]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ubifs/debug.c
UBIFS: fix key printing
[mirror_ubuntu-jammy-kernel.git] / fs / ubifs / debug.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38
39 DEFINE_SPINLOCK(dbg_lock);
40
41 static const char *get_key_fmt(int fmt)
42 {
43 switch (fmt) {
44 case UBIFS_SIMPLE_KEY_FMT:
45 return "simple";
46 default:
47 return "unknown/invalid format";
48 }
49 }
50
51 static const char *get_key_hash(int hash)
52 {
53 switch (hash) {
54 case UBIFS_KEY_HASH_R5:
55 return "R5";
56 case UBIFS_KEY_HASH_TEST:
57 return "test";
58 default:
59 return "unknown/invalid name hash";
60 }
61 }
62
63 static const char *get_key_type(int type)
64 {
65 switch (type) {
66 case UBIFS_INO_KEY:
67 return "inode";
68 case UBIFS_DENT_KEY:
69 return "direntry";
70 case UBIFS_XENT_KEY:
71 return "xentry";
72 case UBIFS_DATA_KEY:
73 return "data";
74 case UBIFS_TRUN_KEY:
75 return "truncate";
76 default:
77 return "unknown/invalid key";
78 }
79 }
80
81 static const char *get_dent_type(int type)
82 {
83 switch (type) {
84 case UBIFS_ITYPE_REG:
85 return "file";
86 case UBIFS_ITYPE_DIR:
87 return "dir";
88 case UBIFS_ITYPE_LNK:
89 return "symlink";
90 case UBIFS_ITYPE_BLK:
91 return "blkdev";
92 case UBIFS_ITYPE_CHR:
93 return "char dev";
94 case UBIFS_ITYPE_FIFO:
95 return "fifo";
96 case UBIFS_ITYPE_SOCK:
97 return "socket";
98 default:
99 return "unknown/invalid type";
100 }
101 }
102
103 const char *dbg_snprintf_key(const struct ubifs_info *c,
104 const union ubifs_key *key, char *buffer, int len)
105 {
106 char *p = buffer;
107 int type = key_type(c, key);
108
109 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
110 switch (type) {
111 case UBIFS_INO_KEY:
112 len -= snprintf(p, len, "(%lu, %s)",
113 (unsigned long)key_inum(c, key),
114 get_key_type(type));
115 break;
116 case UBIFS_DENT_KEY:
117 case UBIFS_XENT_KEY:
118 len -= snprintf(p, len, "(%lu, %s, %#08x)",
119 (unsigned long)key_inum(c, key),
120 get_key_type(type), key_hash(c, key));
121 break;
122 case UBIFS_DATA_KEY:
123 len -= snprintf(p, len, "(%lu, %s, %u)",
124 (unsigned long)key_inum(c, key),
125 get_key_type(type), key_block(c, key));
126 break;
127 case UBIFS_TRUN_KEY:
128 len -= snprintf(p, len, "(%lu, %s)",
129 (unsigned long)key_inum(c, key),
130 get_key_type(type));
131 break;
132 default:
133 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
134 key->u32[0], key->u32[1]);
135 }
136 } else
137 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
138 ubifs_assert(len > 0);
139 return p;
140 }
141
142 const char *dbg_ntype(int type)
143 {
144 switch (type) {
145 case UBIFS_PAD_NODE:
146 return "padding node";
147 case UBIFS_SB_NODE:
148 return "superblock node";
149 case UBIFS_MST_NODE:
150 return "master node";
151 case UBIFS_REF_NODE:
152 return "reference node";
153 case UBIFS_INO_NODE:
154 return "inode node";
155 case UBIFS_DENT_NODE:
156 return "direntry node";
157 case UBIFS_XENT_NODE:
158 return "xentry node";
159 case UBIFS_DATA_NODE:
160 return "data node";
161 case UBIFS_TRUN_NODE:
162 return "truncate node";
163 case UBIFS_IDX_NODE:
164 return "indexing node";
165 case UBIFS_CS_NODE:
166 return "commit start node";
167 case UBIFS_ORPH_NODE:
168 return "orphan node";
169 default:
170 return "unknown node";
171 }
172 }
173
174 static const char *dbg_gtype(int type)
175 {
176 switch (type) {
177 case UBIFS_NO_NODE_GROUP:
178 return "no node group";
179 case UBIFS_IN_NODE_GROUP:
180 return "in node group";
181 case UBIFS_LAST_OF_NODE_GROUP:
182 return "last of node group";
183 default:
184 return "unknown";
185 }
186 }
187
188 const char *dbg_cstate(int cmt_state)
189 {
190 switch (cmt_state) {
191 case COMMIT_RESTING:
192 return "commit resting";
193 case COMMIT_BACKGROUND:
194 return "background commit requested";
195 case COMMIT_REQUIRED:
196 return "commit required";
197 case COMMIT_RUNNING_BACKGROUND:
198 return "BACKGROUND commit running";
199 case COMMIT_RUNNING_REQUIRED:
200 return "commit running and required";
201 case COMMIT_BROKEN:
202 return "broken commit";
203 default:
204 return "unknown commit state";
205 }
206 }
207
208 const char *dbg_jhead(int jhead)
209 {
210 switch (jhead) {
211 case GCHD:
212 return "0 (GC)";
213 case BASEHD:
214 return "1 (base)";
215 case DATAHD:
216 return "2 (data)";
217 default:
218 return "unknown journal head";
219 }
220 }
221
222 static void dump_ch(const struct ubifs_ch *ch)
223 {
224 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
225 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
226 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
227 dbg_ntype(ch->node_type));
228 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
229 dbg_gtype(ch->group_type));
230 printk(KERN_DEBUG "\tsqnum %llu\n",
231 (unsigned long long)le64_to_cpu(ch->sqnum));
232 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
233 }
234
235 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
236 {
237 const struct ubifs_inode *ui = ubifs_inode(inode);
238 struct qstr nm = { .name = NULL };
239 union ubifs_key key;
240 struct ubifs_dent_node *dent, *pdent = NULL;
241 int count = 2;
242
243 printk(KERN_DEBUG "Dump in-memory inode:");
244 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
245 printk(KERN_DEBUG "\tsize %llu\n",
246 (unsigned long long)i_size_read(inode));
247 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
248 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
249 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
250 printk(KERN_DEBUG "\tatime %u.%u\n",
251 (unsigned int)inode->i_atime.tv_sec,
252 (unsigned int)inode->i_atime.tv_nsec);
253 printk(KERN_DEBUG "\tmtime %u.%u\n",
254 (unsigned int)inode->i_mtime.tv_sec,
255 (unsigned int)inode->i_mtime.tv_nsec);
256 printk(KERN_DEBUG "\tctime %u.%u\n",
257 (unsigned int)inode->i_ctime.tv_sec,
258 (unsigned int)inode->i_ctime.tv_nsec);
259 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
