]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/super.c
Push BKL down into do_remount_sb()
[mirror_ubuntu-zesty-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/mount.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h> /* for the emergency remount stuff */
36 #include <linux/idr.h>
37 #include <linux/kobject.h>
38 #include <linux/mutex.h>
39 #include <linux/file.h>
40 #include <asm/uaccess.h>
41 #include "internal.h"
42
43
44 LIST_HEAD(super_blocks);
45 DEFINE_SPINLOCK(sb_lock);
46
47 /**
48 * alloc_super - create new superblock
49 * @type: filesystem type superblock should belong to
50 *
51 * Allocates and initializes a new &struct super_block. alloc_super()
52 * returns a pointer new superblock or %NULL if allocation had failed.
53 */
54 static struct super_block *alloc_super(struct file_system_type *type)
55 {
56 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
57 static struct super_operations default_op;
58
59 if (s) {
60 if (security_sb_alloc(s)) {
61 kfree(s);
62 s = NULL;
63 goto out;
64 }
65 INIT_LIST_HEAD(&s->s_dirty);
66 INIT_LIST_HEAD(&s->s_io);
67 INIT_LIST_HEAD(&s->s_more_io);
68 INIT_LIST_HEAD(&s->s_files);
69 INIT_LIST_HEAD(&s->s_instances);
70 INIT_HLIST_HEAD(&s->s_anon);
71 INIT_LIST_HEAD(&s->s_inodes);
72 INIT_LIST_HEAD(&s->s_dentry_lru);
73 init_rwsem(&s->s_umount);
74 mutex_init(&s->s_lock);
75 lockdep_set_class(&s->s_umount, &type->s_umount_key);
76 /*
77 * The locking rules for s_lock are up to the
78 * filesystem. For example ext3fs has different
79 * lock ordering than usbfs:
80 */
81 lockdep_set_class(&s->s_lock, &type->s_lock_key);
82 /*
83 * sget() can have s_umount recursion.
84 *
85 * When it cannot find a suitable sb, it allocates a new
86 * one (this one), and tries again to find a suitable old
87 * one.
88 *
89 * In case that succeeds, it will acquire the s_umount
90 * lock of the old one. Since these are clearly distrinct
91 * locks, and this object isn't exposed yet, there's no
92 * risk of deadlocks.
93 *
94 * Annotate this by putting this lock in a different
95 * subclass.
96 */
97 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
98 s->s_count = S_BIAS;
99 atomic_set(&s->s_active, 1);
100 mutex_init(&s->s_vfs_rename_mutex);
101 mutex_init(&s->s_dquot.dqio_mutex);
102 mutex_init(&s->s_dquot.dqonoff_mutex);
103 init_rwsem(&s->s_dquot.dqptr_sem);
104 init_waitqueue_head(&s->s_wait_unfrozen);
105 s->s_maxbytes = MAX_NON_LFS;
106 s->dq_op = sb_dquot_ops;
107 s->s_qcop = sb_quotactl_ops;
108 s->s_op = &default_op;
109 s->s_time_gran = 1000000000;
110 }
111 out:
112 return s;
113 }
114
115 /**
116 * destroy_super - frees a superblock
117 * @s: superblock to free
118 *
119 * Frees a superblock.
120 */
121 static inline void destroy_super(struct super_block *s)
122 {
123 security_sb_free(s);
124 kfree(s->s_subtype);
125 kfree(s->s_options);
126 kfree(s);
127 }
128
129 /* Superblock refcounting */
130
131 /*
132 * Drop a superblock's refcount. Returns non-zero if the superblock was
133 * destroyed. The caller must hold sb_lock.
134 */
135 static int __put_super(struct super_block *sb)
136 {
137 int ret = 0;
138
139 if (!--sb->s_count) {
140 destroy_super(sb);
141 ret = 1;
142 }
143 return ret;
144 }
145
146 /*
147 * Drop a superblock's refcount.
