]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/super.c
cifs: FS-Cache page management
[mirror_ubuntu-bionic-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
34
35
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
38
39 /**
40 * alloc_super - create new superblock
41 * @type: filesystem type superblock should belong to
42 *
43 * Allocates and initializes a new &struct super_block. alloc_super()
44 * returns a pointer new superblock or %NULL if allocation had failed.
45 */
46 static struct super_block *alloc_super(struct file_system_type *type)
47 {
48 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
49 static const struct super_operations default_op;
50
51 if (s) {
52 if (security_sb_alloc(s)) {
53 kfree(s);
54 s = NULL;
55 goto out;
56 }
57 INIT_LIST_HEAD(&s->s_files);
58 INIT_LIST_HEAD(&s->s_instances);
59 INIT_HLIST_HEAD(&s->s_anon);
60 INIT_LIST_HEAD(&s->s_inodes);
61 INIT_LIST_HEAD(&s->s_dentry_lru);
62 init_rwsem(&s->s_umount);
63 mutex_init(&s->s_lock);
64 lockdep_set_class(&s->s_umount, &type->s_umount_key);
65 /*
66 * The locking rules for s_lock are up to the
67 * filesystem. For example ext3fs has different
68 * lock ordering than usbfs:
69 */
70 lockdep_set_class(&s->s_lock, &type->s_lock_key);
71 /*
72 * sget() can have s_umount recursion.
73 *
74 * When it cannot find a suitable sb, it allocates a new
75 * one (this one), and tries again to find a suitable old
76 * one.
77 *
78 * In case that succeeds, it will acquire the s_umount
79 * lock of the old one. Since these are clearly distrinct
80 * locks, and this object isn't exposed yet, there's no
81 * risk of deadlocks.
82 *
83 * Annotate this by putting this lock in a different
84 * subclass.
85 */
86 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
87 s->s_count = 1;
88 atomic_set(&s->s_active, 1);
89 mutex_init(&s->s_vfs_rename_mutex);
90 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
91 mutex_init(&s->s_dquot.dqio_mutex);
92 mutex_init(&s->s_dquot.dqonoff_mutex);
93 init_rwsem(&s->s_dquot.dqptr_sem);
94 init_waitqueue_head(&s->s_wait_unfrozen);
95 s->s_maxbytes = MAX_NON_LFS;
96 s->s_op = &default_op;
97 s->s_time_gran = 1000000000;
98 }
99 out:
100 return s;
101 }
102
103 /**
104 * destroy_super - frees a superblock
105 * @s: superblock to free
106 *
107 * Frees a superblock.
108 */
109 static inline void destroy_super(struct super_block *s)
110 {
111 security_sb_free(s);
112 kfree(s->s_subtype);
113 kfree(s->s_options);
114 kfree(s);
115 }
116
117 /* Superblock refcounting */
118
119 /*
120 * Drop a superblock's refcount. The caller must hold sb_lock.
121 */
122 void __put_super(struct super_block *sb)
123 {
124 if (!--sb->s_count) {
125 list_del_init(&sb->s_list);
126 destroy_super(sb);
127 }
128 }
129
130 /**
131 * put_super - drop a temporary reference to superblock
132 * @sb: superblock in question
133 *
134 * Drops a temporary reference, frees superblock if there's no
135 * references left.
136 */
137 void put_super(struct super_block *sb)
138 {
139 spin_lock(&sb_lock);
140 __put_super(sb);
141 spin_unlock(&sb_lock);
142 }
143
144
145 /**
146 * deactivate_locked_super - drop an active reference to superblock
147 * @s: superblock to deactivate
148 *
149 * Drops an active reference to superblock, converting it into a temprory
150 * one if there is no other active references left. In that case we
151 * tell fs driver to shut it down and drop the temporary reference we
152 * had just acquired.
153 *
154 * Caller holds exclusive lock on superblock; that lock is released.