260 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
261 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
262 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
263 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
264 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
265 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
267 (unsigned long long)ui->synced_i_size);
268 printk(KERN_DEBUG "\tui_size %llu\n",
269 (unsigned long long)ui->ui_size);
270 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
271 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
272 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
273 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
274 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
275
276 if (!S_ISDIR(inode->i_mode))
277 return;
278
279 printk(KERN_DEBUG "List of directory entries:\n");
280 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281
282 lowest_dent_key(c, &key, inode->i_ino);
283 while (1) {
284 dent = ubifs_tnc_next_ent(c, &key, &nm);
285 if (IS_ERR(dent)) {
286 if (PTR_ERR(dent) != -ENOENT)
287 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
288 break;
289 }
290
291 printk(KERN_DEBUG "\t%d: %s (%s)\n",
292 count++, dent->name, get_dent_type(dent->type));
293
294 nm.name = dent->name;
295 nm.len = le16_to_cpu(dent->nlen);
296 kfree(pdent);
297 pdent = dent;
298 key_read(c, &dent->key, &key);
299 }
300 kfree(pdent);
301 }
302
303 void dbg_dump_node(const struct ubifs_info *c, const void *node)
304 {
305 int i, n;
306 union ubifs_key key;
307 const struct ubifs_ch *ch = node;
308 char key_buf[DBG_KEY_BUF_LEN];
309
310 if (dbg_is_tst_rcvry(c))
311 return;
312
313 /* If the magic is incorrect, just hexdump the first bytes */
314 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
315 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
316 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
317 (void *)node, UBIFS_CH_SZ, 1);
318 return;
319 }
320
321 spin_lock(&dbg_lock);
322 dump_ch(node);
323
324 switch (ch->node_type) {
325 case UBIFS_PAD_NODE:
326 {
327 const struct ubifs_pad_node *pad = node;
328
329 printk(KERN_DEBUG "\tpad_len %u\n",
330 le32_to_cpu(pad->pad_len));
331 break;
332 }
333 case UBIFS_SB_NODE:
334 {
335 const struct ubifs_sb_node *sup = node;
336 unsigned int sup_flags = le32_to_cpu(sup->flags);
337
338 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
339 (int)sup->key_hash, get_key_hash(sup->key_hash));
340 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
341 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
342 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
343 printk(KERN_DEBUG "\t big_lpt %u\n",
344 !!(sup_flags & UBIFS_FLG_BIGLPT));
345 printk(KERN_DEBUG "\t space_fixup %u\n",
346 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
347 printk(KERN_DEBUG "\tmin_io_size %u\n",
348 le32_to_cpu(sup->min_io_size));
349 printk(KERN_DEBUG "\tleb_size %u\n",
350 le32_to_cpu(sup->leb_size));
351 printk(KERN_DEBUG "\tleb_cnt %u\n",
352 le32_to_cpu(sup->leb_cnt));
353 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
354 le32_to_cpu(sup->max_leb_cnt));
355 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
356 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
357 printk(KERN_DEBUG "\tlog_lebs %u\n",
358 le32_to_cpu(sup->log_lebs));
359 printk(KERN_DEBUG "\tlpt_lebs %u\n",
360 le32_to_cpu(sup->lpt_lebs));
361 printk(KERN_DEBUG "\torph_lebs %u\n",
362 le32_to_cpu(sup->orph_lebs));
363 printk(KERN_DEBUG "\tjhead_cnt %u\n",
364 le32_to_cpu(sup->jhead_cnt));
365 printk(KERN_DEBUG "\tfanout %u\n",
366 le32_to_cpu(sup->fanout));
367 printk(KERN_DEBUG "\tlsave_cnt %u\n",
368 le32_to_cpu(sup->lsave_cnt));
369 printk(KERN_DEBUG "\tdefault_compr %u\n",
370 (int)le16_to_cpu(sup->default_compr));
371 printk(KERN_DEBUG "\trp_size %llu\n",
372 (unsigned long long)le64_to_cpu(sup->rp_size));
373 printk(KERN_DEBUG "\trp_uid %u\n",
374 le32_to_cpu(sup->rp_uid));
375 printk(KERN_DEBUG "\trp_gid %u\n",
376 le32_to_cpu(sup->rp_gid));
377 printk(KERN_DEBUG "\tfmt_version %u\n",
378 le32_to_cpu(sup->fmt_version));
379 printk(KERN_DEBUG "\ttime_gran %u\n",
380 le32_to_cpu(sup->time_gran));
381 printk(KERN_DEBUG "\tUUID %pUB\n",
382 sup->uuid);
383 break;
384 }
385 case UBIFS_MST_NODE:
386 {
387 const struct ubifs_mst_node *mst = node;
388
389 printk(KERN_DEBUG "\thighest_inum %llu\n",
390 (unsigned long long)le64_to_cpu(mst->highest_inum));
391 printk(KERN_DEBUG "\tcommit number %llu\n",
392 (unsigned long long)le64_to_cpu(mst->cmt_no));
393 printk(KERN_DEBUG "\tflags %#x\n",
394 le32_to_cpu(mst->flags));
395 printk(KERN_DEBUG "\tlog_lnum %u\n",
396 le32_to_cpu(mst->log_lnum));
397 printk(KERN_DEBUG "\troot_lnum %u\n",
398 le32_to_cpu(mst->root_lnum));
399 printk(KERN_DEBUG "\troot_offs %u\n",
400 le32_to_cpu(mst->root_offs));
401 printk(KERN_DEBUG "\troot_len %u\n",
402 le32_to_cpu(mst->root_len));
403 printk(KERN_DEBUG "\tgc_lnum %u\n",
404 le32_to_cpu(mst->gc_lnum));
405 printk(KERN_DEBUG "\tihead_lnum %u\n",
406 le32_to_cpu(mst->ihead_lnum));
407 printk(KERN_DEBUG "\tihead_offs %u\n",
408 le32_to_cpu(mst->ihead_offs));
409 printk(KERN_DEBUG "\tindex_size %llu\n",
410 (unsigned long long)le64_to_cpu(mst->index_size));
411 printk(KERN_DEBUG "\tlpt_lnum %u\n",
412 le32_to_cpu(mst->lpt_lnum));
413 printk(KERN_DEBUG "\tlpt_offs %u\n",
414 le32_to_cpu(mst->lpt_offs));
415 printk(KERN_DEBUG "\tnhead_lnum %u\n",
416 le32_to_cpu(mst->nhead_lnum));
417 printk(KERN_DEBUG "\tnhead_offs %u\n",
418 le32_to_cpu(mst->nhead_offs));
419 printk(KERN_DEBUG "\tltab_lnum %u\n",
420 le32_to_cpu(mst->ltab_lnum));
421 printk(KERN_DEBUG "\tltab_offs %u\n",
422 le32_to_cpu(mst->ltab_offs));
423 printk(KERN_DEBUG "\tlsave_lnum %u\n",
424 le32_to_cpu(mst->lsave_lnum));
425 printk(KERN_DEBUG "\tlsave_offs %u\n",
426 le32_to_cpu(mst->lsave_offs));
427 printk(KERN_DEBUG "\tlscan_lnum %u\n",
