]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/super.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
129 */
130 if (sb->s_op && sb->s_op->nr_cached_objects)
131 total_objects = sb->s_op->nr_cached_objects(sb, sc);
132
133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135
136 total_objects = vfs_pressure_ratio(total_objects);
137 return total_objects;
138 }
139
140 static void destroy_super_work(struct work_struct *work)
141 {
142 struct super_block *s = container_of(work, struct super_block,
143 destroy_work);
144 int i;
145
146 for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 kfree(s);
149 }
150
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 struct super_block *s = container_of(head, struct super_block, rcu);
154 INIT_WORK(&s->destroy_work, destroy_super_work);
155 schedule_work(&s->destroy_work);
156 }
157
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block *s)
160 {
161 if (!s)
162 return;
163 up_write(&s->s_umount);
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 put_user_ns(s->s_user_ns);
168 kfree(s->s_subtype);
169 /* no delays needed */
170 destroy_super_work(&s->destroy_work);
171 }
172
173 /**
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 * @user_ns: User namespace for the super_block
178 *
179 * Allocates and initializes a new &struct super_block. alloc_super()
180 * returns a pointer new superblock or %NULL if allocation had failed.
181 */
182 static struct super_block *alloc_super(struct file_system_type *type, int flags,
183 struct user_namespace *user_ns)
184 {
185 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
186 static const struct super_operations default_op;
187 int i;
188
189 if (!s)
190 return NULL;
191
192 INIT_LIST_HEAD(&s->s_mounts);
193 s->s_user_ns = get_user_ns(user_ns);
194 init_rwsem(&s->s_umount);
195 lockdep_set_class(&s->s_umount, &type->s_umount_key);
196 /*
197 * sget() can have s_umount recursion.
198 *
199 * When it cannot find a suitable sb, it allocates a new
200 * one (this one), and tries again to find a suitable old
201 * one.
202 *
203 * In case that succeeds, it will acquire the s_umount
204 * lock of the old one. Since these are clearly distrinct
205 * locks, and this object isn't exposed yet, there's no
206 * risk of deadlocks.
207 *
208 * Annotate this by putting this lock in a different
209 * subclass.
210 */
211 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
212
213 if (security_sb_alloc(s))
214 goto fail;
215
216 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
217 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
218 sb_writers_name[i],
219 &type->s_writers_key[i]))
220 goto fail;
221 }
222 init_waitqueue_head(&s->s_writers.wait_unfrozen);
223 s->s_bdi = &noop_backing_dev_info;
224 s->s_flags = flags;
225 if (s->s_user_ns != &init_user_ns)
226 s->s_iflags |= SB_I_NODEV;
227 INIT_HLIST_NODE(&s->s_instances);
228 INIT_HLIST_BL_HEAD(&s->s_anon);
229 mutex_init(&s->s_sync_lock);
230 INIT_LIST_HEAD(&s->s_inodes);
231 spin_lock_init(&s->s_inode_list_lock);
232 INIT_LIST_HEAD(&s->s_inodes_wb);
233 spin_lock_init(&s->s_inode_wblist_lock);
234
235 if (list_lru_init_memcg(&s->s_dentry_lru))
236 goto fail;
237 if (list_lru_init_memcg(&s->s_inode_lru))
238 goto fail;
239 s->s_count = 1;
240 atomic_set(&s->s_active, 1);
241 mutex_init(&s->s_vfs_rename_mutex);
242 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
243 init_rwsem(&s->s_dquot.dqio_sem);
244 s->s_maxbytes = MAX_NON_LFS;
245 s->s_op = &default_op;
246 s->s_time_gran = 1000000000;
247 s->cleancache_poolid = CLEANCACHE_NO_POOL;
248
249 s->s_shrink.seeks = DEFAULT_SEEKS;
250 s->s_shrink.scan_objects = super_cache_scan;
251 s->s_shrink.count_objects = super_cache_count;
252 s->s_shrink.batch = 1024;
253 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
254 return s;
255
256 fail:
257 destroy_unused_super(s);
258 return NULL;
259 }
260
261 /* Superblock refcounting */
262
263 /*
264 * Drop a superblock's refcount. The caller must hold sb_lock.
265 */
266 static void __put_super(struct super_block *s)
267 {
268 if (!--s->s_count) {
269 list_del_init(&s->s_list);
270 WARN_ON(s->s_dentry_lru.node);
271 WARN_ON(s->s_inode_lru.node);
272 WARN_ON(!list_empty(&s->s_mounts));
273 security_sb_free(s);
274 put_user_ns(s->s_user_ns);
275 kfree(s->s_subtype);
276 call_rcu(&s->rcu, destroy_super_rcu);
277 }
278 }
279
280 /**
281 * put_super - drop a temporary reference to superblock
282 * @sb: superblock in question
283 *
284 * Drops a temporary reference, frees superblock if there's no
285 * references left.
286 */
287 static void put_super(struct super_block *sb)
288 {
289 spin_lock(&sb_lock);
290 __put_super(sb);
291 spin_unlock(&sb_lock);
292 }
293
294
295 /**
296 * deactivate_locked_super - drop an active reference to superblock
297 * @s: superblock to deactivate
298 *
299 * Drops an active reference to superblock, converting it into a temporary
300 * one if there is no other active references left. In that case we
301 * tell fs driver to shut it down and drop the temporary reference we
302 * had just acquired.