155 */
156 void deactivate_locked_super(struct super_block *s)
157 {
158 struct file_system_type *fs = s->s_type;
159 if (atomic_dec_and_test(&s->s_active)) {
160 fs->kill_sb(s);
161 put_filesystem(fs);
162 put_super(s);
163 } else {
164 up_write(&s->s_umount);
165 }
166 }
167
168 EXPORT_SYMBOL(deactivate_locked_super);
169
170 /**
171 * deactivate_super - drop an active reference to superblock
172 * @s: superblock to deactivate
173 *
174 * Variant of deactivate_locked_super(), except that superblock is *not*
175 * locked by caller. If we are going to drop the final active reference,
176 * lock will be acquired prior to that.
177 */
178 void deactivate_super(struct super_block *s)
179 {
180 if (!atomic_add_unless(&s->s_active, -1, 1)) {
181 down_write(&s->s_umount);
182 deactivate_locked_super(s);
183 }
184 }
185
186 EXPORT_SYMBOL(deactivate_super);
187
188 /**
189 * grab_super - acquire an active reference
190 * @s: reference we are trying to make active
191 *
192 * Tries to acquire an active reference. grab_super() is used when we
193 * had just found a superblock in super_blocks or fs_type->fs_supers
194 * and want to turn it into a full-blown active reference. grab_super()
195 * is called with sb_lock held and drops it. Returns 1 in case of
196 * success, 0 if we had failed (superblock contents was already dead or
197 * dying when grab_super() had been called).
198 */
199 static int grab_super(struct super_block *s) __releases(sb_lock)
200 {
201 if (atomic_inc_not_zero(&s->s_active)) {
202 spin_unlock(&sb_lock);
203 return 1;
204 }
205 /* it's going away */
206 s->s_count++;
207 spin_unlock(&sb_lock);
208 /* wait for it to die */
209 down_write(&s->s_umount);
210 up_write(&s->s_umount);
211 put_super(s);
212 return 0;
213 }
214
215 /*
216 * Superblock locking. We really ought to get rid of these two.
217 */
218 void lock_super(struct super_block * sb)
219 {
220 get_fs_excl();
221 mutex_lock(&sb->s_lock);
222 }
223
224 void unlock_super(struct super_block * sb)
225 {
226 put_fs_excl();
227 mutex_unlock(&sb->s_lock);
228 }
229
230 EXPORT_SYMBOL(lock_super);
231 EXPORT_SYMBOL(unlock_super);
232
233 /**
234 * generic_shutdown_super - common helper for ->kill_sb()
235 * @sb: superblock to kill
236 *
237 * generic_shutdown_super() does all fs-independent work on superblock
238 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
239 * that need destruction out of superblock, call generic_shutdown_super()
240 * and release aforementioned objects. Note: dentries and inodes _are_
241 * taken care of and do not need specific handling.
242 *
243 * Upon calling this function, the filesystem may no longer alter or
244 * rearrange the set of dentries belonging to this super_block, nor may it
245 * change the attachments of dentries to inodes.