428 le32_to_cpu(mst->lscan_lnum));
429 printk(KERN_DEBUG "\tleb_cnt %u\n",
430 le32_to_cpu(mst->leb_cnt));
431 printk(KERN_DEBUG "\tempty_lebs %u\n",
432 le32_to_cpu(mst->empty_lebs));
433 printk(KERN_DEBUG "\tidx_lebs %u\n",
434 le32_to_cpu(mst->idx_lebs));
435 printk(KERN_DEBUG "\ttotal_free %llu\n",
436 (unsigned long long)le64_to_cpu(mst->total_free));
437 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
438 (unsigned long long)le64_to_cpu(mst->total_dirty));
439 printk(KERN_DEBUG "\ttotal_used %llu\n",
440 (unsigned long long)le64_to_cpu(mst->total_used));
441 printk(KERN_DEBUG "\ttotal_dead %llu\n",
442 (unsigned long long)le64_to_cpu(mst->total_dead));
443 printk(KERN_DEBUG "\ttotal_dark %llu\n",
444 (unsigned long long)le64_to_cpu(mst->total_dark));
445 break;
446 }
447 case UBIFS_REF_NODE:
448 {
449 const struct ubifs_ref_node *ref = node;
450
451 printk(KERN_DEBUG "\tlnum %u\n",
452 le32_to_cpu(ref->lnum));
453 printk(KERN_DEBUG "\toffs %u\n",
454 le32_to_cpu(ref->offs));
455 printk(KERN_DEBUG "\tjhead %u\n",
456 le32_to_cpu(ref->jhead));
457 break;
458 }
459 case UBIFS_INO_NODE:
460 {
461 const struct ubifs_ino_node *ino = node;
462
463 key_read(c, &ino->key, &key);
464 printk(KERN_DEBUG "\tkey %s\n",
465 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
466 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
467 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
468 printk(KERN_DEBUG "\tsize %llu\n",
469 (unsigned long long)le64_to_cpu(ino->size));
470 printk(KERN_DEBUG "\tnlink %u\n",
471 le32_to_cpu(ino->nlink));
472 printk(KERN_DEBUG "\tatime %lld.%u\n",
473 (long long)le64_to_cpu(ino->atime_sec),
474 le32_to_cpu(ino->atime_nsec));
475 printk(KERN_DEBUG "\tmtime %lld.%u\n",
476 (long long)le64_to_cpu(ino->mtime_sec),
477 le32_to_cpu(ino->mtime_nsec));
478 printk(KERN_DEBUG "\tctime %lld.%u\n",
479 (long long)le64_to_cpu(ino->ctime_sec),
480 le32_to_cpu(ino->ctime_nsec));
481 printk(KERN_DEBUG "\tuid %u\n",
482 le32_to_cpu(ino->uid));
483 printk(KERN_DEBUG "\tgid %u\n",
484 le32_to_cpu(ino->gid));
485 printk(KERN_DEBUG "\tmode %u\n",
486 le32_to_cpu(ino->mode));
487 printk(KERN_DEBUG "\tflags %#x\n",
488 le32_to_cpu(ino->flags));
489 printk(KERN_DEBUG "\txattr_cnt %u\n",
490 le32_to_cpu(ino->xattr_cnt));
491 printk(KERN_DEBUG "\txattr_size %u\n",
492 le32_to_cpu(ino->xattr_size));
493 printk(KERN_DEBUG "\txattr_names %u\n",
494 le32_to_cpu(ino->xattr_names));
495 printk(KERN_DEBUG "\tcompr_type %#x\n",
496 (int)le16_to_cpu(ino->compr_type));
497 printk(KERN_DEBUG "\tdata len %u\n",
498 le32_to_cpu(ino->data_len));
499 break;
500 }
501 case UBIFS_DENT_NODE:
502 case UBIFS_XENT_NODE:
503 {
504 const struct ubifs_dent_node *dent = node;
505 int nlen = le16_to_cpu(dent->nlen);
506
507 key_read(c, &dent->key, &key);
508 printk(KERN_DEBUG "\tkey %s\n",
509 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
510 printk(KERN_DEBUG "\tinum %llu\n",
511 (unsigned long long)le64_to_cpu(dent->inum));
512 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
513 printk(KERN_DEBUG "\tnlen %d\n", nlen);
514 printk(KERN_DEBUG "\tname ");
515
516 if (nlen > UBIFS_MAX_NLEN)
517 printk(KERN_DEBUG "(bad name length, not printing, "
518 "bad or corrupted node)");
519 else {
520 for (i = 0; i < nlen && dent->name[i]; i++)
521 printk(KERN_CONT "%c", dent->name[i]);
522 }
523 printk(KERN_CONT "\n");
524
525 break;
526 }
527 case UBIFS_DATA_NODE:
528 {
529 const struct ubifs_data_node *dn = node;
530 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
531
532 key_read(c, &dn->key, &key);
533 printk(KERN_DEBUG "\tkey %s\n",
534 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
535 printk(KERN_DEBUG "\tsize %u\n",
536 le32_to_cpu(dn->size));
537 printk(KERN_DEBUG "\tcompr_typ %d\n",
538 (int)le16_to_cpu(dn->compr_type));
539 printk(KERN_DEBUG "\tdata size %d\n",
540 dlen);
541 printk(KERN_DEBUG "\tdata:\n");
542 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
543 (void *)&dn->data, dlen, 0);
544 break;
545 }
546 case UBIFS_TRUN_NODE:
547 {
548 const struct ubifs_trun_node *trun = node;
549
550 printk(KERN_DEBUG "\tinum %u\n",
551 le32_to_cpu(trun->inum));
552 printk(KERN_DEBUG "\told_size %llu\n",
553 (unsigned long long)le64_to_cpu(trun->old_size));
554 printk(KERN_DEBUG "\tnew_size %llu\n",
555 (unsigned long long)le64_to_cpu(trun->new_size));
556 break;
557 }
558 case UBIFS_IDX_NODE:
559 {
560 const struct ubifs_idx_node *idx = node;
561
562 n = le16_to_cpu(idx->child_cnt);
563 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
564 printk(KERN_DEBUG "\tlevel %d\n",
565 (int)le16_to_cpu(idx->level));
566 printk(KERN_DEBUG "\tBranches:\n");
567
568 for (i = 0; i < n && i < c->fanout - 1; i++) {
569 const struct ubifs_branch *br;
570
571 br = ubifs_idx_branch(c, idx, i);
572 key_read(c, &br->key, &key);
573 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
574 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
575 le32_to_cpu(br->len),
576 dbg_snprintf_key(c, &key, key_buf,
577 DBG_KEY_BUF_LEN));
578 }
579 break;
580 }
581 case UBIFS_CS_NODE:
582 break;
583 case UBIFS_ORPH_NODE:
584 {
585 const struct ubifs_orph_node *orph = node;
586
587 printk(KERN_DEBUG "\tcommit number %llu\n",
588 (unsigned long long)
589 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
590 printk(KERN_DEBUG "\tlast node flag %llu\n",
591 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
592 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
593 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
594 for (i = 0; i < n; i++)
595 printk(KERN_DEBUG "\t ino %llu\n",
596 (unsigned long long)le64_to_cpu(orph->inos[i]));
597 break;
598 }
599 default:
600 printk(KERN_DEBUG "node type %d was not recognized\n",
601 (int)ch->node_type);
602 }
603 spin_unlock(&dbg_lock);
604 }
605
606 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
607 {
608 spin_lock(&dbg_lock);