303 *
304 * Caller holds exclusive lock on superblock; that lock is released.
305 */
306 void deactivate_locked_super(struct super_block *s)
307 {
308 struct file_system_type *fs = s->s_type;
309 if (atomic_dec_and_test(&s->s_active)) {
310 cleancache_invalidate_fs(s);
311 unregister_shrinker(&s->s_shrink);
312 fs->kill_sb(s);
313
314 /*
315 * Since list_lru_destroy() may sleep, we cannot call it from
316 * put_super(), where we hold the sb_lock. Therefore we destroy
317 * the lru lists right now.
318 */
319 list_lru_destroy(&s->s_dentry_lru);
320 list_lru_destroy(&s->s_inode_lru);
321
322 put_filesystem(fs);
323 put_super(s);
324 } else {
325 up_write(&s->s_umount);
326 }
327 }
328
329 EXPORT_SYMBOL(deactivate_locked_super);
330
331 /**
332 * deactivate_super - drop an active reference to superblock
333 * @s: superblock to deactivate
334 *
335 * Variant of deactivate_locked_super(), except that superblock is *not*
336 * locked by caller. If we are going to drop the final active reference,
337 * lock will be acquired prior to that.
338 */
339 void deactivate_super(struct super_block *s)
340 {
341 if (!atomic_add_unless(&s->s_active, -1, 1)) {
342 down_write(&s->s_umount);
343 deactivate_locked_super(s);
344 }
345 }
346
347 EXPORT_SYMBOL(deactivate_super);
348
349 /**
350 * grab_super - acquire an active reference
351 * @s: reference we are trying to make active
352 *
353 * Tries to acquire an active reference. grab_super() is used when we
354 * had just found a superblock in super_blocks or fs_type->fs_supers
355 * and want to turn it into a full-blown active reference. grab_super()
356 * is called with sb_lock held and drops it. Returns 1 in case of
357 * success, 0 if we had failed (superblock contents was already dead or
358 * dying when grab_super() had been called). Note that this is only
359 * called for superblocks not in rundown mode (== ones still on ->fs_supers
360 * of their type), so increment of ->s_count is OK here.
361 */
362 static int grab_super(struct super_block *s) __releases(sb_lock)
363 {
364 s->s_count++;
365 spin_unlock(&sb_lock);
366 down_write(&s->s_umount);
367 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
368 put_super(s);
369 return 1;
370 }
371 up_write(&s->s_umount);
372 put_super(s);
373 return 0;
374 }
375
376 /*
377 * trylock_super - try to grab ->s_umount shared
378 * @sb: reference we are trying to grab
379 *
380 * Try to prevent fs shutdown. This is used in places where we
381 * cannot take an active reference but we need to ensure that the
382 * filesystem is not shut down while we are working on it. It returns
383 * false if we cannot acquire s_umount or if we lose the race and
384 * filesystem already got into shutdown, and returns true with the s_umount
385 * lock held in read mode in case of success. On successful return,
386 * the caller must drop the s_umount lock when done.
387 *
388 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
389 * The reason why it's safe is that we are OK with doing trylock instead
390 * of down_read(). There's a couple of places that are OK with that, but
391 * it's very much not a general-purpose interface.
392 */
393 bool trylock_super(struct super_block *sb)
394 {
395 if (down_read_trylock(&sb->s_umount)) {
396 if (!hlist_unhashed(&sb->s_instances) &&
397 sb->s_root && (sb->s_flags & SB_BORN))
398 return true;
399 up_read(&sb->s_umount);
400 }
401
402 return false;
403 }
404
405 /**
406 * generic_shutdown_super - common helper for ->kill_sb()
407 * @sb: superblock to kill
408 *
409 * generic_shutdown_super() does all fs-independent work on superblock
410 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
411 * that need destruction out of superblock, call generic_shutdown_super()
412 * and release aforementioned objects. Note: dentries and inodes _are_
413 * taken care of and do not need specific handling.
414 *
415 * Upon calling this function, the filesystem may no longer alter or
416 * rearrange the set of dentries belonging to this super_block, nor may it
417 * change the attachments of dentries to inodes.