246 */
247 void generic_shutdown_super(struct super_block *sb)
248 {
249 const struct super_operations *sop = sb->s_op;
250
251
252 if (sb->s_root) {
253 shrink_dcache_for_umount(sb);
254 sync_filesystem(sb);
255 get_fs_excl();
256 sb->s_flags &= ~MS_ACTIVE;
257
258 /* bad name - it should be evict_inodes() */
259 invalidate_inodes(sb);
260
261 if (sop->put_super)
262 sop->put_super(sb);
263
264 /* Forget any remaining inodes */
265 if (invalidate_inodes(sb)) {
266 printk("VFS: Busy inodes after unmount of %s. "
267 "Self-destruct in 5 seconds. Have a nice day...\n",
268 sb->s_id);
269 }
270 put_fs_excl();
271 }
272 spin_lock(&sb_lock);
273 /* should be initialized for __put_super_and_need_restart() */
274 list_del_init(&sb->s_instances);
275 spin_unlock(&sb_lock);
276 up_write(&sb->s_umount);
277 }
278
279 EXPORT_SYMBOL(generic_shutdown_super);
280
281 /**
282 * sget - find or create a superblock
283 * @type: filesystem type superblock should belong to
284 * @test: comparison callback
285 * @set: setup callback
286 * @data: argument to each of them
287 */
288 struct super_block *sget(struct file_system_type *type,
289 int (*test)(struct super_block *,void *),
290 int (*set)(struct super_block *,void *),
291 void *data)
292 {
293 struct super_block *s = NULL;
294 struct super_block *old;
295 int err;
296
297 retry:
298 spin_lock(&sb_lock);
299 if (test) {
300 list_for_each_entry(old, &type->fs_supers, s_instances) {
301 if (!test(old, data))
302 continue;
303 if (!grab_super(old))
304 goto retry;
305 if (s) {
306 up_write(&s->s_umount);
307 destroy_super(s);
308 }
309 down_write(&old->s_umount);
310 return old;
311 }
312 }
313 if (!s) {
314 spin_unlock(&sb_lock);
315 s = alloc_super(type);
316 if (!s)
317 return ERR_PTR(-ENOMEM);
318 goto retry;
319 }
320
321 err = set(s, data);
322 if (err) {
323 spin_unlock(&sb_lock);
324 up_write(&s->s_umount);
325 destroy_super(s);
326 return ERR_PTR(err);
327 }
328 s->s_type = type;
329 strlcpy(s->s_id, type->name, sizeof(s->s_id));
330 list_add_tail(&s->s_list, &super_blocks);
331 list_add(&s->s_instances, &type->fs_supers);
332 spin_unlock(&sb_lock);
333 get_filesystem(type);
334 return s;
335 }
336
337 EXPORT_SYMBOL(sget);
338
339 void drop_super(struct super_block *sb)
340 {
341 up_read(&sb->s_umount);
342 put_super(sb);
343 }
344
345 EXPORT_SYMBOL(drop_super);
346
347 /**
348 * sync_supers - helper for periodic superblock writeback
349 *
350 * Call the write_super method if present on all dirty superblocks in
351 * the system. This is for the periodic writeback used by most older
352 * filesystems. For data integrity superblock writeback use
353 * sync_filesystems() instead.
354 *
355 * Note: check the dirty flag before waiting, so we don't
356 * hold up the sync while mounting a device. (The newly
357 * mounted device won't need syncing.)
358 */
359 void sync_supers(void)
360 {
361 struct super_block *sb, *n;
362
363 spin_lock(&sb_lock);
364 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
365 if (list_empty(&sb->s_instances))
366 continue;
367 if (sb->s_op->write_super && sb->s_dirt) {
368 sb->s_count++;
369 spin_unlock(&sb_lock);
370
371 down_read(&sb->s_umount);
372 if (sb->s_root && sb->s_dirt)
373 sb->s_op->write_super(sb);
374 up_read(&sb->s_umount);
375
376 spin_lock(&sb_lock);
377 /* lock was dropped, must reset next */
378 list_safe_reset_next(sb, n, s_list);
379 __put_super(sb);
380 }
381 }
382 spin_unlock(&sb_lock);
383 }
384
385 /**
386 * iterate_supers - call function for all active superblocks
387 * @f: function to call
388 * @arg: argument to pass to it
389 *
390 * Scans the superblock list and calls given function, passing it
391 * locked superblock and given argument.
