]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/sync.c
bus: brcmstb_gisb: update to support new revision
[mirror_ubuntu-bionic-kernel.git] / fs / sync.c
1 /*
2 * High-level sync()-related operations
3 */
4
5 #include <linux/kernel.h>
6 #include <linux/file.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/namei.h>
11 #include <linux/sched.h>
12 #include <linux/writeback.h>
13 #include <linux/syscalls.h>
14 #include <linux/linkage.h>
15 #include <linux/pagemap.h>
16 #include <linux/quotaops.h>
17 #include <linux/backing-dev.h>
18 #include "internal.h"
19
20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 SYNC_FILE_RANGE_WAIT_AFTER)
22
23 /*
24 * Do the filesystem syncing work. For simple filesystems
25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27 * wait == 1 case since in that case write_inode() functions do
28 * sync_dirty_buffer() and thus effectively write one block at a time.
29 */
30 static int __sync_filesystem(struct super_block *sb, int wait)
31 {
32 if (wait)
33 sync_inodes_sb(sb);
34 else
35 writeback_inodes_sb(sb, WB_REASON_SYNC);
36
37 if (sb->s_op->sync_fs)
38 sb->s_op->sync_fs(sb, wait);
39 return __sync_blockdev(sb->s_bdev, wait);
40 }
41
42 /*
43 * Write out and wait upon all dirty data associated with this
44 * superblock. Filesystem data as well as the underlying block
45 * device. Takes the superblock lock.
46 */
47 int sync_filesystem(struct super_block *sb)
48 {
49 int ret;
50
51 /*
52 * We need to be protected against the filesystem going from
53 * r/o to r/w or vice versa.
54 */
55 WARN_ON(!rwsem_is_locked(&sb->s_umount));
56
57 /*
58 * No point in syncing out anything if the filesystem is read-only.
59 */
60 if (sb->s_flags & MS_RDONLY)
61 return 0;
62
63 ret = __sync_filesystem(sb, 0);
64 if (ret < 0)
65 return ret;
66 return __sync_filesystem(sb, 1);
67 }
68 EXPORT_SYMBOL(sync_filesystem);
69
70 static void sync_inodes_one_sb(struct super_block *sb, void *arg)
71 {
72 if (!(sb->s_flags & MS_RDONLY))
73 sync_inodes_sb(sb);
74 }
75
76 static void sync_fs_one_sb(struct super_block *sb, void *arg)
77 {
78 if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
79 sb->s_op->sync_fs(sb, *(int *)arg);
80 }
81
82 static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
83 {
84 filemap_fdatawrite(bdev->bd_inode->i_mapping);
85 }
86
87 static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
88 {
89 /*
90 * We keep the error status of individual mapping so that
91 * applications can catch the writeback error using fsync(2).
92 * See filemap_fdatawait_keep_errors() for details.
93 */
94 filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
95 }
96
97 /*
98 * Sync everything. We start by waking flusher threads so that most of
99 * writeback runs on all devices in parallel. Then we sync all inodes reliably
100 * which effectively also waits for all flusher threads to finish doing
101 * writeback. At this point all data is on disk so metadata should be stable
102 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
103 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
104 * just write metadata (such as inodes or bitmaps) to block device page cache
105 * and do not sync it on their own in ->sync_fs().
106 */
107 SYSCALL_DEFINE0(sync)
108 {
109 int nowait = 0, wait = 1;
110
111 wakeup_flusher_threads(0, WB_REASON_SYNC);
112 iterate_supers(sync_inodes_one_sb, NULL);
113 iterate_supers(sync_fs_one_sb, &nowait);
114 iterate_supers(sync_fs_one_sb, &wait);
115 iterate_bdevs(fdatawrite_one_bdev, NULL);
116 iterate_bdevs(fdatawait_one_bdev, NULL);
117 if (unlikely(laptop_mode))
118 laptop_sync_completion();
119 return 0;
120 }
121
122 static void do_sync_work(struct work_struct *work)
123 {
124 int nowait = 0;
125
126 /*
127 * Sync twice to reduce the possibility we skipped some inodes / pages
128 * because they were temporarily locked
129 */
130 iterate_supers(sync_inodes_one_sb, &nowait);
131 iterate_supers(sync_fs_one_sb, &nowait);
132 iterate_bdevs(fdatawrite_one_bdev, NULL);
133 iterate_supers(sync_inodes_one_sb, &nowait);
134 iterate_supers(sync_fs_one_sb, &nowait);
135 iterate_bdevs(fdatawrite_one_bdev, NULL);
136 printk("Emergency Sync complete\n");
137 kfree(work);
138 }
139
140 void emergency_sync(void)
141 {
142 struct work_struct *work;
143
144 work = kmalloc(sizeof(*work), GFP_ATOMIC);
145 if (work) {
146 INIT_WORK(work, do_sync_work);
147 schedule_work(work);
148 }
149 }
150
151 /*
152 * sync a single super
153 */
154 SYSCALL_DEFINE1(syncfs, int, fd)
155 {
156 struct fd f = fdget(fd);
157 struct super_block *sb;
158 int ret;
159
160 if (!f.file)
161 return -EBADF;
162 sb = f.file->f_path.dentry->d_sb;
163
164 down_read(&sb->s_umount);
165 ret = sync_filesystem(sb);
166 up_read(&sb->s_umount);
167
168 fdput(f);
169 return ret;
170 }
171
172 /**
173 * vfs_fsync_range - helper to sync a range of data & metadata to disk
174 * @file: file to sync
175 * @start: offset in bytes of the beginning of data range to sync
176 * @end: offset in bytes of the end of data range (inclusive)
177 * @datasync: perform only datasync
178 *
179 * Write back data in range @start..@end and metadata for @file to disk. If
180 * @datasync is set only metadata needed to access modified file data is
181 * written.