148 * Returns non-zero if the superblock is about to be destroyed and
149 * at least is already removed from super_blocks list, so if we are
150 * making a loop through super blocks then we need to restart.
151 * The caller must hold sb_lock.
152 */
153 int __put_super_and_need_restart(struct super_block *sb)
154 {
155 /* check for race with generic_shutdown_super() */
156 if (list_empty(&sb->s_list)) {
157 /* super block is removed, need to restart... */
158 __put_super(sb);
159 return 1;
160 }
161 /* can't be the last, since s_list is still in use */
162 sb->s_count--;
163 BUG_ON(sb->s_count == 0);
164 return 0;
165 }
166
167 /**
168 * put_super - drop a temporary reference to superblock
169 * @sb: superblock in question
170 *
171 * Drops a temporary reference, frees superblock if there's no
172 * references left.
173 */
174 static void put_super(struct super_block *sb)
175 {
176 spin_lock(&sb_lock);
177 __put_super(sb);
178 spin_unlock(&sb_lock);
179 }
180
181
182 /**
183 * deactivate_super - drop an active reference to superblock
184 * @s: superblock to deactivate
185 *
186 * Drops an active reference to superblock, acquiring a temprory one if
187 * there is no active references left. In that case we lock superblock,
188 * tell fs driver to shut it down and drop the temporary reference we
189 * had just acquired.
190 */
191 void deactivate_super(struct super_block *s)
192 {
193 struct file_system_type *fs = s->s_type;
194 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
195 s->s_count -= S_BIAS-1;
196 spin_unlock(&sb_lock);
197 vfs_dq_off(s, 0);
198 down_write(&s->s_umount);
199 fs->kill_sb(s);
200 put_filesystem(fs);
201 put_super(s);
202 }
203 }
204
205 EXPORT_SYMBOL(deactivate_super);
206
207 /**
208 * deactivate_locked_super - drop an active reference to superblock
209 * @s: superblock to deactivate
210 *
211 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
212 * it does not unlock it until it's all over. As the result, it's safe to
213 * use to dispose of new superblock on ->get_sb() failure exits - nobody
214 * will see the sucker until it's all over. Equivalent using up_write +
215 * deactivate_super is safe for that purpose only if superblock is either
216 * safe to use or has NULL ->s_root when we unlock.
217 */
218 void deactivate_locked_super(struct super_block *s)
219 {
220 struct file_system_type *fs = s->s_type;
221 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
222 s->s_count -= S_BIAS-1;
223 spin_unlock(&sb_lock);
224 vfs_dq_off(s, 0);
225 fs->kill_sb(s);
226 put_filesystem(fs);
227 put_super(s);
228 } else {
229 up_write(&s->s_umount);
230 }
231 }
232
233 EXPORT_SYMBOL(deactivate_locked_super);
234
235 /**
236 * grab_super - acquire an active reference
237 * @s: reference we are trying to make active
238 *
239 * Tries to acquire an active reference. grab_super() is used when we
240 * had just found a superblock in super_blocks or fs_type->fs_supers
241 * and want to turn it into a full-blown active reference. grab_super()
242 * is called with sb_lock held and drops it. Returns 1 in case of
243 * success, 0 if we had failed (superblock contents was already dead or
244 * dying when grab_super() had been called).
245 */
246 static int grab_super(struct super_block *s) __releases(sb_lock)
247 {
248 s->s_count++;
249 spin_unlock(&sb_lock);
250 down_write(&s->s_umount);
251 if (s->s_root) {
252 spin_lock(&sb_lock);
253 if (s->s_count > S_BIAS) {
254 atomic_inc(&s->s_active);
255 s->s_count--;
256 spin_unlock(&sb_lock);
257 return 1;
258 }
259 spin_unlock(&sb_lock);
260 }
261 up_write(&s->s_umount);
262 put_super(s);
263 yield();
264 return 0;
265 }
266
267 /*
268 * Superblock locking. We really ought to get rid of these two.