392 */
393 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
394 {
395 struct super_block *sb, *n;
396
397 spin_lock(&sb_lock);
398 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
399 if (list_empty(&sb->s_instances))
400 continue;
401 sb->s_count++;
402 spin_unlock(&sb_lock);
403
404 down_read(&sb->s_umount);
405 if (sb->s_root)
406 f(sb, arg);
407 up_read(&sb->s_umount);
408
409 spin_lock(&sb_lock);
410 /* lock was dropped, must reset next */
411 list_safe_reset_next(sb, n, s_list);
412 __put_super(sb);
413 }
414 spin_unlock(&sb_lock);
415 }
416
417 /**
418 * get_super - get the superblock of a device
419 * @bdev: device to get the superblock for
420 *
421 * Scans the superblock list and finds the superblock of the file system
422 * mounted on the device given. %NULL is returned if no match is found.
423 */
424
425 struct super_block *get_super(struct block_device *bdev)
426 {
427 struct super_block *sb;
428
429 if (!bdev)
430 return NULL;
431
432 spin_lock(&sb_lock);
433 rescan:
434 list_for_each_entry(sb, &super_blocks, s_list) {
435 if (list_empty(&sb->s_instances))
436 continue;
437 if (sb->s_bdev == bdev) {
438 sb->s_count++;
439 spin_unlock(&sb_lock);
440 down_read(&sb->s_umount);
441 /* still alive? */
442 if (sb->s_root)
443 return sb;
444 up_read(&sb->s_umount);
445 /* nope, got unmounted */
446 spin_lock(&sb_lock);
447 __put_super(sb);
448 goto rescan;
449 }
450 }
451 spin_unlock(&sb_lock);
452 return NULL;
453 }
454
455 EXPORT_SYMBOL(get_super);
456
457 /**
458 * get_active_super - get an active reference to the superblock of a device
459 * @bdev: device to get the superblock for
460 *
461 * Scans the superblock list and finds the superblock of the file system
462 * mounted on the device given. Returns the superblock with an active
463 * reference or %NULL if none was found.
464 */
465 struct super_block *get_active_super(struct block_device *bdev)
466 {
467 struct super_block *sb;
468
469 if (!bdev)
470 return NULL;
471
472 restart:
473 spin_lock(&sb_lock);
474 list_for_each_entry(sb, &super_blocks, s_list) {
475 if (list_empty(&sb->s_instances))
476 continue;
477 if (sb->s_bdev == bdev) {
478 if (grab_super(sb)) /* drops sb_lock */
479 return sb;
480 else
481 goto restart;
482 }
483 }
484 spin_unlock(&sb_lock);
485 return NULL;
486 }
487
488 struct super_block *user_get_super(dev_t dev)
489 {
490 struct super_block *sb;
491
492 spin_lock(&sb_lock);
493 rescan:
494 list_for_each_entry(sb, &super_blocks, s_list) {
495 if (list_empty(&sb->s_instances))
496 continue;
497 if (sb->s_dev == dev) {
498 sb->s_count++;
499 spin_unlock(&sb_lock);
500 down_read(&sb->s_umount);
501 /* still alive? */
502 if (sb->s_root)
503 return sb;
504 up_read(&sb->s_umount);
505 /* nope, got unmounted */
506 spin_lock(&sb_lock);
507 __put_super(sb);
508 goto rescan;
509 }
510 }
511 spin_unlock(&sb_lock);
512 return NULL;
513 }
514
515 /**
516 * do_remount_sb - asks filesystem to change mount options.
517 * @sb: superblock in question
518 * @flags: numeric part of options
519 * @data: the rest of options
520 * @force: whether or not to force the change
521 *
522 * Alters the mount options of a mounted file system.