609 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
610 req->new_ino, req->dirtied_ino);
611 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
612 req->new_ino_d, req->dirtied_ino_d);
613 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
614 req->new_page, req->dirtied_page);
615 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
616 req->new_dent, req->mod_dent);
617 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
618 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
619 req->data_growth, req->dd_growth);
620 spin_unlock(&dbg_lock);
621 }
622
623 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
624 {
625 spin_lock(&dbg_lock);
626 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
627 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
628 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
629 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
630 lst->total_dirty);
631 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
632 "total_dead %lld\n", lst->total_used, lst->total_dark,
633 lst->total_dead);
634 spin_unlock(&dbg_lock);
635 }
636
637 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
638 {
639 int i;
640 struct rb_node *rb;
641 struct ubifs_bud *bud;
642 struct ubifs_gced_idx_leb *idx_gc;
643 long long available, outstanding, free;
644
645 spin_lock(&c->space_lock);
646 spin_lock(&dbg_lock);
647 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
648 "total budget sum %lld\n", current->pid,
649 bi->data_growth + bi->dd_growth,
650 bi->data_growth + bi->dd_growth + bi->idx_growth);
651 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
652 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
653 bi->idx_growth);
654 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
655 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
656 bi->uncommitted_idx);
657 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
658 bi->page_budget, bi->inode_budget, bi->dent_budget);
659 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
660 bi->nospace, bi->nospace_rp);
661 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
662 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
663
664 if (bi != &c->bi)
665 /*
666 * If we are dumping saved budgeting data, do not print
667 * additional information which is about the current state, not
668 * the old one which corresponded to the saved budgeting data.
669 */
670 goto out_unlock;
671
672 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
673 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
674 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
675 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
676 atomic_long_read(&c->dirty_zn_cnt),
677 atomic_long_read(&c->clean_zn_cnt));
678 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
679 c->gc_lnum, c->ihead_lnum);
680
681 /* If we are in R/O mode, journal heads do not exist */
682 if (c->jheads)
683 for (i = 0; i < c->jhead_cnt; i++)
684 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
685 dbg_jhead(c->jheads[i].wbuf.jhead),
686 c->jheads[i].wbuf.lnum);
687 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
688 bud = rb_entry(rb, struct ubifs_bud, rb);
689 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
690 }
691 list_for_each_entry(bud, &c->old_buds, list)
692 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
693 list_for_each_entry(idx_gc, &c->idx_gc, list)
694 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
695 idx_gc->lnum, idx_gc->unmap);
696 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
697
698 /* Print budgeting predictions */
699 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
700 outstanding = c->bi.data_growth + c->bi.dd_growth;
701 free = ubifs_get_free_space_nolock(c);
702 printk(KERN_DEBUG "Budgeting predictions:\n");
703 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
704 available, outstanding, free);
705 out_unlock:
706 spin_unlock(&dbg_lock);
707 spin_unlock(&c->space_lock);
708 }
709
710 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
711 {
712 int i, spc, dark = 0, dead = 0;
713 struct rb_node *rb;
714 struct ubifs_bud *bud;
715
716 spc = lp->free + lp->dirty;
717 if (spc < c->dead_wm)
718 dead = spc;
719 else
720 dark = ubifs_calc_dark(c, spc);
721
722 if (lp->flags & LPROPS_INDEX)
723 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
724 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
725 lp->dirty, c->leb_size - spc, spc, lp->flags);
726 else
727 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
728 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
729 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
730 c->leb_size - spc, spc, dark, dead,
731 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
732
733 if (lp->flags & LPROPS_TAKEN) {
734 if (lp->flags & LPROPS_INDEX)
735 printk(KERN_CONT "index, taken");
736 else
737 printk(KERN_CONT "taken");
738 } else {
739 const char *s;
740
741 if (lp->flags & LPROPS_INDEX) {
742 switch (lp->flags & LPROPS_CAT_MASK) {
743 case LPROPS_DIRTY_IDX:
744 s = "dirty index";
745 break;
746 case LPROPS_FRDI_IDX:
747 s = "freeable index";
748 break;
749 default:
750 s = "index";
751 }
752 } else {
753 switch (lp->flags & LPROPS_CAT_MASK) {
754 case LPROPS_UNCAT:
755 s = "not categorized";
756 break;
757 case LPROPS_DIRTY:
758 s = "dirty";
759 break;
760 case LPROPS_FREE:
761 s = "free";
762 break;
763 case LPROPS_EMPTY:
764 s = "empty";
765 break;
766 case LPROPS_FREEABLE:
767 s = "freeable";
768 break;
769 default:
770 s = NULL;
771 break;
772 }
773 }
774 printk(KERN_CONT "%s", s);
775 }
776
777 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
778 bud = rb_entry(rb, struct ubifs_bud, rb);
779 if (bud->lnum == lp->lnum) {
780 int head = 0;
781 for (i = 0; i < c->jhead_cnt; i++) {
782 /*
783 * Note, if we are in R/O mode or in the middle
784 * of mounting/re-mounting, the write-buffers do
785 * not exist.
