dentry *mount_bdev(struct file_system_type *fs_type,
1065 int flags, const char *dev_name, void *data,
1066 int (*fill_super)(struct super_block *, void *, int))
1067 {
1068 struct block_device *bdev;
1069 struct super_block *s;
1070 fmode_t mode = FMODE_READ | FMODE_EXCL;
1071 int error = 0;
1072
1073 if (!(flags & SB_RDONLY))
1074 mode |= FMODE_WRITE;
1075
1076 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1077 if (IS_ERR(bdev))
1078 return ERR_CAST(bdev);
1079
1080 if (current_user_ns() != &init_user_ns) {
1081 /*
1082 * For userns mounts, disallow mounting if bdev is open for
1083 * writing
1084 */
1085 if (!atomic_dec_unless_positive(&bdev->bd_inode->i_writecount)) {
1086 error = -EBUSY;
1087 goto error_bdev;
1088 }
1089 if (bdev->bd_contains != bdev &&
1090 !atomic_dec_unless_positive(&bdev->bd_contains->bd_inode->i_writecount)) {
1091 atomic_inc(&bdev->bd_inode->i_writecount);
1092 error = -EBUSY;
1093 goto error_bdev;
1094 }
1095 }
1096
1097 /*
1098 * once the super is inserted into the list by sget, s_umount
1099 * will protect the lockfs code from trying to start a snapshot
1100 * while we are mounting
1101 */
1102 mutex_lock(&bdev->bd_fsfreeze_mutex);
1103 if (bdev->bd_fsfreeze_count > 0) {
1104 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1105 error = -EBUSY;
1106 goto error_inc;
1107 }
1108 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1109 bdev);
1110 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1111 if (IS_ERR(s))
1112 goto error_s;
1113
1114 if (s->s_root) {
1115 if ((flags ^ s->s_flags) & SB_RDONLY) {
1116 deactivate_locked_super(s);
1117 error = -EBUSY;
1118 goto error_inc;
1119 }
1120
1121 /*
1122 * s_umount nests inside bd_mutex during
1123 * __invalidate_device(). blkdev_put() acquires
1124 * bd_mutex and can't be called under s_umount. Drop
1125 * s_umount temporarily. This is safe as we're
1126 * holding an active reference.
1127 */
1128 up_write(&s->s_umount);
1129 blkdev_put(bdev, mode);
1130 down_write(&s->s_umount);
1131 } else {
1132 s->s_mode = mode;
1133 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1134 sb_set_blocksize(s, block_size(bdev));
1135 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1136 if (error) {
1137 deactivate_locked_super(s);
1138 goto error;
1139 }
1140
1141 s->s_flags |= SB_ACTIVE;
1142 bdev->bd_super = s;
1143 }
1144
1145 return dget(s->s_root);
1146
1147 error_s:
1148 error = PTR_ERR(s);
1149 error_inc:
1150 if (current_user_ns() != &init_user_ns) {
1151 atomic_inc(&bdev->bd_inode->i_writecount);
1152 if (bdev->bd_contains != bdev)
1153 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1154 }
1155 error_bdev:
1156 blkdev_put(bdev, mode);
1157 error:
1158 return ERR_PTR(error);
1159 }
1160 EXPORT_SYMBOL(mount_bdev);
1161
1162 void kill_block_super(struct super_block *sb)
1163 {
1164 struct block_device *bdev = sb->s_bdev;
1165 fmode_t mode = sb->s_mode;
1166
1167 bdev->bd_super = NULL;
1168 generic_shutdown_super(sb);
1169 sync_blockdev(bdev);
1170 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1171 if (sb->s_user_ns != &init_user_ns) {
1172 atomic_inc(&bdev->bd_inode->i_writecount);
1173 if (bdev->bd_contains != bdev)
1174 atomic_inc(&bdev->bd_contains->bd_inode->i_writecount);
1175 }
1176 blkdev_put(bdev, mode | FMODE_EXCL);
1177 }
1178
1179 EXPORT_SYMBOL(kill_block_super);
1180 #endif
1181
1182 struct dentry *mount_nodev(struct file_system_type *fs_type,
1183 int flags, void *data,
1184 int (*fill_super)(struct super_block *, void *, int))
1185 {
1186 int error;
1187 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1188
1189 if (IS_ERR(s))
1190 return ERR_CAST(s);
1191
1192 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1193 if (error) {
1194 deactivate_locked_super(s);
1195 return ERR_PTR(error);
1196 }
1197 s->s_flags |= SB_ACTIVE;
1198 return dget(s->s_root);
1199 }
1200 EXPORT_SYMBOL(mount_nodev);
1201
1202 static int compare_single(struct super_block *s, void *p)
1203 {
1204 return 1;
1205 }
1206
1207 struct dentry *mount_single(struct file_system_type *fs_type,
1208 int flags, void *data,
1209 int (*fill_super)(struct super_block *, void *, int))
1210 {
1211 struct super_block *s;
1212 int error;
1213
1214 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1215 if (IS_ERR(s))
1216 return ERR_CAST(s);
1217 if (!s->s_root) {
1218 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1219 if (error) {
1220 deactivate_locked_super(s);
1221 return ERR_PTR(error);
1222 }
1223 s->s_flags |= SB_ACTIVE;
1224 } else {
1225 do_remount_sb(s, flags, data, 0);
1226 }
1227 return dget(s->s_root);
1228 }
1229 EXPORT_SYMBOL(mount_single);
1230
1231 struct dentry *
1232 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1233 {
1234 struct dentry *root;
1235 struct super_block *sb;
1236 char *secdata = NULL;
1237 int error = -ENOMEM;
1238
1239 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1240 secdata = alloc_secdata();
1241 if (!secdata)
1242 goto out;
1243
1244 error = security_sb_copy_data(data, secdata);
1245 if (error)
1246 goto out_free_secdata;
1247 }
1248
1249 root = type->mount(type, flags, name, data);
1250 if (IS_ERR(root)) {
1251 error = PTR_ERR(root);
1252 goto out_free_secdata;
1253 }
1254 sb = root->d_sb;
1255 BUG_ON(!sb);
1256 WARN_ON(!sb->s_bdi);
1257 sb->s_flags |= SB_BORN;
1258
1259 error = security_sb_kern_mount(sb, flags, secdata);
1260 if (error)
1261 goto out_sb;
1262
1263 /*
1264 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1265 * but s_maxbytes was an unsigned long long for many releases. Throw
1266 * this warning for a little while to try and catch filesystems that
1267 * violate this rule.