523 */
524 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
525 {
526 int retval;
527 int remount_ro;
528
529 if (sb->s_frozen != SB_UNFROZEN)
530 return -EBUSY;
531
532 #ifdef CONFIG_BLOCK
533 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
534 return -EACCES;
535 #endif
536
537 if (flags & MS_RDONLY)
538 acct_auto_close(sb);
539 shrink_dcache_sb(sb);
540 sync_filesystem(sb);
541
542 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
543
544 /* If we are remounting RDONLY and current sb is read/write,
545 make sure there are no rw files opened */
546 if (remount_ro) {
547 if (force)
548 mark_files_ro(sb);
549 else if (!fs_may_remount_ro(sb))
550 return -EBUSY;
551 }
552
553 if (sb->s_op->remount_fs) {
554 retval = sb->s_op->remount_fs(sb, &flags, data);
555 if (retval)
556 return retval;
557 }
558 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
559
560 /*
561 * Some filesystems modify their metadata via some other path than the
562 * bdev buffer cache (eg. use a private mapping, or directories in
563 * pagecache, etc). Also file data modifications go via their own
564 * mappings. So If we try to mount readonly then copy the filesystem
565 * from bdev, we could get stale data, so invalidate it to give a best
566 * effort at coherency.
567 */
568 if (remount_ro && sb->s_bdev)
569 invalidate_bdev(sb->s_bdev);
570 return 0;
571 }
572
573 static void do_emergency_remount(struct work_struct *work)
574 {
575 struct super_block *sb, *n;
576
577 spin_lock(&sb_lock);
578 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
579 if (list_empty(&sb->s_instances))
580 continue;
581 sb->s_count++;
582 spin_unlock(&sb_lock);
583 down_write(&sb->s_umount);
584 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
585 /*
586 * What lock protects sb->s_flags??
587 */
588 do_remount_sb(sb, MS_RDONLY, NULL, 1);
589 }
590 up_write(&sb->s_umount);
591 spin_lock(&sb_lock);
592 /* lock was dropped, must reset next */
593 list_safe_reset_next(sb, n, s_list);
594 __put_super(sb);
595 }
596 spin_unlock(&sb_lock);
597 kfree(work);
598 printk("Emergency Remount complete\n");
599 }
600
601 void emergency_remount(void)
602 {
603 struct work_struct *work;
604
605 work = kmalloc(sizeof(*work), GFP_ATOMIC);
606 if (work) {
607 INIT_WORK(work, do_emergency_remount);
608 schedule_work(work);
609 }
610 }
611
612 /*
613 * Unnamed block devices are dummy devices used by virtual
614 * filesystems which don't use real block-devices. -- jrs
615 */
616
617 static DEFINE_IDA(unnamed_dev_ida);
618 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
619 static int unnamed_dev_start = 0; /* don't bother trying below it */
620
621 int set_anon_super(struct super_block *s, void *data)
622 {
623 int dev;
624 int error;
625
626 retry:
627 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
628 return -ENOMEM;
629 spin_lock(&unnamed_dev_lock);
630 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
631 if (!error)
632 unnamed_dev_start = dev + 1;
633 spin_unlock(&unnamed_dev_lock);
634 if (error == -EAGAIN)
635 /* We raced and lost with another CPU. */
636 goto retry;
637 else if (error)
638 return -EAGAIN;
639
640 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
641 spin_lock(&unnamed_dev_lock);
642 ida_remove(&unnamed_dev_ida, dev);
643 if (unnamed_dev_start > dev)
644 unnamed_dev_start = dev;
645 spin_unlock(&unnamed_dev_lock);
646 return -EMFILE;
647 }
648 s->s_dev = MKDEV(0, dev & MINORMASK);
649 s->s_bdi = &noop_backing_dev_info;
650 return 0;
651 }
652
653 EXPORT_SYMBOL(set_anon_super);
654
655 void kill_anon_super(struct super_block *sb)
656 {