786 */
787 if (c->jheads &&
788 lp->lnum == c->jheads[i].wbuf.lnum) {
789 printk(KERN_CONT ", jhead %s",
790 dbg_jhead(i));
791 head = 1;
792 }
793 }
794 if (!head)
795 printk(KERN_CONT ", bud of jhead %s",
796 dbg_jhead(bud->jhead));
797 }
798 }
799 if (lp->lnum == c->gc_lnum)
800 printk(KERN_CONT ", GC LEB");
801 printk(KERN_CONT ")\n");
802 }
803
804 void dbg_dump_lprops(struct ubifs_info *c)
805 {
806 int lnum, err;
807 struct ubifs_lprops lp;
808 struct ubifs_lp_stats lst;
809
810 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
811 current->pid);
812 ubifs_get_lp_stats(c, &lst);
813 dbg_dump_lstats(&lst);
814
815 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
816 err = ubifs_read_one_lp(c, lnum, &lp);
817 if (err)
818 ubifs_err("cannot read lprops for LEB %d", lnum);
819
820 dbg_dump_lprop(c, &lp);
821 }
822 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
823 current->pid);
824 }
825
826 void dbg_dump_lpt_info(struct ubifs_info *c)
827 {
828 int i;
829
830 spin_lock(&dbg_lock);
831 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
832 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
833 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
834 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
835 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
836 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
837 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
838 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
839 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
840 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
841 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
842 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
843 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
844 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
845 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
846 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
847 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
848 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
849 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
850 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
851 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
852 c->nhead_lnum, c->nhead_offs);
853 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
854 c->ltab_lnum, c->ltab_offs);
855 if (c->big_lpt)
856 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
857 c->lsave_lnum, c->lsave_offs);
858 for (i = 0; i < c->lpt_lebs; i++)
859 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
860 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
861 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
862 spin_unlock(&dbg_lock);
863 }
864
865 void dbg_dump_sleb(const struct ubifs_info *c,
866 const struct ubifs_scan_leb *sleb, int offs)
867 {
868 struct ubifs_scan_node *snod;
869
870 printk(KERN_DEBUG "(pid %d) start dumping scanned data from LEB %d:%d\n",
871 current->pid, sleb->lnum, offs);
872
873 list_for_each_entry(snod, &sleb->nodes, list) {
874 cond_resched();
875 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
876 snod->offs, snod->len);
877 dbg_dump_node(c, snod->node);
878 }
879 }
880
881 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
882 {
883 struct ubifs_scan_leb *sleb;
884 struct ubifs_scan_node *snod;
885 void *buf;
886
887 if (dbg_is_tst_rcvry(c))
888 return;
889
890 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
891 current->pid, lnum);
892
893 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
894 if (!buf) {
895 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
896 return;
897 }
898
899 sleb = ubifs_scan(c, lnum, 0, buf, 0);
900 if (IS_ERR(sleb)) {
901 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
902 goto out;
903 }
904
905 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
906 sleb->nodes_cnt, sleb->endpt);
907
908 list_for_each_entry(snod, &sleb->nodes, list) {
909 cond_resched();
910 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
911 snod->offs, snod->len);
912 dbg_dump_node(c, snod->node);
913 }
914
915 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
916 current->pid, lnum);
917 ubifs_scan_destroy(sleb);
918
919 out:
920 vfree(buf);
921 return;
922 }
923
924 void dbg_dump_znode(const struct ubifs_info *c,
925 const struct ubifs_znode *znode)
926 {
927 int n;
928 const struct ubifs_zbranch *zbr;
929 char key_buf[DBG_KEY_BUF_LEN];
930
931 spin_lock(&dbg_lock);
932 if (znode->parent)
933 zbr = &znode->parent->zbranch[znode->iip];
934 else
935 zbr = &c->zroot;
936
937 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
938 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
939 zbr->len, znode->parent, znode->iip, znode->level,
940 znode->child_cnt, znode->flags);
941
942 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
943 spin_unlock(&dbg_lock);
944 return;
945 }
946
947 printk(KERN_DEBUG "zbranches:\n");
948 for (n = 0; n < znode->child_cnt; n++) {
949 zbr = &znode->zbranch[n];
950 if (znode->level > 0)
951 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
952 "%s\n", n, zbr->znode, zbr->lnum,
953 zbr->offs, zbr->len,
954 dbg_snprintf_key(c, &zbr->key,
955 key_buf,
956 DBG_KEY_BUF_LEN));
957 else
958 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
959 "%s\n", n, zbr->znode, zbr->lnum,
960 zbr->offs, zbr->len,
961 dbg_snprintf_key(c, &zbr->key,
962 key_buf,
963 DBG_KEY_BUF_LEN));
964 }
965 spin_unlock(&dbg_lock);
966 }
967
968 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
969 {
970 int i;
971
972 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
973 current->pid, cat, heap->cnt);
974 for (i = 0; i < heap->cnt; i++) {
975 struct ubifs_lprops *lprops = heap->arr[i];
976
977 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
978 "flags %d\n", i, lprops->lnum, lprops->hpos,
979 lprops->free, lprops->dirty, lprops->flags);
980 }
981 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
982 }
983
984 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
985 struct ubifs_nnode *parent, int iip)
986 {
987 int i;
988
989 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
990 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
991 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
992 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
993 pnode->flags, iip, pnode->level, pnode->num);
994 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
995 struct ubifs_lprops *lp = &pnode->lprops[i];
996
997 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
998 i, lp->free, lp->dirty, lp->flags, lp->lnum);
999 }
1000 }
1001
1002 void dbg_dump_tnc(struct ubifs_info *c)
1003 {
1004 struct ubifs_znode *znode;
1005 int level;
1006
1007 printk(KERN_DEBUG "\n");
1008 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
1009 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1010 level = znode->level;
1011 printk(KERN_DEBUG "== Level %d ==\n", level);
1012 while (znode) {
1013 if (level != znode->level) {
1014 level = znode->level;
1015 printk(KERN_DEBUG "== Level %d ==\n", level);
1016 }
1017 dbg_dump_znode(c, znode);
1018 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1019 }
1020 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1021 }
1022
1023 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1024 void *priv)
1025 {
1026 dbg_dump_znode(c, znode);
1027 return 0;
1028 }
1029
1030 /**
1031 * dbg_dump_index - dump the on-flash index.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1035 * which dumps only in-memory znodes and does not read znodes which from flash.