418 */
419 void generic_shutdown_super(struct super_block *sb)
420 {
421 const struct super_operations *sop = sb->s_op;
422
423 if (sb->s_root) {
424 shrink_dcache_for_umount(sb);
425 sync_filesystem(sb);
426 sb->s_flags &= ~SB_ACTIVE;
427
428 fsnotify_unmount_inodes(sb);
429 cgroup_writeback_umount();
430
431 evict_inodes(sb);
432
433 if (sb->s_dio_done_wq) {
434 destroy_workqueue(sb->s_dio_done_wq);
435 sb->s_dio_done_wq = NULL;
436 }
437
438 if (sop->put_super)
439 sop->put_super(sb);
440
441 if (!list_empty(&sb->s_inodes)) {
442 printk("VFS: Busy inodes after unmount of %s. "
443 "Self-destruct in 5 seconds. Have a nice day...\n",
444 sb->s_id);
445 }
446 }
447 spin_lock(&sb_lock);
448 /* should be initialized for __put_super_and_need_restart() */
449 hlist_del_init(&sb->s_instances);
450 spin_unlock(&sb_lock);
451 up_write(&sb->s_umount);
452 if (sb->s_bdi != &noop_backing_dev_info) {
453 bdi_put(sb->s_bdi);
454 sb->s_bdi = &noop_backing_dev_info;
455 }
456 }
457
458 EXPORT_SYMBOL(generic_shutdown_super);
459
460 /**
461 * sget_userns - find or create a superblock
462 * @type: filesystem type superblock should belong to
463 * @test: comparison callback
464 * @set: setup callback
465 * @flags: mount flags
466 * @user_ns: User namespace for the super_block
467 * @data: argument to each of them
468 */
469 struct super_block *sget_userns(struct file_system_type *type,
470 int (*test)(struct super_block *,void *),
471 int (*set)(struct super_block *,void *),
472 int flags, struct user_namespace *user_ns,
473 void *data)
474 {
475 struct super_block *s = NULL;
476 struct super_block *old;
477 int err;
478
479 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
480 !(type->fs_flags & FS_USERNS_MOUNT) &&
481 !capable(CAP_SYS_ADMIN))
482 return ERR_PTR(-EPERM);
483 retry:
484 spin_lock(&sb_lock);
485 if (test) {
486 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
487 if (!test(old, data))
488 continue;
489 if (user_ns != old->s_user_ns) {
490 spin_unlock(&sb_lock);
491 destroy_unused_super(s);
492 return ERR_PTR(-EBUSY);
493 }
494 if (!grab_super(old))
495 goto retry;
496 destroy_unused_super(s);
497 return old;
498 }
499 }
500 if (!s) {
501 spin_unlock(&sb_lock);
502 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
503 if (!s)
504 return ERR_PTR(-ENOMEM);
505 goto retry;
506 }
507
508 err = set(s, data);
509 if (err) {
510 spin_unlock(&sb_lock);
511 destroy_unused_super(s);
512 return ERR_PTR(err);
513 }
514 s->s_type = type;
515 strlcpy(s->s_id, type->name, sizeof(s->s_id));
516 list_add_tail(&s->s_list, &super_blocks);
517 hlist_add_head(&s->s_instances, &type->fs_supers);
518 spin_unlock(&sb_lock);
519 get_filesystem(type);
520 err = register_shrinker(&s->s_shrink);
521 if (err) {
522 deactivate_locked_super(s);
523 s = ERR_PTR(err);
524 }
525 return s;
526 }
527
528 EXPORT_SYMBOL(sget_userns);
529
530 /**
531 * sget - find or create a superblock
532 * @type: filesystem type superblock should belong to
533 * @test: comparison callback
534 * @set: setup callback
535 * @flags: mount flags
536 * @data: argument to each of them
537 */
538 struct super_block *sget(struct file_system_type *type,
539 int (*test)(struct super_block *,void *),
540 int (*set)(struct super_block *,void *),
541 int flags,
542 void *data)
543 {
544 struct user_namespace *user_ns = current_user_ns();
545
546 /* We don't yet pass the user namespace of the parent
547 * mount through to here so always use &init_user_ns
548 * until that changes.
549 */
550 if (flags & SB_SUBMOUNT)
551 user_ns = &init_user_ns;
552
553 /* Ensure the requestor has permissions over the target filesystem */
554 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
555 return ERR_PTR(-EPERM);
556
557 return sget_userns(type, test, set, flags, user_ns, data);
558 }
559
560 EXPORT_SYMBOL(sget);
561
562 void drop_super(struct super_block *sb)
563 {
564 up_read(&sb->s_umount);
565 put_super(sb);
566 }
567
568 EXPORT_SYMBOL(drop_super);
569
570 void drop_super_exclusive(struct super_block *sb)
571 {
572 up_write(&sb->s_umount);
573 put_super(sb);
574 }
575 EXPORT_SYMBOL(drop_super_exclusive);
576
577 /**
578 * iterate_supers - call function for all active superblocks
579 * @f: function to call
580 * @arg: argument to pass to it
581 *
582 * Scans the superblock list and calls given function, passing it
583 * locked superblock and given argument.
584 */
585 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
586 {
587 struct super_block *sb, *p = NULL;
588
589 spin_lock(&sb_lock);
590 list_for_each_entry(sb, &super_blocks, s_list) {
591 if (hlist_unhashed(&sb->s_instances))
592 continue;
593 sb->s_count++;
594 spin_unlock(&sb_lock);
595
596 down_read(&sb->s_umount);
597 if (sb->s_root && (sb->s_flags & SB_BORN))
598 f(sb, arg);
599 up_read(&sb->s_umount);
600
601 spin_lock(&sb_lock);
602 if (p)
603 __put_super(p);
604 p = sb;
605 }
606 if (p)
607 __put_super(p);
608 spin_unlock(&sb_lock);
609 }
610
611 /**
612 * iterate_supers_type - call function for superblocks of given type
613 * @type: fs type
614 * @f: function to call
615 * @arg: argument to pass to it
616 *
617 * Scans the superblock list and calls given function, passing it
618 * locked superblock and given argument.