269 */
270 void lock_super(struct super_block * sb)
271 {
272 get_fs_excl();
273 mutex_lock(&sb->s_lock);
274 }
275
276 void unlock_super(struct super_block * sb)
277 {
278 put_fs_excl();
279 mutex_unlock(&sb->s_lock);
280 }
281
282 EXPORT_SYMBOL(lock_super);
283 EXPORT_SYMBOL(unlock_super);
284
285 /**
286 * generic_shutdown_super - common helper for ->kill_sb()
287 * @sb: superblock to kill
288 *
289 * generic_shutdown_super() does all fs-independent work on superblock
290 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
291 * that need destruction out of superblock, call generic_shutdown_super()
292 * and release aforementioned objects. Note: dentries and inodes _are_
293 * taken care of and do not need specific handling.
294 *
295 * Upon calling this function, the filesystem may no longer alter or
296 * rearrange the set of dentries belonging to this super_block, nor may it
297 * change the attachments of dentries to inodes.
298 */
299 void generic_shutdown_super(struct super_block *sb)
300 {
301 const struct super_operations *sop = sb->s_op;
302
303
304 if (sb->s_root) {
305 shrink_dcache_for_umount(sb);
306 sync_filesystem(sb);
307 get_fs_excl();
308 sb->s_flags &= ~MS_ACTIVE;
309
310 /* bad name - it should be evict_inodes() */
311 invalidate_inodes(sb);
312
313 if (sop->put_super)
314 sop->put_super(sb);
315
316 /* Forget any remaining inodes */
317 if (invalidate_inodes(sb)) {
318 printk("VFS: Busy inodes after unmount of %s. "
319 "Self-destruct in 5 seconds. Have a nice day...\n",
320 sb->s_id);
321 }
322 put_fs_excl();
323 }
324 spin_lock(&sb_lock);
325 /* should be initialized for __put_super_and_need_restart() */
326 list_del_init(&sb->s_list);
327 list_del(&sb->s_instances);
328 spin_unlock(&sb_lock);
329 up_write(&sb->s_umount);
330 }
331
332 EXPORT_SYMBOL(generic_shutdown_super);
333
334 /**
335 * sget - find or create a superblock
336 * @type: filesystem type superblock should belong to
337 * @test: comparison callback
338 * @set: setup callback
339 * @data: argument to each of them
340 */
341 struct super_block *sget(struct file_system_type *type,
342 int (*test)(struct super_block *,void *),
343 int (*set)(struct super_block *,void *),
344 void *data)
345 {
346 struct super_block *s = NULL;
347 struct super_block *old;
348 int err;
349
350 retry:
351 spin_lock(&sb_lock);
352 if (test) {
353 list_for_each_entry(old, &type->fs_supers, s_instances) {
354 if (!test(old, data))
355 continue;
356 if (!grab_super(old))
357 goto retry;
358 if (s) {
359 up_write(&s->s_umount);
360 destroy_super(s);
361 }
362 return old;
363 }
364 }
365 if (!s) {
366 spin_unlock(&sb_lock);
367 s = alloc_super(type);
368 if (!s)
369 return ERR_PTR(-ENOMEM);
370 goto retry;
371 }
372
373 err = set(s, data);
374 if (err) {
375 spin_unlock(&sb_lock);
376 up_write(&s->s_umount);
377 destroy_super(s);
378 return ERR_PTR(err);
379 }
380 s->s_type = type;
381 strlcpy(s->s_id, type->name, sizeof(s->s_id));
382 list_add_tail(&s->s_list, &super_blocks);
383 list_add(&s->s_instances, &type->fs_supers);
384 spin_unlock(&sb_lock);
385 get_filesystem(type);
386 return s;
387 }
388
389 EXPORT_SYMBOL(sget);
390
391 void drop_super(struct super_block *sb)
392 {
393 up_read(&sb->s_umount);
394 put_super(sb);
395 }
396
397 EXPORT_SYMBOL(drop_super);
398
399 /**
400 * sync_supers - helper for periodic superblock writeback
401 *
402 * Call the write_super method if present on all dirty superblocks in
403 * the system. This is for the periodic writeback used by most older
404 * filesystems. For data integrity superblock writeback use
405 * sync_filesystems() instead.