1036 */
1037 void dbg_dump_index(struct ubifs_info *c)
1038 {
1039 dbg_walk_index(c, NULL, dump_znode, NULL);
1040 }
1041
1042 /**
1043 * dbg_save_space_info - save information about flash space.
1044 * @c: UBIFS file-system description object
1045 *
1046 * This function saves information about UBIFS free space, dirty space, etc, in
1047 * order to check it later.
1048 */
1049 void dbg_save_space_info(struct ubifs_info *c)
1050 {
1051 struct ubifs_debug_info *d = c->dbg;
1052 int freeable_cnt;
1053
1054 spin_lock(&c->space_lock);
1055 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1056 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1057 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1058
1059 /*
1060 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1061 * affects the free space calculations, and UBIFS might not know about
1062 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1063 * only when we read their lprops, and we do this only lazily, upon the
1064 * need. So at any given point of time @c->freeable_cnt might be not
1065 * exactly accurate.
1066 *
1067 * Just one example about the issue we hit when we did not zero
1068 * @c->freeable_cnt.
1069 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1070 * amount of free space in @d->saved_free
1071 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1072 * information from flash, where we cache LEBs from various
1073 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1074 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1075 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1076 * -> 'ubifs_add_to_cat()').
1077 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1078 * becomes %1.
1079 * 4. We calculate the amount of free space when the re-mount is
1080 * finished in 'dbg_check_space_info()' and it does not match
1081 * @d->saved_free.
1082 */
1083 freeable_cnt = c->freeable_cnt;
1084 c->freeable_cnt = 0;
1085 d->saved_free = ubifs_get_free_space_nolock(c);
1086 c->freeable_cnt = freeable_cnt;
1087 spin_unlock(&c->space_lock);
1088 }
1089
1090 /**
1091 * dbg_check_space_info - check flash space information.
1092 * @c: UBIFS file-system description object
1093 *
1094 * This function compares current flash space information with the information
1095 * which was saved when the 'dbg_save_space_info()' function was called.
1096 * Returns zero if the information has not changed, and %-EINVAL it it has
1097 * changed.
1098 */
1099 int dbg_check_space_info(struct ubifs_info *c)
1100 {
1101 struct ubifs_debug_info *d = c->dbg;
1102 struct ubifs_lp_stats lst;
1103 long long free;
1104 int freeable_cnt;
1105
1106 spin_lock(&c->space_lock);
1107 freeable_cnt = c->freeable_cnt;
1108 c->freeable_cnt = 0;
1109 free = ubifs_get_free_space_nolock(c);
1110 c->freeable_cnt = freeable_cnt;
1111 spin_unlock(&c->space_lock);
1112
1113 if (free != d->saved_free) {
1114 ubifs_err("free space changed from %lld to %lld",
1115 d->saved_free, free);
1116 goto out;
1117 }
1118
1119 return 0;
1120
1121 out:
1122 ubifs_msg("saved lprops statistics dump");
1123 dbg_dump_lstats(&d->saved_lst);
1124 ubifs_msg("saved budgeting info dump");
1125 dbg_dump_budg(c, &d->saved_bi);
1126 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1127 ubifs_msg("current lprops statistics dump");
1128 ubifs_get_lp_stats(c, &lst);
1129 dbg_dump_lstats(&lst);
1130 ubifs_msg("current budgeting info dump");
1131 dbg_dump_budg(c, &c->bi);
1132 dump_stack();
1133 return -EINVAL;
1134 }
1135
1136 /**
1137 * dbg_check_synced_i_size - check synchronized inode size.
1138 * @c: UBIFS file-system description object
1139 * @inode: inode to check
1140 *
1141 * If inode is clean, synchronized inode size has to be equivalent to current
1142 * inode size. This function has to be called only for locked inodes (@i_mutex
1143 * has to be locked). Returns %0 if synchronized inode size if correct, and
1144 * %-EINVAL if not.
1145 */
1146 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1147 {
1148 int err = 0;
1149 struct ubifs_inode *ui = ubifs_inode(inode);
1150
1151 if (!dbg_is_chk_gen(c))
1152 return 0;
1153 if (!S_ISREG(inode->i_mode))
1154 return 0;
1155
1156 mutex_lock(&ui->ui_mutex);
1157 spin_lock(&ui->ui_lock);
1158 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1159 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1160 "is clean", ui->ui_size, ui->synced_i_size);
1161 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1162 inode->i_mode, i_size_read(inode));
1163 dbg_dump_stack();
1164 err = -EINVAL;
1165 }
1166 spin_unlock(&ui->ui_lock);
1167 mutex_unlock(&ui->ui_mutex);
1168 return err;
1169 }
1170
1171 /*
1172 * dbg_check_dir - check directory inode size and link count.
1173 * @c: UBIFS file-system description object
1174 * @dir: the directory to calculate size for
1175 * @size: the result is returned here
1176 *
1177 * This function makes sure that directory size and link count are correct.
1178 * Returns zero in case of success and a negative error code in case of
1179 * failure.
1180 *
1181 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1182 * calling this function.
1183 */
1184 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1185 {
1186 unsigned int nlink = 2;
1187 union ubifs_key key;
1188 struct ubifs_dent_node *dent, *pdent = NULL;
1189 struct qstr nm = { .name = NULL };
1190 loff_t size = UBIFS_INO_NODE_SZ;
1191
1192 if (!dbg_is_chk_gen(c))
1193 return 0;
1194
1195 if (!S_ISDIR(dir->i_mode))
1196 return 0;
1197
1198 lowest_dent_key(c, &key, dir->i_ino);
1199 while (1) {
1200 int err;
1201
1202 dent = ubifs_tnc_next_ent(c, &key, &nm);
1203 if (IS_ERR(dent)) {
1204 err = PTR_ERR(dent);
1205 if (err == -ENOENT)
1206 break;
1207 return err;
1208 }
1209
1210 nm.name = dent->name;
1211 nm.len = le16_to_cpu(dent->nlen);
1212 size += CALC_DENT_SIZE(nm.len);
1213 if (dent->type == UBIFS_ITYPE_DIR)
1214 nlink += 1;
1215 kfree(pdent);
1216 pdent = dent;
1217 key_read(c, &dent->key, &key);
1218 }
1219 kfree(pdent);
1220
1221 if (i_size_read(dir) != size) {
1222 ubifs_err("directory inode %lu has size %llu, "
1223 "but calculated size is %llu", dir->i_ino,
1224 (unsigned long long)i_size_read(dir),
1225 (unsigned long long)size);
1226 dbg_dump_inode(c, dir);
1227 dump_stack();
1228 return -EINVAL;
1229 }
1230 if (dir->i_nlink != nlink) {
1231 ubifs_err("directory inode %lu has nlink %u, but calculated "
1232 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1233 dbg_dump_inode(c, dir);
1234 dump_stack();
1235 return -EINVAL;
1236 }
1237
1238 return 0;
1239 }
1240
1241 /**
1242 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1243 * @c: UBIFS file-system description object
1244 * @zbr1: first zbranch
1245 * @zbr2: following zbranch
1246 *
1247 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1248 * names of the direntries/xentries which are referred by the keys. This
1249 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1250 * sure the name of direntry/xentry referred by @zbr1 is less than
1251 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1252 * and a negative error code in case of failure.