619 */
620 void iterate_supers_type(struct file_system_type *type,
621 void (*f)(struct super_block *, void *), void *arg)
622 {
623 struct super_block *sb, *p = NULL;
624
625 spin_lock(&sb_lock);
626 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
627 sb->s_count++;
628 spin_unlock(&sb_lock);
629
630 down_read(&sb->s_umount);
631 if (sb->s_root && (sb->s_flags & SB_BORN))
632 f(sb, arg);
633 up_read(&sb->s_umount);
634
635 spin_lock(&sb_lock);
636 if (p)
637 __put_super(p);
638 p = sb;
639 }
640 if (p)
641 __put_super(p);
642 spin_unlock(&sb_lock);
643 }
644
645 EXPORT_SYMBOL(iterate_supers_type);
646
647 static struct super_block *__get_super(struct block_device *bdev, bool excl)
648 {
649 struct super_block *sb;
650
651 if (!bdev)
652 return NULL;
653
654 spin_lock(&sb_lock);
655 rescan:
656 list_for_each_entry(sb, &super_blocks, s_list) {
657 if (hlist_unhashed(&sb->s_instances))
658 continue;
659 if (sb->s_bdev == bdev) {
660 sb->s_count++;
661 spin_unlock(&sb_lock);
662 if (!excl)
663 down_read(&sb->s_umount);
664 else
665 down_write(&sb->s_umount);
666 /* still alive? */
667 if (sb->s_root && (sb->s_flags & SB_BORN))
668 return sb;
669 if (!excl)
670 up_read(&sb->s_umount);
671 else
672 up_write(&sb->s_umount);
673 /* nope, got unmounted */
674 spin_lock(&sb_lock);
675 __put_super(sb);
676 goto rescan;
677 }
678 }
679 spin_unlock(&sb_lock);
680 return NULL;
681 }
682
683 /**
684 * get_super - get the superblock of a device
685 * @bdev: device to get the superblock for
686 *
687 * Scans the superblock list and finds the superblock of the file system
688 * mounted on the device given. %NULL is returned if no match is found.
689 */
690 struct super_block *get_super(struct block_device *bdev)
691 {
692 return __get_super(bdev, false);
693 }
694 EXPORT_SYMBOL(get_super);
695
696 static struct super_block *__get_super_thawed(struct block_device *bdev,
697 bool excl)
698 {
699 while (1) {
700 struct super_block *s = __get_super(bdev, excl);
701 if (!s || s->s_writers.frozen == SB_UNFROZEN)
702 return s;
703 if (!excl)
704 up_read(&s->s_umount);
705 else
706 up_write(&s->s_umount);
707 wait_event(s->s_writers.wait_unfrozen,
708 s->s_writers.frozen == SB_UNFROZEN);
709 put_super(s);
710 }
711 }
712
713 /**
714 * get_super_thawed - get thawed superblock of a device
715 * @bdev: device to get the superblock for
716 *
717 * Scans the superblock list and finds the superblock of the file system
718 * mounted on the device. The superblock is returned once it is thawed
719 * (or immediately if it was not frozen). %NULL is returned if no match
720 * is found.
721 */
722 struct super_block *get_super_thawed(struct block_device *bdev)
723 {
724 return __get_super_thawed(bdev, false);
725 }
726 EXPORT_SYMBOL(get_super_thawed);
727
728 /**
729 * get_super_exclusive_thawed - get thawed superblock of a device
730 * @bdev: device to get the superblock for
731 *
732 * Scans the superblock list and finds the superblock of the file system
733 * mounted on the device. The superblock is returned once it is thawed
734 * (or immediately if it was not frozen) and s_umount semaphore is held
735 * in exclusive mode. %NULL is returned if no match is found.
736 */
737 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
738 {
739 return __get_super_thawed(bdev, true);
740 }
741 EXPORT_SYMBOL(get_super_exclusive_thawed);
742
743 /**
744 * get_active_super - get an active reference to the superblock of a device
745 * @bdev: device to get the superblock for
746 *
747 * Scans the superblock list and finds the superblock of the file system
748 * mounted on the device given. Returns the superblock with an active
749 * reference or %NULL if none was found.
750 */
751 struct super_block *get_active_super(struct block_device *bdev)
752 {
753 struct super_block *sb;
754
755 if (!bdev)
756 return NULL;
757
758 restart:
759 spin_lock(&sb_lock);
760 list_for_each_entry(sb, &super_blocks, s_list) {
761 if (hlist_unhashed(&sb->s_instances))
762 continue;
763 if (sb->s_bdev == bdev) {
764 if (!grab_super(sb))
765 goto restart;
766 up_write(&sb->s_umount);
767 return sb;
768 }
769 }
770 spin_unlock(&sb_lock);
771 return NULL;
772 }
773
774 struct super_block *user_get_super(dev_t dev)
775 {
776 struct super_block *sb;
777
778 spin_lock(&sb_lock);
779 rescan:
780 list_for_each_entry(sb, &super_blocks, s_list) {
781 if (hlist_unhashed(&sb->s_instances))
782 continue;
783 if (sb->s_dev == dev) {
784 sb->s_count++;
785 spin_unlock(&sb_lock);
786 down_read(&sb->s_umount);
787 /* still alive? */
788 if (sb->s_root && (sb->s_flags & SB_BORN))
789 return sb;
790 up_read(&sb->s_umount);
791 /* nope, got unmounted */
792 spin_lock(&sb_lock);
793 __put_super(sb);
794 goto rescan;
795 }
796 }
797 spin_unlock(&sb_lock);
798 return NULL;
799 }
800
801 /**
802 * do_remount_sb - asks filesystem to change mount options.
803 * @sb: superblock in question
804 * @sb_flags: revised superblock flags
805 * @data: the rest of options
806 * @force: whether or not to force the change
807 *
808 * Alters the mount options of a mounted file system.