657 int slot = MINOR(sb->s_dev);
658
659 generic_shutdown_super(sb);
660 spin_lock(&unnamed_dev_lock);
661 ida_remove(&unnamed_dev_ida, slot);
662 if (slot < unnamed_dev_start)
663 unnamed_dev_start = slot;
664 spin_unlock(&unnamed_dev_lock);
665 }
666
667 EXPORT_SYMBOL(kill_anon_super);
668
669 void kill_litter_super(struct super_block *sb)
670 {
671 if (sb->s_root)
672 d_genocide(sb->s_root);
673 kill_anon_super(sb);
674 }
675
676 EXPORT_SYMBOL(kill_litter_super);
677
678 static int ns_test_super(struct super_block *sb, void *data)
679 {
680 return sb->s_fs_info == data;
681 }
682
683 static int ns_set_super(struct super_block *sb, void *data)
684 {
685 sb->s_fs_info = data;
686 return set_anon_super(sb, NULL);
687 }
688
689 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
690 int (*fill_super)(struct super_block *, void *, int),
691 struct vfsmount *mnt)
692 {
693 struct super_block *sb;
694
695 sb = sget(fs_type, ns_test_super, ns_set_super, data);
696 if (IS_ERR(sb))
697 return PTR_ERR(sb);
698
699 if (!sb->s_root) {
700 int err;
701 sb->s_flags = flags;
702 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
703 if (err) {
704 deactivate_locked_super(sb);
705 return err;
706 }
707
708 sb->s_flags |= MS_ACTIVE;
709 }
710
711 simple_set_mnt(mnt, sb);
712 return 0;
713 }
714
715 EXPORT_SYMBOL(get_sb_ns);
716
717 #ifdef CONFIG_BLOCK
718 static int set_bdev_super(struct super_block *s, void *data)
719 {
720 s->s_bdev = data;
721 s->s_dev = s->s_bdev->bd_dev;
722
723 /*
724 * We set the bdi here to the queue backing, file systems can
725 * overwrite this in ->fill_super()
726 */
727 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
728 return 0;
729 }
730
731 static int test_bdev_super(struct super_block *s, void *data)
732 {
733 return (void *)s->s_bdev == data;
734 }
735
736 int get_sb_bdev(struct file_system_type *fs_type,
737 int flags, const char *dev_name, void *data,
738 int (*fill_super)(struct super_block *, void *, int),
739 struct vfsmount *mnt)
740 {
741 struct block_device *bdev;
742 struct super_block *s;
743 fmode_t mode = FMODE_READ;
744 int error = 0;
745
746 if (!(flags & MS_RDONLY))
747 mode |= FMODE_WRITE;
748
749 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
750 if (IS_ERR(bdev))
751 return PTR_ERR(bdev);
752
753 /*
754 * once the super is inserted into the list by sget, s_umount
755 * will protect the lockfs code from trying to start a snapshot
756 * while we are mounting
757 */
758 mutex_lock(&bdev->bd_fsfreeze_mutex);
759 if (bdev->bd_fsfreeze_count > 0) {
760 mutex_unlock(&bdev->bd_fsfreeze_mutex);
761 error = -EBUSY;
762 goto error_bdev;
763 }
764 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
765 mutex_unlock(&bdev->bd_fsfreeze_mutex);
766 if (IS_ERR(s))
767 goto error_s;
768
769 if (s->s_root) {
770 if ((flags ^ s->s_flags) & MS_RDONLY) {
771 deactivate_locked_super(s);
772 error = -EBUSY;
773 goto error_bdev;
774 }
775
776 close_bdev_exclusive(bdev, mode);
777 } else {
778 char b[BDEVNAME_SIZE];
779
780 s->s_flags = flags;
781 s->s_mode = mode;
782 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
783 sb_set_blocksize(s, block_size(bdev));
784 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
785 if (error) {
786 deactivate_locked_super(s);
787 goto error;
788 }
789
790 s->s_flags |= MS_ACTIVE;
791 bdev->bd_super = s;
792 }
793
794 simple_set_mnt(mnt, s);
795 return 0;
796
797 error_s:
798 error = PTR_ERR(s);
799 error_bdev:
800 close_bdev_exclusive(bdev, mode);
801 error:
802 return error;
803 }
804
805 EXPORT_SYMBOL(get_sb_bdev);
806
807 void kill_block_super(struct super_block *sb)