406 *
407 * Note: check the dirty flag before waiting, so we don't
408 * hold up the sync while mounting a device. (The newly
409 * mounted device won't need syncing.)
410 */
411 void sync_supers(void)
412 {
413 struct super_block *sb;
414
415 spin_lock(&sb_lock);
416 restart:
417 list_for_each_entry(sb, &super_blocks, s_list) {
418 if (sb->s_op->write_super && sb->s_dirt) {
419 sb->s_count++;
420 spin_unlock(&sb_lock);
421
422 down_read(&sb->s_umount);
423 lock_super(sb);
424 if (sb->s_root && sb->s_dirt)
425 sb->s_op->write_super(sb);
426 unlock_super(sb);
427 up_read(&sb->s_umount);
428
429 spin_lock(&sb_lock);
430 if (__put_super_and_need_restart(sb))
431 goto restart;
432 }
433 }
434 spin_unlock(&sb_lock);
435 }
436
437 /**
438 * get_super - get the superblock of a device
439 * @bdev: device to get the superblock for
440 *
441 * Scans the superblock list and finds the superblock of the file system
442 * mounted on the device given. %NULL is returned if no match is found.
443 */
444
445 struct super_block * get_super(struct block_device *bdev)
446 {
447 struct super_block *sb;
448
449 if (!bdev)
450 return NULL;
451
452 spin_lock(&sb_lock);
453 rescan:
454 list_for_each_entry(sb, &super_blocks, s_list) {
455 if (sb->s_bdev == bdev) {
456 sb->s_count++;
457 spin_unlock(&sb_lock);
458 down_read(&sb->s_umount);
459 if (sb->s_root)
460 return sb;
461 up_read(&sb->s_umount);
462 /* restart only when sb is no longer on the list */
463 spin_lock(&sb_lock);
464 if (__put_super_and_need_restart(sb))
465 goto rescan;
466 }
467 }
468 spin_unlock(&sb_lock);
469 return NULL;
470 }
471
472 EXPORT_SYMBOL(get_super);
473
474 struct super_block * user_get_super(dev_t dev)
475 {
476 struct super_block *sb;
477
478 spin_lock(&sb_lock);
479 rescan:
480 list_for_each_entry(sb, &super_blocks, s_list) {
481 if (sb->s_dev == dev) {
482 sb->s_count++;
483 spin_unlock(&sb_lock);
484 down_read(&sb->s_umount);
485 if (sb->s_root)
486 return sb;
487 up_read(&sb->s_umount);
488 /* restart only when sb is no longer on the list */
489 spin_lock(&sb_lock);
490 if (__put_super_and_need_restart(sb))
491 goto rescan;
492 }
493 }
494 spin_unlock(&sb_lock);
495 return NULL;
496 }
497
498 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
499 {
500 struct super_block *s;
501 struct ustat tmp;
502 struct kstatfs sbuf;
503 int err = -EINVAL;
504
505 s = user_get_super(new_decode_dev(dev));
506 if (s == NULL)
507 goto out;
508 err = vfs_statfs(s->s_root, &sbuf);
509 drop_super(s);
510 if (err)
511 goto out;
512
513 memset(&tmp,0,sizeof(struct ustat));
514 tmp.f_tfree = sbuf.f_bfree;
515 tmp.f_tinode = sbuf.f_ffree;
516
517 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
518 out:
519 return err;
520 }
521
522 /**
523 * do_remount_sb - asks filesystem to change mount options.
524 * @sb: superblock in question
525 * @flags: numeric part of options
526 * @data: the rest of options
527 * @force: whether or not to force the change
528 *
529 * Alters the mount options of a mounted file system.