1253 */
1254 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1255 struct ubifs_zbranch *zbr2)
1256 {
1257 int err, nlen1, nlen2, cmp;
1258 struct ubifs_dent_node *dent1, *dent2;
1259 union ubifs_key key;
1260 char key_buf[DBG_KEY_BUF_LEN];
1261
1262 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1263 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1264 if (!dent1)
1265 return -ENOMEM;
1266 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1267 if (!dent2) {
1268 err = -ENOMEM;
1269 goto out_free;
1270 }
1271
1272 err = ubifs_tnc_read_node(c, zbr1, dent1);
1273 if (err)
1274 goto out_free;
1275 err = ubifs_validate_entry(c, dent1);
1276 if (err)
1277 goto out_free;
1278
1279 err = ubifs_tnc_read_node(c, zbr2, dent2);
1280 if (err)
1281 goto out_free;
1282 err = ubifs_validate_entry(c, dent2);
1283 if (err)
1284 goto out_free;
1285
1286 /* Make sure node keys are the same as in zbranch */
1287 err = 1;
1288 key_read(c, &dent1->key, &key);
1289 if (keys_cmp(c, &zbr1->key, &key)) {
1290 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1291 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1292 DBG_KEY_BUF_LEN));
1293 dbg_err("but it should have key %s according to tnc",
1294 dbg_snprintf_key(c, &zbr1->key, key_buf,
1295 DBG_KEY_BUF_LEN));
1296 dbg_dump_node(c, dent1);
1297 goto out_free;
1298 }
1299
1300 key_read(c, &dent2->key, &key);
1301 if (keys_cmp(c, &zbr2->key, &key)) {
1302 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1303 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1304 DBG_KEY_BUF_LEN));
1305 dbg_err("but it should have key %s according to tnc",
1306 dbg_snprintf_key(c, &zbr2->key, key_buf,
1307 DBG_KEY_BUF_LEN));
1308 dbg_dump_node(c, dent2);
1309 goto out_free;
1310 }
1311
1312 nlen1 = le16_to_cpu(dent1->nlen);
1313 nlen2 = le16_to_cpu(dent2->nlen);
1314
1315 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1316 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1317 err = 0;
1318 goto out_free;
1319 }
1320 if (cmp == 0 && nlen1 == nlen2)
1321 dbg_err("2 xent/dent nodes with the same name");
1322 else
1323 dbg_err("bad order of colliding key %s",
1324 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1325
1326 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1327 dbg_dump_node(c, dent1);
1328 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1329 dbg_dump_node(c, dent2);
1330
1331 out_free:
1332 kfree(dent2);
1333 kfree(dent1);
1334 return err;
1335 }
1336
1337 /**
1338 * dbg_check_znode - check if znode is all right.
1339 * @c: UBIFS file-system description object
1340 * @zbr: zbranch which points to this znode
1341 *
1342 * This function makes sure that znode referred to by @zbr is all right.
1343 * Returns zero if it is, and %-EINVAL if it is not.
1344 */
1345 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1346 {
1347 struct ubifs_znode *znode = zbr->znode;
1348 struct ubifs_znode *zp = znode->parent;
1349 int n, err, cmp;
1350
1351 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1352 err = 1;
1353 goto out;
1354 }
1355 if (znode->level < 0) {
1356 err = 2;
1357 goto out;
1358 }
1359 if (znode->iip < 0 || znode->iip >= c->fanout) {
1360 err = 3;
1361 goto out;
1362 }
1363
1364 if (zbr->len == 0)
1365 /* Only dirty zbranch may have no on-flash nodes */
1366 if (!ubifs_zn_dirty(znode)) {
1367 err = 4;
1368 goto out;
1369 }
1370
1371 if (ubifs_zn_dirty(znode)) {
1372 /*
1373 * If znode is dirty, its parent has to be dirty as well. The
1374 * order of the operation is important, so we have to have
1375 * memory barriers.
1376 */
1377 smp_mb();
1378 if (zp && !ubifs_zn_dirty(zp)) {
1379 /*
1380 * The dirty flag is atomic and is cleared outside the
1381 * TNC mutex, so znode's dirty flag may now have
1382 * been cleared. The child is always cleared before the
1383 * parent, so we just need to check again.
1384 */
1385 smp_mb();
1386 if (ubifs_zn_dirty(znode)) {
1387 err = 5;
1388 goto out;
1389 }
1390 }
1391 }
1392
1393 if (zp) {
1394 const union ubifs_key *min, *max;
1395
1396 if (znode->level != zp->level - 1) {
1397 err = 6;
1398 goto out;
1399 }
1400
1401 /* Make sure the 'parent' pointer in our znode is correct */
1402 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1403 if (!err) {
1404 /* This zbranch does not exist in the parent */
1405 err = 7;
1406 goto out;
1407 }
1408
1409 if (znode->iip >= zp->child_cnt) {
1410 err = 8;
1411 goto out;
1412 }
1413
1414 if (znode->iip != n) {
1415 /* This may happen only in case of collisions */
1416 if (keys_cmp(c, &zp->zbranch[n].key,
1417 &zp->zbranch[znode->iip].key)) {
1418 err = 9;
1419 goto out;
1420 }
1421 n = znode->iip;
1422 }
1423
1424 /*
1425 * Make sure that the first key in our znode is greater than or
1426 * equal to the key in the pointing zbranch.
1427 */
1428 min = &zbr->key;
1429 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1430 if (cmp == 1) {
1431 err = 10;
1432 goto out;
1433 }
1434
1435 if (n + 1 < zp->child_cnt) {
1436 max = &zp->zbranch[n + 1].key;
1437
1438 /*
1439 * Make sure the last key in our znode is less or
1440 * equivalent than the key in the zbranch which goes
1441 * after our pointing zbranch.