809 */
810 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
811 {
812 int retval;
813 int remount_ro;
814
815 if (sb->s_writers.frozen != SB_UNFROZEN)
816 return -EBUSY;
817
818 #ifdef CONFIG_BLOCK
819 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
820 return -EACCES;
821 #endif
822
823 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
824
825 if (remount_ro) {
826 if (!hlist_empty(&sb->s_pins)) {
827 up_write(&sb->s_umount);
828 group_pin_kill(&sb->s_pins);
829 down_write(&sb->s_umount);
830 if (!sb->s_root)
831 return 0;
832 if (sb->s_writers.frozen != SB_UNFROZEN)
833 return -EBUSY;
834 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
835 }
836 }
837 shrink_dcache_sb(sb);
838
839 /* If we are remounting RDONLY and current sb is read/write,
840 make sure there are no rw files opened */
841 if (remount_ro) {
842 if (force) {
843 sb->s_readonly_remount = 1;
844 smp_wmb();
845 } else {
846 retval = sb_prepare_remount_readonly(sb);
847 if (retval)
848 return retval;
849 }
850 }
851
852 if (sb->s_op->remount_fs) {
853 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
854 if (retval) {
855 if (!force)
856 goto cancel_readonly;
857 /* If forced remount, go ahead despite any errors */
858 WARN(1, "forced remount of a %s fs returned %i\n",
859 sb->s_type->name, retval);
860 }
861 }
862 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
863 /* Needs to be ordered wrt mnt_is_readonly() */
864 smp_wmb();
865 sb->s_readonly_remount = 0;
866
867 /*
868 * Some filesystems modify their metadata via some other path than the
869 * bdev buffer cache (eg. use a private mapping, or directories in
870 * pagecache, etc). Also file data modifications go via their own
871 * mappings. So If we try to mount readonly then copy the filesystem
872 * from bdev, we could get stale data, so invalidate it to give a best
873 * effort at coherency.
874 */
875 if (remount_ro && sb->s_bdev)
876 invalidate_bdev(sb->s_bdev);
877 return 0;
878
879 cancel_readonly:
880 sb->s_readonly_remount = 0;
881 return retval;
882 }
883
884 static void do_emergency_remount(struct work_struct *work)
885 {
886 struct super_block *sb, *p = NULL;
887
888 spin_lock(&sb_lock);
889 list_for_each_entry(sb, &super_blocks, s_list) {
890 if (hlist_unhashed(&sb->s_instances))
891 continue;
892 sb->s_count++;
893 spin_unlock(&sb_lock);
894 down_write(&sb->s_umount);
895 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
896 !sb_rdonly(sb)) {
897 /*
898 * What lock protects sb->s_flags??
899 */
900 do_remount_sb(sb, SB_RDONLY, NULL, 1);
901 }
902 up_write(&sb->s_umount);
903 spin_lock(&sb_lock);
904 if (p)
905 __put_super(p);
906 p = sb;
907 }
908 if (p)
909 __put_super(p);
910 spin_unlock(&sb_lock);
911 kfree(work);
912 printk("Emergency Remount complete\n");
913 }
914
915 void emergency_remount(void)
916 {
917 struct work_struct *work;
918
919 work = kmalloc(sizeof(*work), GFP_ATOMIC);
920 if (work) {
921 INIT_WORK(work, do_emergency_remount);
922 schedule_work(work);
923 }
924 }
925
926 /*
927 * Unnamed block devices are dummy devices used by virtual
928 * filesystems which don't use real block-devices. -- jrs
929 */
930
931 static DEFINE_IDA(unnamed_dev_ida);
932 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
933 /* Many userspace utilities consider an FSID of 0 invalid.
934 * Always return at least 1 from get_anon_bdev.
935 */
936 static int unnamed_dev_start = 1;
937
938 int get_anon_bdev(dev_t *p)
939 {
940 int dev;
941 int error;
942
943 retry:
944 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
945 return -ENOMEM;
946 spin_lock(&unnamed_dev_lock);
947 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
948 if (!error)
949 unnamed_dev_start = dev + 1;
950 spin_unlock(&unnamed_dev_lock);
951 if (error == -EAGAIN)
952 /* We raced and lost with another CPU. */
953 goto retry;
954 else if (error)
955 return -EAGAIN;
956
957 if (dev >= (1 << MINORBITS)) {
958 spin_lock(&unnamed_dev_lock);
959 ida_remove(&unnamed_dev_ida, dev);
960 if (unnamed_dev_start > dev)
961 unnamed_dev_start = dev;
962 spin_unlock(&unnamed_dev_lock);
963 return -EMFILE;
964 }
965 *p = MKDEV(0, dev & MINORMASK);
966 return 0;
967 }
968 EXPORT_SYMBOL(get_anon_bdev);
969
970 void free_anon_bdev(dev_t dev)
971 {
972 int slot = MINOR(dev);
973 spin_lock(&unnamed_dev_lock);
974 ida_remove(&unnamed_dev_ida, slot);
975 if (slot < unnamed_dev_start)
976 unnamed_dev_start = slot;
977 spin_unlock(&unnamed_dev_lock);
978 }
979 EXPORT_SYMBOL(free_anon_bdev);
980
981 int set_anon_super(struct super_block *s, void *data)
982 {
983 return get_anon_bdev(&s->s_dev);
984 }
985
986 EXPORT_SYMBOL(set_anon_super);
987
988 void kill_anon_super(struct super_block *sb)
989 {
990 dev_t dev = sb->s_dev;
991 generic_shutdown_super(sb);
992 free_anon_bdev(dev);
993 }
994
995 EXPORT_SYMBOL(kill_anon_super);
996
997 void kill_litter_super(struct super_block *sb)
998 {
999 if (sb->s_root)
1000 d_genocide(sb->s_root);
1001 kill_anon_super(sb);
1002 }
1003
1004 EXPORT_SYMBOL(kill_litter_super);
1005
1006 static int ns_test_super(struct super_block *sb, void *data)
1007 {
1008 return sb->s_fs_info == data;
1009 }
1010
1011 static int ns_set_super(struct super_block *sb, void *data)
1012 {
1013 sb->s_fs_info = data;
1014 return set_anon_super(sb, NULL);
1015 }
1016
1017 struct dentry *mount_ns(struct file_system_type *fs_type,
1018 int flags, void *data, void *ns, struct user_namespace *user_ns,
1019 int (*fill_super)(struct super_block *, void *, int))
1020 {
1021 struct super_block *sb;
1022
1023 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1024 * over the namespace.