530 */
531 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
532 {
533 int retval;
534 int remount_rw;
535
536 #ifdef CONFIG_BLOCK
537 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
538 return -EACCES;
539 #endif
540 if (flags & MS_RDONLY)
541 acct_auto_close(sb);
542 shrink_dcache_sb(sb);
543 sync_filesystem(sb);
544
545 lock_kernel();
546 /* If we are remounting RDONLY and current sb is read/write,
547 make sure there are no rw files opened */
548 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
549 if (force)
550 mark_files_ro(sb);
551 else if (!fs_may_remount_ro(sb)) {
552 unlock_kernel();
553 return -EBUSY;
554 }
555 retval = vfs_dq_off(sb, 1);
556 if (retval < 0 && retval != -ENOSYS) {
557 unlock_kernel();
558 return -EBUSY;
559 }
560 }
561 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
562
563 if (sb->s_op->remount_fs) {
564 retval = sb->s_op->remount_fs(sb, &flags, data);
565 if (retval) {
566 unlock_kernel();
567 return retval;
568 }
569 }
570 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
571 unlock_kernel();
572 if (remount_rw)
573 vfs_dq_quota_on_remount(sb);
574 return 0;
575 }
576
577 static void do_emergency_remount(struct work_struct *work)
578 {
579 struct super_block *sb;
580
581 spin_lock(&sb_lock);
582 list_for_each_entry(sb, &super_blocks, s_list) {
583 sb->s_count++;
584 spin_unlock(&sb_lock);
585 down_write(&sb->s_umount);
586 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
587 /*
588 * ->remount_fs needs lock_kernel().
589 *
590 * What lock protects sb->s_flags??
591 */
592 do_remount_sb(sb, MS_RDONLY, NULL, 1);
593 }
594 up_write(&sb->s_umount);
595 put_super(sb);
596 spin_lock(&sb_lock);
597 }
598 spin_unlock(&sb_lock);
599 kfree(work);
600 printk("Emergency Remount complete\n");
601 }
602
603 void emergency_remount(void)
604 {
605 struct work_struct *work;
606
607 work = kmalloc(sizeof(*work), GFP_ATOMIC);
608 if (work) {
609 INIT_WORK(work, do_emergency_remount);
610 schedule_work(work);
611 }
612 }
613
614 /*
615 * Unnamed block devices are dummy devices used by virtual
616 * filesystems which don't use real block-devices. -- jrs
617 */
618
619 static DEFINE_IDA(unnamed_dev_ida);
620 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
621
622 int set_anon_super(struct super_block *s, void *data)
623 {
624 int dev;
625 int error;
626
627 retry:
628 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
629 return -ENOMEM;
630 spin_lock(&unnamed_dev_lock);
631 error = ida_get_new(&unnamed_dev_ida, &dev);
632 spin_unlock(&unnamed_dev_lock);
633 if (error == -EAGAIN)
634 /* We raced and lost with another CPU. */
635 goto retry;
636 else if (error)
637 return -EAGAIN;
638
639 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
640 spin_lock(&unnamed_dev_lock);
641 ida_remove(&unnamed_dev_ida, dev);
642 spin_unlock(&unnamed_dev_lock);
643 return -EMFILE;
644 }
645 s->s_dev = MKDEV(0, dev & MINORMASK);
646 return 0;
647 }
648
649 EXPORT_SYMBOL(set_anon_super);
650
651 void kill_anon_super(struct super_block *sb)
652 {
653 int slot = MINOR(sb->s_dev);
654
655 generic_shutdown_super(sb);
656 spin_lock(&unnamed_dev_lock);
657 ida_remove(&unnamed_dev_ida, slot);
658 spin_unlock(&unnamed_dev_lock);
659 }
660
661 EXPORT_SYMBOL(kill_anon_super);
662
663 void kill_litter_super(struct super_block *sb)
664 {
665 if (sb->s_root)
666 d_genocide(sb->s_root);