1268 */
1269 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1270 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1271
1272 up_write(&sb->s_umount);
1273 free_secdata(secdata);
1274 return root;
1275 out_sb:
1276 dput(root);
1277 deactivate_locked_super(sb);
1278 out_free_secdata:
1279 free_secdata(secdata);
1280 out:
1281 return ERR_PTR(error);
1282 }
1283
1284 /*
1285 * Setup private BDI for given superblock. It gets automatically cleaned up
1286 * in generic_shutdown_super().
1287 */
1288 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1289 {
1290 struct backing_dev_info *bdi;
1291 int err;
1292 va_list args;
1293
1294 bdi = bdi_alloc(GFP_KERNEL);
1295 if (!bdi)
1296 return -ENOMEM;
1297
1298 bdi->name = sb->s_type->name;
1299
1300 va_start(args, fmt);
1301 err = bdi_register_va(bdi, fmt, args);
1302 va_end(args);
1303 if (err) {
1304 bdi_put(bdi);
1305 return err;
1306 }
1307 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1308 sb->s_bdi = bdi;
1309
1310 return 0;
1311 }
1312 EXPORT_SYMBOL(super_setup_bdi_name);
1313
1314 /*
1315 * Setup private BDI for given superblock. I gets automatically cleaned up
1316 * in generic_shutdown_super().
1317 */
1318 int super_setup_bdi(struct super_block *sb)
1319 {
1320 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1321
1322 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1323 atomic_long_inc_return(&bdi_seq));
1324 }
1325 EXPORT_SYMBOL(super_setup_bdi);
1326
1327 /*
1328 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1329 * instead.
1330 */
1331 void __sb_end_write(struct super_block *sb, int level)
1332 {
1333 percpu_up_read(sb->s_writers.rw_sem + level-1);
1334 }
1335 EXPORT_SYMBOL(__sb_end_write);
1336
1337 /*
1338 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1339 * instead.
1340 */
1341 int __sb_start_write(struct super_block *sb, int level, bool wait)
1342 {
1343 bool force_trylock = false;
1344 int ret = 1;
1345
1346 #ifdef CONFIG_LOCKDEP
1347 /*
1348 * We want lockdep to tell us about possible deadlocks with freezing
1349 * but it's it bit tricky to properly instrument it. Getting a freeze
1350 * protection works as getting a read lock but there are subtle
1351 * problems. XFS for example gets freeze protection on internal level
1352 * twice in some cases, which is OK only because we already hold a
1353 * freeze protection also on higher level. Due to these cases we have
1354 * to use wait == F (trylock mode) which must not fail.
1355 */
1356 if (wait) {
1357 int i;
1358
1359 for (i = 0; i < level - 1; i++)
1360 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1361 force_trylock = true;
1362 break;
1363 }
1364 }
1365 #endif
1366 if (wait && !force_trylock)
1367 percpu_down_read(sb->s_writers.rw_sem + level-1);
1368 else
1369 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1370
1371 WARN_ON(force_trylock && !ret);
1372 return ret;
1373 }
1374 EXPORT_SYMBOL(__sb_start_write);
1375
1376 /**
1377 * sb_wait_write - wait until all writers to given file system finish
1378 * @sb: the super for which we wait
1379 * @level: type of writers we wait for (normal vs page fault)
1380 *
1381 * This function waits until there are no writers of given type to given file
1382 * system.
1383 */
1384 static void sb_wait_write(struct super_block *sb, int level)
1385 {
1386 percpu_down_write(sb->s_writers.rw_sem + level-1);
1387 }
1388
1389 /*
1390 * We are going to return to userspace and forget about these locks, the
1391 * ownership goes to the caller of thaw_super() which does unlock().