1025 */
1026 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1027 return ERR_PTR(-EPERM);
1028
1029 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1030 user_ns, ns);
1031 if (IS_ERR(sb))
1032 return ERR_CAST(sb);
1033
1034 if (!sb->s_root) {
1035 int err;
1036 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1037 if (err) {
1038 deactivate_locked_super(sb);
1039 return ERR_PTR(err);
1040 }
1041
1042 sb->s_flags |= SB_ACTIVE;
1043 }
1044
1045 return dget(sb->s_root);
1046 }
1047
1048 EXPORT_SYMBOL(mount_ns);
1049
1050 #ifdef CONFIG_BLOCK
1051 static int set_bdev_super(struct super_block *s, void *data)
1052 {
1053 s->s_bdev = data;
1054 s->s_dev = s->s_bdev->bd_dev;
1055 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1056
1057 return 0;
1058 }
1059
1060 static int test_bdev_super(struct super_block *s, void *data)
1061 {
1062 return (void *)s->s_bdev == data;
1063 }
1064
1065 struct dentry *mount_bdev(struct file_system_type *fs_type,
1066 int flags, const char *dev_name, void *data,
1067 int (*fill_super)(struct super_block *, void *, int))
1068 {
1069 struct block_device *bdev;
1070 struct super_block *s;
1071 fmode_t mode = FMODE_READ | FMODE_EXCL;
1072 int error = 0;
1073
1074 if (!(flags & SB_RDONLY))
1075 mode |= FMODE_WRITE;
1076
1077 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1078 if (IS_ERR(bdev))
1079 return ERR_CAST(bdev);
1080
1081 /*
1082 * once the super is inserted into the list by sget, s_umount
1083 * will protect the lockfs code from trying to start a snapshot
1084 * while we are mounting
1085 */
1086 mutex_lock(&bdev->bd_fsfreeze_mutex);
1087 if (bdev->bd_fsfreeze_count > 0) {
1088 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1089 error = -EBUSY;
1090 goto error_bdev;
1091 }
1092 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1093 bdev);
1094 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1095 if (IS_ERR(s))
1096 goto error_s;
1097
1098 if (s->s_root) {
1099 if ((flags ^ s->s_flags) & SB_RDONLY) {
1100 deactivate_locked_super(s);
1101 error = -EBUSY;
1102 goto error_bdev;
1103 }
1104
1105 /*
1106 * s_umount nests inside bd_mutex during
1107 * __invalidate_device(). blkdev_put() acquires
1108 * bd_mutex and can't be called under s_umount. Drop
1109 * s_umount temporarily. This is safe as we're
1110 * holding an active reference.
1111 */
1112 up_write(&s->s_umount);
1113 blkdev_put(bdev, mode);
1114 down_write(&s->s_umount);
1115 } else {
1116 s->s_mode = mode;
1117 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1118 sb_set_blocksize(s, block_size(bdev));
1119 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1120 if (error) {
1121 deactivate_locked_super(s);
1122 goto error;
1123 }
1124
1125 s->s_flags |= SB_ACTIVE;
1126 bdev->bd_super = s;
1127 }
1128
1129 return dget(s->s_root);
1130
1131 error_s:
1132 error = PTR_ERR(s);
1133 error_bdev:
1134 blkdev_put(bdev, mode);
1135 error:
1136 return ERR_PTR(error);
1137 }
1138 EXPORT_SYMBOL(mount_bdev);
1139
1140 void kill_block_super(struct super_block *sb)
1141 {
1142 struct block_device *bdev = sb->s_bdev;
1143 fmode_t mode = sb->s_mode;
1144
1145 bdev->bd_super = NULL;
1146 generic_shutdown_super(sb);
1147 sync_blockdev(bdev);
1148 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1149 blkdev_put(bdev, mode | FMODE_EXCL);
1150 }
1151
1152 EXPORT_SYMBOL(kill_block_super);
1153 #endif
1154
1155 struct dentry *mount_nodev(struct file_system_type *fs_type,
1156 int flags, void *data,
1157 int (*fill_super)(struct super_block *, void *, int))
1158 {
1159 int error;
1160 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1161
1162 if (IS_ERR(s))
1163 return ERR_CAST(s);
1164
1165 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1166 if (error) {
1167 deactivate_locked_super(s);
1168 return ERR_PTR(error);
1169 }
1170 s->s_flags |= SB_ACTIVE;
1171 return dget(s->s_root);
1172 }
1173 EXPORT_SYMBOL(mount_nodev);
1174
1175 static int compare_single(struct super_block *s, void *p)
1176 {
1177 return 1;
1178 }
1179
1180 struct dentry *mount_single(struct file_system_type *fs_type,
1181 int flags, void *data,
1182 int (*fill_super)(struct super_block *, void *, int))
1183 {
1184 struct super_block *s;
1185 int error;
1186
1187 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1188 if (IS_ERR(s))
1189 return ERR_CAST(s);
1190 if (!s->s_root) {
1191 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1192 if (error) {
1193 deactivate_locked_super(s);