667 kill_anon_super(sb);
668 }
669
670 EXPORT_SYMBOL(kill_litter_super);
671
672 static int ns_test_super(struct super_block *sb, void *data)
673 {
674 return sb->s_fs_info == data;
675 }
676
677 static int ns_set_super(struct super_block *sb, void *data)
678 {
679 sb->s_fs_info = data;
680 return set_anon_super(sb, NULL);
681 }
682
683 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
684 int (*fill_super)(struct super_block *, void *, int),
685 struct vfsmount *mnt)
686 {
687 struct super_block *sb;
688
689 sb = sget(fs_type, ns_test_super, ns_set_super, data);
690 if (IS_ERR(sb))
691 return PTR_ERR(sb);
692
693 if (!sb->s_root) {
694 int err;
695 sb->s_flags = flags;
696 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
697 if (err) {
698 deactivate_locked_super(sb);
699 return err;
700 }
701
702 sb->s_flags |= MS_ACTIVE;
703 }
704
705 simple_set_mnt(mnt, sb);
706 return 0;
707 }
708
709 EXPORT_SYMBOL(get_sb_ns);
710
711 #ifdef CONFIG_BLOCK
712 static int set_bdev_super(struct super_block *s, void *data)
713 {
714 s->s_bdev = data;
715 s->s_dev = s->s_bdev->bd_dev;
716 return 0;
717 }
718
719 static int test_bdev_super(struct super_block *s, void *data)
720 {
721 return (void *)s->s_bdev == data;
722 }
723
724 int get_sb_bdev(struct file_system_type *fs_type,
725 int flags, const char *dev_name, void *data,
726 int (*fill_super)(struct super_block *, void *, int),
727 struct vfsmount *mnt)
728 {
729 struct block_device *bdev;
730 struct super_block *s;
731 fmode_t mode = FMODE_READ;
732 int error = 0;
733
734 if (!(flags & MS_RDONLY))
735 mode |= FMODE_WRITE;
736
737 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
738 if (IS_ERR(bdev))
739 return PTR_ERR(bdev);
740
741 /*
742 * once the super is inserted into the list by sget, s_umount
743 * will protect the lockfs code from trying to start a snapshot
744 * while we are mounting
745 */
746 down(&bdev->bd_mount_sem);
747 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
748 up(&bdev->bd_mount_sem);
749 if (IS_ERR(s))
750 goto error_s;
751
752 if (s->s_root) {
753 if ((flags ^ s->s_flags) & MS_RDONLY) {
754 deactivate_locked_super(s);
755 error = -EBUSY;
756 goto error_bdev;
757 }
758
759 close_bdev_exclusive(bdev, mode);
760 } else {
761 char b[BDEVNAME_SIZE];
762
763 s->s_flags = flags;
764 s->s_mode = mode;
765 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
766 sb_set_blocksize(s, block_size(bdev));
767 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
768 if (error) {
769 deactivate_locked_super(s);
770 goto error;
771 }
772
773 s->s_flags |= MS_ACTIVE;
774 bdev->bd_super = s;
775 }
776
777 simple_set_mnt(mnt, s);
778 return 0;
779
780 error_s:
781 error = PTR_ERR(s);
782 error_bdev:
783 close_bdev_exclusive(bdev, mode);
784 error:
785 return error;
786 }
787
788 EXPORT_SYMBOL(get_sb_bdev);
789
790 void kill_block_super(struct super_block *sb)
791 {
792 struct block_device *bdev = sb->s_bdev;
793 fmode_t mode = sb->s_mode;
794
795 bdev->bd_super = NULL;
796 generic_shutdown_super(sb);
797 sync_blockdev(bdev);
798 close_bdev_exclusive(bdev, mode);
799 }
800
801 EXPORT_SYMBOL(kill_block_super);
802 #endif
803
804 int get_sb_nodev(struct file_system_type *fs_type,
805 int flags, void *data,
806 int (*fill_super)(struct super_block *, void *, int),
807 struct vfsmount *mnt)
808 {
809 int error;