1392 */
1393 static void lockdep_sb_freeze_release(struct super_block *sb)
1394 {
1395 int level;
1396
1397 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1398 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1399 }
1400
1401 /*
1402 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1403 */
1404 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1405 {
1406 int level;
1407
1408 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1409 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1410 }
1411
1412 static void sb_freeze_unlock(struct super_block *sb)
1413 {
1414 int level;
1415
1416 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1417 percpu_up_write(sb->s_writers.rw_sem + level);
1418 }
1419
1420 /**
1421 * freeze_super - lock the filesystem and force it into a consistent state
1422 * @sb: the super to lock
1423 *
1424 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1425 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1426 * -EBUSY.
1427 *
1428 * During this function, sb->s_writers.frozen goes through these values:
1429 *
1430 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1431 *
1432 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1433 * writes should be blocked, though page faults are still allowed. We wait for
1434 * all writes to complete and then proceed to the next stage.
1435 *
1436 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1437 * but internal fs threads can still modify the filesystem (although they
1438 * should not dirty new pages or inodes), writeback can run etc. After waiting
1439 * for all running page faults we sync the filesystem which will clean all
1440 * dirty pages and inodes (no new dirty pages or inodes can be created when
1441 * sync is running).
1442 *
1443 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1444 * modification are blocked (e.g. XFS preallocation truncation on inode
1445 * reclaim). This is usually implemented by blocking new transactions for
1446 * filesystems that have them and need this additional guard. After all
1447 * internal writers are finished we call ->freeze_fs() to finish filesystem
1448 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1449 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1450 *
1451 * sb->s_writers.frozen is protected by sb->s_umount.
1452 */
1453 int freeze_super(struct super_block *sb)
1454 {
1455 int ret;
1456
1457 atomic_inc(&sb->s_active);
1458 down_write(&sb->s_umount);
1459 if (sb->s_writers.frozen != SB_UNFROZEN) {
1460 deactivate_locked_super(sb);
1461 return -EBUSY;
1462 }
1463
1464 if (!(sb->s_flags & SB_BORN)) {
1465 up_write(&sb->s_umount);
1466 return 0; /* sic - it's "nothing to do" */
1467 }
1468
1469 if (sb_rdonly(sb)) {
1470 /* Nothing to do really... */
1471 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1472 up_write(&sb->s_umount);
1473 return 0;
1474 }
1475
1476 sb->s_writers.frozen = SB_FREEZE_WRITE;
1477 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1478 up_write(&sb->s_umount);
1479 sb_wait_write(sb, SB_FREEZE_WRITE);
1480 down_write(&sb->s_umount);
1481
1482 /* Now we go and block page faults... */
1483 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1484 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1485
1486 /* All writers are done so after syncing there won't be dirty data */
1487 sync_filesystem(sb);
1488
1489 /* Now wait for internal filesystem counter */
1490 sb->s_writers.frozen = SB_FREEZE_FS;
1491 sb_wait_write(sb, SB_FREEZE_FS);
1492
1493 if (sb->s_op->freeze_fs) {
1494 ret = sb->s_op->freeze_fs(sb);
1495 if (ret) {
1496 printk(KERN_ERR
1497 "VFS:Filesystem freeze failed\n");
1498 sb->s_writers.frozen = SB_UNFROZEN;
1499 sb_freeze_unlock(sb);
1500 wake_up(&sb->s_writers.wait_unfrozen);
1501 deactivate_locked_super(sb);
1502 return ret;
1503 }
1504 }
1505 /*
1506 * For debugging purposes so that fs can warn if it sees write activity
1507 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1508 */
1509 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1510 lockdep_sb_freeze_release(sb);
1511 up_write(&sb->s_umount);
1512 return 0;
1513 }
1514 EXPORT_SYMBOL(freeze_super);
1515
1516 /**
1517 * thaw_super -- unlock filesystem
1518 * @sb: the super to thaw
1519 *
1520 * Unlocks the filesystem and marks it writeable again after freeze_super().
1521 */
1522 int thaw_super(struct super_block *sb)
1523 {
1524 int error;
1525
1526 down_write(&sb->s_umount);
1527 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1528 up_write(&sb->s_umount);
1529 return -EINVAL;
1530 }
1531
1532 if (sb_rdonly(sb)) {
1533 sb->s_writers.frozen = SB_UNFROZEN;
1534 goto out;
1535 }
1536
1537 lockdep_sb_freeze_acquire(sb);
1538
1539 if (sb->s_op->unfreeze_fs) {
1540 error = sb->s_op->unfreeze_fs(sb);
1541 if (error) {
1542 printk(KERN_ERR
1543 "VFS:Filesystem thaw failed\n");
1544 lockdep_sb_freeze_release(sb);
1545 up_write(&sb->s_umount);
1546 return error;
1547 }
1548 }
1549
1550 sb->s_writers.frozen = SB_UNFROZEN;
1551 sb_freeze_unlock(sb);
1552 out:
1553 wake_up(&sb->s_writers.wait_unfrozen);
1554 deactivate_locked_super(sb);
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(thaw_super);