182 */
183 int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
184 {
185 struct inode *inode = file->f_mapping->host;
186
187 if (!file->f_op->fsync)
188 return -EINVAL;
189 if (!datasync && (inode->i_state & I_DIRTY_TIME)) {
190 spin_lock(&inode->i_lock);
191 inode->i_state &= ~I_DIRTY_TIME;
192 spin_unlock(&inode->i_lock);
193 mark_inode_dirty_sync(inode);
194 }
195 return call_fsync(file, start, end, datasync);
196 }
197 EXPORT_SYMBOL(vfs_fsync_range);
198
199 /**
200 * vfs_fsync - perform a fsync or fdatasync on a file
201 * @file: file to sync
202 * @datasync: only perform a fdatasync operation
203 *
204 * Write back data and metadata for @file to disk. If @datasync is
205 * set only metadata needed to access modified file data is written.
206 */
207 int vfs_fsync(struct file *file, int datasync)
208 {
209 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
210 }
211 EXPORT_SYMBOL(vfs_fsync);
212
213 static int do_fsync(unsigned int fd, int datasync)
214 {
215 struct fd f = fdget(fd);
216 int ret = -EBADF;
217
218 if (f.file) {
219 ret = vfs_fsync(f.file, datasync);
220 fdput(f);
221 }
222 return ret;
223 }
224
225 SYSCALL_DEFINE1(fsync, unsigned int, fd)
226 {
227 return do_fsync(fd, 0);
228 }
229
230 SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
231 {
232 return do_fsync(fd, 1);
233 }
234
235 /*
236 * sys_sync_file_range() permits finely controlled syncing over a segment of
237 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
238 * zero then sys_sync_file_range() will operate from offset out to EOF.
239 *
240 * The flag bits are:
241 *
242 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
243 * before performing the write.
244 *
245 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
246 * range which are not presently under writeback. Note that this may block for
247 * significant periods due to exhaustion of disk request structures.
248 *
249 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
250 * after performing the write.
251 *
252 * Useful combinations of the flag bits are:
253 *
254 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
255 * in the range which were dirty on entry to sys_sync_file_range() are placed
256 * under writeout. This is a start-write-for-data-integrity operation.
257 *
258 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
259 * are not presently under writeout. This is an asynchronous flush-to-disk
260 * operation. Not suitable for data integrity operations.
261 *
262 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
263 * completion of writeout of all pages in the range. This will be used after an
264 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
265 * for that operation to complete and to return the result.
266 *
267 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
268 * a traditional sync() operation. This is a write-for-data-integrity operation
269 * which will ensure that all pages in the range which were dirty on entry to
270 * sys_sync_file_range() are committed to disk.
271 *
272 *
273 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
274 * I/O errors or ENOSPC conditions and will return those to the caller, after
275 * clearing the EIO and ENOSPC flags in the address_space.
276 *
277 * It should be noted that none of these operations write out the file's
278 * metadata. So unless the application is strictly performing overwrites of
279 * already-instantiated disk blocks, there are no guarantees here that the data
280 * will be available after a crash.
281 */
282 SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
283 unsigned int, flags)
284 {
285 int ret;
286 struct fd f;
287 struct address_space *mapping;
288 loff_t endbyte; /* inclusive */
289 umode_t i_mode;
290
291 ret = -EINVAL;
292 if (flags & ~VALID_FLAGS)
293 goto out;
294
295 endbyte = offset + nbytes;
296
297 if ((s64)offset < 0)
298 goto out;
299 if ((s64)endbyte < 0)
300 goto out;
301 if (endbyte < offset)
302 goto out;
303
304 if (sizeof(pgoff_t) == 4) {
305 if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
306 /*
307 * The range starts outside a 32 bit machine's
308 * pagecache addressing capabilities. Let it "succeed"
309 */
310 ret = 0;
311 goto out;
312 }
313 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
314 /*
315 * Out to EOF
316 */
317 nbytes = 0;
318 }
319 }
320
321 if (nbytes == 0)
322 endbyte = LLONG_MAX;
323 else
324 endbyte--; /* inclusive */
325
326 ret = -EBADF;
327 f = fdget(fd);
328 if (!f.file)
329 goto out;
330
331 i_mode = file_inode(f.file)->i_mode;
332 ret = -ESPIPE;
333 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
334 !S_ISLNK(i_mode))
335 goto out_put;
336
337 mapping = f.file->f_mapping;
338 if (!mapping) {
339 ret = -EINVAL;
340 goto out_put;
341 }
342
343 ret = 0;
344 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
345 ret = filemap_fdatawait_range(mapping, offset, endbyte);
346 if (ret < 0)
347 goto out_put;
348 }
349
350 if (flags & SYNC_FILE_RANGE_WRITE) {
351 ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
352 WB_SYNC_NONE);
353 if (ret < 0)
354 goto out_put;
355 }
356
357 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
358 ret = filemap_fdatawait_range(mapping, offset, endbyte);
359
360 out_put:
361 fdput(f);
362 out:
363 return ret;
364 }
365
366 /* It would be nice if people remember that not all the world's an i386
367 when they introduce new system calls */
368 SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
369 loff_t, offset, loff_t, nbytes)
370 {
371 return sys_sync_file_range(fd, offset, nbytes, flags);
372 }