808 {
809 struct block_device *bdev = sb->s_bdev;
810 fmode_t mode = sb->s_mode;
811
812 bdev->bd_super = NULL;
813 generic_shutdown_super(sb);
814 sync_blockdev(bdev);
815 close_bdev_exclusive(bdev, mode);
816 }
817
818 EXPORT_SYMBOL(kill_block_super);
819 #endif
820
821 int get_sb_nodev(struct file_system_type *fs_type,
822 int flags, void *data,
823 int (*fill_super)(struct super_block *, void *, int),
824 struct vfsmount *mnt)
825 {
826 int error;
827 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
828
829 if (IS_ERR(s))
830 return PTR_ERR(s);
831
832 s->s_flags = flags;
833
834 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
835 if (error) {
836 deactivate_locked_super(s);
837 return error;
838 }
839 s->s_flags |= MS_ACTIVE;
840 simple_set_mnt(mnt, s);
841 return 0;
842 }
843
844 EXPORT_SYMBOL(get_sb_nodev);
845
846 static int compare_single(struct super_block *s, void *p)
847 {
848 return 1;
849 }
850
851 int get_sb_single(struct file_system_type *fs_type,
852 int flags, void *data,
853 int (*fill_super)(struct super_block *, void *, int),
854 struct vfsmount *mnt)
855 {
856 struct super_block *s;
857 int error;
858
859 s = sget(fs_type, compare_single, set_anon_super, NULL);
860 if (IS_ERR(s))
861 return PTR_ERR(s);
862 if (!s->s_root) {
863 s->s_flags = flags;
864 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
865 if (error) {
866 deactivate_locked_super(s);
867 return error;
868 }
869 s->s_flags |= MS_ACTIVE;
870 } else {
871 do_remount_sb(s, flags, data, 0);
872 }
873 simple_set_mnt(mnt, s);
874 return 0;
875 }
876
877 EXPORT_SYMBOL(get_sb_single);
878
879 struct vfsmount *
880 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
881 {
882 struct vfsmount *mnt;
883 char *secdata = NULL;
884 int error;
885
886 if (!type)
887 return ERR_PTR(-ENODEV);
888
889 error = -ENOMEM;
890 mnt = alloc_vfsmnt(name);
891 if (!mnt)
892 goto out;
893
894 if (flags & MS_KERNMOUNT)
895 mnt->mnt_flags = MNT_INTERNAL;
896
897 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
898 secdata = alloc_secdata();
899 if (!secdata)
900 goto out_mnt;
901
902 error = security_sb_copy_data(data, secdata);
903 if (error)
904 goto out_free_secdata;
905 }
906
907 error = type->get_sb(type, flags, name, data, mnt);
908 if (error < 0)
909 goto out_free_secdata;
910 BUG_ON(!mnt->mnt_sb);
911 WARN_ON(!mnt->mnt_sb->s_bdi);
912
913 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
914 if (error)
915 goto out_sb;
916
917 /*
918 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
919 * but s_maxbytes was an unsigned long long for many releases. Throw
920 * this warning for a little while to try and catch filesystems that
921 * violate this rule. This warning should be either removed or
922 * converted to a BUG() in 2.6.34.
923 */
924 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
925 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
926
927 mnt->mnt_mountpoint = mnt->mnt_root;
928 mnt->mnt_parent = mnt;
929 up_write(&mnt->mnt_sb->s_umount);
930 free_secdata(secdata);
931 return mnt;
932 out_sb:
933 dput(mnt->mnt_root);
934 deactivate_locked_super(mnt->mnt_sb);
935 out_free_secdata:
936 free_secdata(secdata);
937 out_mnt:
938 free_vfsmnt(mnt);
939 out:
940 return ERR_PTR(error);
941 }
942
943 EXPORT_SYMBOL_GPL(vfs_kern_mount);
944
945 /**
946 * freeze_super - lock the filesystem and force it into a consistent state
947 * @sb: the super to lock
948 *
949 * Syncs the super to make sure the filesystem is consistent and calls the fs's
950 * freeze_fs. Subsequent calls to this without first thawing the fs will return
951 * -EBUSY.