1194 return ERR_PTR(error);
1195 }
1196 s->s_flags |= SB_ACTIVE;
1197 } else {
1198 do_remount_sb(s, flags, data, 0);
1199 }
1200 return dget(s->s_root);
1201 }
1202 EXPORT_SYMBOL(mount_single);
1203
1204 struct dentry *
1205 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1206 {
1207 struct dentry *root;
1208 struct super_block *sb;
1209 char *secdata = NULL;
1210 int error = -ENOMEM;
1211
1212 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1213 secdata = alloc_secdata();
1214 if (!secdata)
1215 goto out;
1216
1217 error = security_sb_copy_data(data, secdata);
1218 if (error)
1219 goto out_free_secdata;
1220 }
1221
1222 root = type->mount(type, flags, name, data);
1223 if (IS_ERR(root)) {
1224 error = PTR_ERR(root);
1225 goto out_free_secdata;
1226 }
1227 sb = root->d_sb;
1228 BUG_ON(!sb);
1229 WARN_ON(!sb->s_bdi);
1230 sb->s_flags |= SB_BORN;
1231
1232 error = security_sb_kern_mount(sb, flags, secdata);
1233 if (error)
1234 goto out_sb;
1235
1236 /*
1237 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1238 * but s_maxbytes was an unsigned long long for many releases. Throw
1239 * this warning for a little while to try and catch filesystems that
1240 * violate this rule.
1241 */
1242 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1243 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1244
1245 up_write(&sb->s_umount);
1246 free_secdata(secdata);
1247 return root;
1248 out_sb:
1249 dput(root);
1250 deactivate_locked_super(sb);
1251 out_free_secdata:
1252 free_secdata(secdata);
1253 out:
1254 return ERR_PTR(error);
1255 }
1256
1257 /*
1258 * Setup private BDI for given superblock. It gets automatically cleaned up
1259 * in generic_shutdown_super().
1260 */
1261 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1262 {
1263 struct backing_dev_info *bdi;
1264 int err;
1265 va_list args;
1266
1267 bdi = bdi_alloc(GFP_KERNEL);
1268 if (!bdi)
1269 return -ENOMEM;
1270
1271 bdi->name = sb->s_type->name;
1272
1273 va_start(args, fmt);
1274 err = bdi_register_va(bdi, fmt, args);
1275 va_end(args);
1276 if (err) {
1277 bdi_put(bdi);
1278 return err;
1279 }
1280 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1281 sb->s_bdi = bdi;
1282
1283 return 0;
1284 }
1285 EXPORT_SYMBOL(super_setup_bdi_name);
1286
1287 /*
1288 * Setup private BDI for given superblock. I gets automatically cleaned up
1289 * in generic_shutdown_super().
1290 */
1291 int super_setup_bdi(struct super_block *sb)
1292 {
1293 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1294
1295 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1296 atomic_long_inc_return(&bdi_seq));
1297 }
1298 EXPORT_SYMBOL(super_setup_bdi);
1299
1300 /*
1301 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1302 * instead.
1303 */
1304 void __sb_end_write(struct super_block *sb, int level)
1305 {
1306 percpu_up_read(sb->s_writers.rw_sem + level-1);
1307 }
1308 EXPORT_SYMBOL(__sb_end_write);
1309
1310 /*
1311 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1312 * instead.
1313 */
1314 int __sb_start_write(struct super_block *sb, int level, bool wait)
1315 {
1316 bool force_trylock = false;
1317 int ret = 1;
1318
1319 #ifdef CONFIG_LOCKDEP
1320 /*
1321 * We want lockdep to tell us about possible deadlocks with freezing
1322 * but it's it bit tricky to properly instrument it. Getting a freeze
1323 * protection works as getting a read lock but there are subtle
1324 * problems. XFS for example gets freeze protection on internal level
1325 * twice in some cases, which is OK only because we already hold a
1326 * freeze protection also on higher level. Due to these cases we have
1327 * to use wait == F (trylock mode) which must not fail.
1328 */
1329 if (wait) {
1330 int i;
1331
1332 for (i = 0; i < level - 1; i++)
1333 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1334 force_trylock = true;
1335 break;
1336 }
1337 }
1338 #endif
1339 if (wait && !force_trylock)
1340 percpu_down_read(sb->s_writers.rw_sem + level-1);
1341 else
1342 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1343
1344 WARN_ON(force_trylock && !ret);
1345 return ret;
1346 }
1347 EXPORT_SYMBOL(__sb_start_write);
1348
1349 /**
1350 * sb_wait_write - wait until all writers to given file system finish
1351 * @sb: the super for which we wait
1352 * @level: type of writers we wait for (normal vs page fault)
1353 *
1354 * This function waits until there are no writers of given type to given file
1355 * system.