810 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
811
812 if (IS_ERR(s))
813 return PTR_ERR(s);
814
815 s->s_flags = flags;
816
817 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
818 if (error) {
819 deactivate_locked_super(s);
820 return error;
821 }
822 s->s_flags |= MS_ACTIVE;
823 simple_set_mnt(mnt, s);
824 return 0;
825 }
826
827 EXPORT_SYMBOL(get_sb_nodev);
828
829 static int compare_single(struct super_block *s, void *p)
830 {
831 return 1;
832 }
833
834 int get_sb_single(struct file_system_type *fs_type,
835 int flags, void *data,
836 int (*fill_super)(struct super_block *, void *, int),
837 struct vfsmount *mnt)
838 {
839 struct super_block *s;
840 int error;
841
842 s = sget(fs_type, compare_single, set_anon_super, NULL);
843 if (IS_ERR(s))
844 return PTR_ERR(s);
845 if (!s->s_root) {
846 s->s_flags = flags;
847 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
848 if (error) {
849 deactivate_locked_super(s);
850 return error;
851 }
852 s->s_flags |= MS_ACTIVE;
853 }
854 do_remount_sb(s, flags, data, 0);
855 simple_set_mnt(mnt, s);
856 return 0;
857 }
858
859 EXPORT_SYMBOL(get_sb_single);
860
861 struct vfsmount *
862 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
863 {
864 struct vfsmount *mnt;
865 char *secdata = NULL;
866 int error;
867
868 if (!type)
869 return ERR_PTR(-ENODEV);
870
871 error = -ENOMEM;
872 mnt = alloc_vfsmnt(name);
873 if (!mnt)
874 goto out;
875
876 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
877 secdata = alloc_secdata();
878 if (!secdata)
879 goto out_mnt;
880
881 error = security_sb_copy_data(data, secdata);
882 if (error)
883 goto out_free_secdata;
884 }
885
886 error = type->get_sb(type, flags, name, data, mnt);
887 if (error < 0)
888 goto out_free_secdata;
889 BUG_ON(!mnt->mnt_sb);
890
891 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
892 if (error)
893 goto out_sb;
894
895 mnt->mnt_mountpoint = mnt->mnt_root;
896 mnt->mnt_parent = mnt;
897 up_write(&mnt->mnt_sb->s_umount);
898 free_secdata(secdata);
899 return mnt;
900 out_sb:
901 dput(mnt->mnt_root);
902 deactivate_locked_super(mnt->mnt_sb);
903 out_free_secdata:
904 free_secdata(secdata);
905 out_mnt:
906 free_vfsmnt(mnt);
907 out:
908 return ERR_PTR(error);
909 }
910
911 EXPORT_SYMBOL_GPL(vfs_kern_mount);
912
913 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
914 {
915 int err;
916 const char *subtype = strchr(fstype, '.');
917 if (subtype) {
918 subtype++;
919 err = -EINVAL;
920 if (!subtype[0])
921 goto err;
922 } else
923 subtype = "";
924
925 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
926 err = -ENOMEM;
927 if (!mnt->mnt_sb->s_subtype)
928 goto err;
929 return mnt;
930
931 err:
932 mntput(mnt);
933 return ERR_PTR(err);
934 }
935
936 struct vfsmount *
937 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
938 {
939 struct file_system_type *type = get_fs_type(fstype);
940 struct vfsmount *mnt;
941 if (!type)
942 return ERR_PTR(-ENODEV);
943 mnt = vfs_kern_mount(type, flags, name, data);
944 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
945 !mnt->mnt_sb->s_subtype)
946 mnt = fs_set_subtype(mnt, fstype);
947 put_filesystem(type);
948 return mnt;
949 }
950 EXPORT_SYMBOL_GPL(do_kern_mount);
951
952 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
953 {
954 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
955 }
956
957 EXPORT_SYMBOL_GPL(kern_mount_data);