952 */
953 int freeze_super(struct super_block *sb)
954 {
955 int ret;
956
957 atomic_inc(&sb->s_active);
958 down_write(&sb->s_umount);
959 if (sb->s_frozen) {
960 deactivate_locked_super(sb);
961 return -EBUSY;
962 }
963
964 if (sb->s_flags & MS_RDONLY) {
965 sb->s_frozen = SB_FREEZE_TRANS;
966 smp_wmb();
967 up_write(&sb->s_umount);
968 return 0;
969 }
970
971 sb->s_frozen = SB_FREEZE_WRITE;
972 smp_wmb();
973
974 sync_filesystem(sb);
975
976 sb->s_frozen = SB_FREEZE_TRANS;
977 smp_wmb();
978
979 sync_blockdev(sb->s_bdev);
980 if (sb->s_op->freeze_fs) {
981 ret = sb->s_op->freeze_fs(sb);
982 if (ret) {
983 printk(KERN_ERR
984 "VFS:Filesystem freeze failed\n");
985 sb->s_frozen = SB_UNFROZEN;
986 deactivate_locked_super(sb);
987 return ret;
988 }
989 }
990 up_write(&sb->s_umount);
991 return 0;
992 }
993 EXPORT_SYMBOL(freeze_super);
994
995 /**
996 * thaw_super -- unlock filesystem
997 * @sb: the super to thaw
998 *
999 * Unlocks the filesystem and marks it writeable again after freeze_super().
1000 */
1001 int thaw_super(struct super_block *sb)
1002 {
1003 int error;
1004
1005 down_write(&sb->s_umount);
1006 if (sb->s_frozen == SB_UNFROZEN) {
1007 up_write(&sb->s_umount);
1008 return -EINVAL;
1009 }
1010
1011 if (sb->s_flags & MS_RDONLY)
1012 goto out;
1013
1014 if (sb->s_op->unfreeze_fs) {
1015 error = sb->s_op->unfreeze_fs(sb);
1016 if (error) {
1017 printk(KERN_ERR
1018 "VFS:Filesystem thaw failed\n");
1019 sb->s_frozen = SB_FREEZE_TRANS;
1020 up_write(&sb->s_umount);
1021 return error;
1022 }
1023 }
1024
1025 out:
1026 sb->s_frozen = SB_UNFROZEN;
1027 smp_wmb();
1028 wake_up(&sb->s_wait_unfrozen);
1029 deactivate_locked_super(sb);
1030
1031 return 0;
1032 }
1033 EXPORT_SYMBOL(thaw_super);
1034
1035 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1036 {
1037 int err;
1038 const char *subtype = strchr(fstype, '.');
1039 if (subtype) {
1040 subtype++;
1041 err = -EINVAL;
1042 if (!subtype[0])
1043 goto err;
1044 } else
1045 subtype = "";
1046
1047 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1048 err = -ENOMEM;
1049 if (!mnt->mnt_sb->s_subtype)
1050 goto err;
1051 return mnt;
1052
1053 err:
1054 mntput(mnt);
1055 return ERR_PTR(err);
1056 }
1057
1058 struct vfsmount *
1059 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1060 {
1061 struct file_system_type *type = get_fs_type(fstype);
1062 struct vfsmount *mnt;
1063 if (!type)
1064 return ERR_PTR(-ENODEV);
1065 mnt = vfs_kern_mount(type, flags, name, data);
1066 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1067 !mnt->mnt_sb->s_subtype)
1068 mnt = fs_set_subtype(mnt, fstype);
1069 put_filesystem(type);
1070 return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(do_kern_mount);
1073
1074 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1075 {
1076 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1077 }
1078
1079 EXPORT_SYMBOL_GPL(kern_mount_data);