1356 */
1357 static void sb_wait_write(struct super_block *sb, int level)
1358 {
1359 percpu_down_write(sb->s_writers.rw_sem + level-1);
1360 }
1361
1362 /*
1363 * We are going to return to userspace and forget about these locks, the
1364 * ownership goes to the caller of thaw_super() which does unlock().
1365 */
1366 static void lockdep_sb_freeze_release(struct super_block *sb)
1367 {
1368 int level;
1369
1370 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1371 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1372 }
1373
1374 /*
1375 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1376 */
1377 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1378 {
1379 int level;
1380
1381 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1382 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1383 }
1384
1385 static void sb_freeze_unlock(struct super_block *sb)
1386 {
1387 int level;
1388
1389 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1390 percpu_up_write(sb->s_writers.rw_sem + level);
1391 }
1392
1393 /**
1394 * freeze_super - lock the filesystem and force it into a consistent state
1395 * @sb: the super to lock
1396 *
1397 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1398 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1399 * -EBUSY.
1400 *
1401 * During this function, sb->s_writers.frozen goes through these values:
1402 *
1403 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1404 *
1405 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1406 * writes should be blocked, though page faults are still allowed. We wait for
1407 * all writes to complete and then proceed to the next stage.
1408 *
1409 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1410 * but internal fs threads can still modify the filesystem (although they
1411 * should not dirty new pages or inodes), writeback can run etc. After waiting
1412 * for all running page faults we sync the filesystem which will clean all
1413 * dirty pages and inodes (no new dirty pages or inodes can be created when
1414 * sync is running).
1415 *
1416 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1417 * modification are blocked (e.g. XFS preallocation truncation on inode
1418 * reclaim). This is usually implemented by blocking new transactions for
1419 * filesystems that have them and need this additional guard. After all
1420 * internal writers are finished we call ->freeze_fs() to finish filesystem
1421 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1422 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1423 *
1424 * sb->s_writers.frozen is protected by sb->s_umount.
1425 */
1426 int freeze_super(struct super_block *sb)
1427 {
1428 int ret;
1429
1430 atomic_inc(&sb->s_active);
1431 down_write(&sb->s_umount);
1432 if (sb->s_writers.frozen != SB_UNFROZEN) {
1433 deactivate_locked_super(sb);
1434 return -EBUSY;
1435 }
1436
1437 if (!(sb->s_flags & SB_BORN)) {
1438 up_write(&sb->s_umount);
1439 return 0; /* sic - it's "nothing to do" */
1440 }
1441
1442 if (sb_rdonly(sb)) {
1443 /* Nothing to do really... */
1444 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1445 up_write(&sb->s_umount);
1446 return 0;
1447 }
1448
1449 sb->s_writers.frozen = SB_FREEZE_WRITE;
1450 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1451 up_write(&sb->s_umount);
1452 sb_wait_write(sb, SB_FREEZE_WRITE);
1453 down_write(&sb->s_umount);
1454
1455 /* Now we go and block page faults... */
1456 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1457 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1458
1459 /* All writers are done so after syncing there won't be dirty data */
1460 sync_filesystem(sb);
1461
1462 /* Now wait for internal filesystem counter */
1463 sb->s_writers.frozen = SB_FREEZE_FS;
1464 sb_wait_write(sb, SB_FREEZE_FS);
1465
1466 if (sb->s_op->freeze_fs) {
1467 ret = sb->s_op->freeze_fs(sb);
1468 if (ret) {
1469 printk(KERN_ERR
1470 "VFS:Filesystem freeze failed\n");
1471 sb->s_writers.frozen = SB_UNFROZEN;
1472 sb_freeze_unlock(sb);
1473 wake_up(&sb->s_writers.wait_unfrozen);
1474 deactivate_locked_super(sb);
1475 return ret;
1476 }
1477 }
1478 /*
1479 * For debugging purposes so that fs can warn if it sees write activity
1480 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1481 */
1482 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1483 lockdep_sb_freeze_release(sb);
1484 up_write(&sb->s_umount);
1485 return 0;
1486 }
1487 EXPORT_SYMBOL(freeze_super);
1488
1489 /**
1490 * thaw_super -- unlock filesystem
1491 * @sb: the super to thaw
1492 *
1493 * Unlocks the filesystem and marks it writeable again after freeze_super().
1494 */
1495 int thaw_super(struct super_block *sb)
1496 {
1497 int error;
1498
1499 down_write(&sb->s_umount);
1500 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1501 up_write(&sb->s_umount);
1502 return -EINVAL;
1503 }
1504
1505 if (sb_rdonly(sb)) {
1506 sb->s_writers.frozen = SB_UNFROZEN;
1507 goto out;
1508 }
1509
1510 lockdep_sb_freeze_acquire(sb);
1511
1512 if (sb->s_op->unfreeze_fs) {
1513 error = sb->s_op->unfreeze_fs(sb);
1514 if (error) {
1515 printk(KERN_ERR
1516 "VFS:Filesystem thaw failed\n");
1517 lockdep_sb_freeze_release(sb);
1518 up_write(&sb->s_umount);
1519 return error;
1520 }
1521 }
1522
1523 sb->s_writers.frozen = SB_UNFROZEN;
1524 sb_freeze_unlock(sb);
1525 out:
1526 wake_up(&sb->s_writers.wait_unfrozen);
1527 deactivate_locked_super(sb);
1528 return 0;
1529 }
1530 EXPORT_SYMBOL(thaw_super);