1442 */
1443 cmp = keys_cmp(c, max,
1444 &znode->zbranch[znode->child_cnt - 1].key);
1445 if (cmp == -1) {
1446 err = 11;
1447 goto out;
1448 }
1449 }
1450 } else {
1451 /* This may only be root znode */
1452 if (zbr != &c->zroot) {
1453 err = 12;
1454 goto out;
1455 }
1456 }
1457
1458 /*
1459 * Make sure that next key is greater or equivalent then the previous
1460 * one.
1461 */
1462 for (n = 1; n < znode->child_cnt; n++) {
1463 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1464 &znode->zbranch[n].key);
1465 if (cmp > 0) {
1466 err = 13;
1467 goto out;
1468 }
1469 if (cmp == 0) {
1470 /* This can only be keys with colliding hash */
1471 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1472 err = 14;
1473 goto out;
1474 }
1475
1476 if (znode->level != 0 || c->replaying)
1477 continue;
1478
1479 /*
1480 * Colliding keys should follow binary order of
1481 * corresponding xentry/dentry names.
1482 */
1483 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1484 &znode->zbranch[n]);
1485 if (err < 0)
1486 return err;
1487 if (err) {
1488 err = 15;
1489 goto out;
1490 }
1491 }
1492 }
1493
1494 for (n = 0; n < znode->child_cnt; n++) {
1495 if (!znode->zbranch[n].znode &&
1496 (znode->zbranch[n].lnum == 0 ||
1497 znode->zbranch[n].len == 0)) {
1498 err = 16;
1499 goto out;
1500 }
1501
1502 if (znode->zbranch[n].lnum != 0 &&
1503 znode->zbranch[n].len == 0) {
1504 err = 17;
1505 goto out;
1506 }
1507
1508 if (znode->zbranch[n].lnum == 0 &&
1509 znode->zbranch[n].len != 0) {
1510 err = 18;
1511 goto out;
1512 }
1513
1514 if (znode->zbranch[n].lnum == 0 &&
1515 znode->zbranch[n].offs != 0) {
1516 err = 19;
1517 goto out;
1518 }
1519
1520 if (znode->level != 0 && znode->zbranch[n].znode)
1521 if (znode->zbranch[n].znode->parent != znode) {
1522 err = 20;
1523 goto out;
1524 }
1525 }
1526
1527 return 0;
1528
1529 out:
1530 ubifs_err("failed, error %d", err);
1531 ubifs_msg("dump of the znode");
1532 dbg_dump_znode(c, znode);
1533 if (zp) {
1534 ubifs_msg("dump of the parent znode");
1535 dbg_dump_znode(c, zp);
1536 }
1537 dump_stack();
1538 return -EINVAL;
1539 }
1540
1541 /**
1542 * dbg_check_tnc - check TNC tree.
1543 * @c: UBIFS file-system description object
1544 * @extra: do extra checks that are possible at start commit
1545 *
1546 * This function traverses whole TNC tree and checks every znode. Returns zero
1547 * if everything is all right and %-EINVAL if something is wrong with TNC.
1548 */
1549 int dbg_check_tnc(struct ubifs_info *c, int extra)
1550 {
1551 struct ubifs_znode *znode;
1552 long clean_cnt = 0, dirty_cnt = 0;
1553 int err, last;
1554
1555 if (!dbg_is_chk_index(c))
1556 return 0;
1557
1558 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1559 if (!c->zroot.znode)
1560 return 0;
1561
1562 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1563 while (1) {
1564 struct ubifs_znode *prev;
1565 struct ubifs_zbranch *zbr;
1566
1567 if (!znode->parent)
1568 zbr = &c->zroot;
1569 else
1570 zbr = &znode->parent->zbranch[znode->iip];
1571
1572 err = dbg_check_znode(c, zbr);
1573 if (err)
1574 return err;
1575
1576 if (extra) {
1577 if (ubifs_zn_dirty(znode))
1578 dirty_cnt += 1;
1579 else
1580 clean_cnt += 1;
1581 }
1582
1583 prev = znode;
1584 znode = ubifs_tnc_postorder_next(znode);
1585 if (!znode)
1586 break;
1587
1588 /*
1589 * If the last key of this znode is equivalent to the first key
1590 * of the next znode (collision), then check order of the keys.
1591 */
1592 last = prev->child_cnt - 1;
1593 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1594 !keys_cmp(c, &prev->zbranch[last].key,
1595 &znode->zbranch[0].key)) {
1596 err = dbg_check_key_order(c, &prev->zbranch[last],
1597 &znode->zbranch[0]);
1598 if (err < 0)
1599 return err;
1600 if (err) {
1601 ubifs_msg("first znode");
1602 dbg_dump_znode(c, prev);
1603 ubifs_msg("second znode");
1604 dbg_dump_znode(c, znode);
1605 return -EINVAL;
1606 }
1607 }
1608 }
1609
1610 if (extra) {
1611 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1612 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1613 atomic_long_read(&c->clean_zn_cnt),
1614 clean_cnt);
1615 return -EINVAL;
1616 }
1617 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1618 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1619 atomic_long_read(&c->dirty_zn_cnt),
1620 dirty_cnt);
1621 return -EINVAL;
1622 }
1623 }
1624
1625 return 0;
1626 }
1627
1628 /**
1629 * dbg_walk_index - walk the on-flash index.
1630 * @c: UBIFS file-system description object
1631 * @leaf_cb: called for each leaf node
1632 * @znode_cb: called for each indexing node
1633 * @priv: private data which is passed to callbacks
1634 *
1635 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1636 * node and @znode_cb for each indexing node. Returns zero in case of success
1637 * and a negative error code in case of failure.
1638 *
1639 * It would be better if this function removed every znode it pulled to into
1640 * the TNC, so that the behavior more closely matched the non-debugging
1641 * behavior.
1642 */
1643 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1644 dbg_znode_callback znode_cb, void *priv)
1645 {
1646 int err;
1647 struct ubifs_zbranch *zbr;
1648 struct ubifs_znode *znode, *child;
1649
1650 mutex_lock(&c->tnc_mutex);
1651 /* If the root indexing node is not in TNC - pull it */
1652 if (!c->zroot.znode) {
1653 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1654 if (IS_ERR(c->zroot.znode)) {
1655 err = PTR_ERR(c->zroot.znode);
1656 c->zroot.znode = NULL;
1657 goto out_unlock;
1658 }
1659 }
1660
1661 /*
1662 * We are going to traverse the indexing tree in the postorder manner.
1663 * Go down and find the leftmost indexing node where we are going to
1664 * start from.
1665 */
1666 znode = c->zroot.znode;
1667 while (znode->level > 0) {
1668 zbr = &znode->zbranch[0];
1669 child = zbr->znode;
1670 if (!child) {
1671 child = ubifs_load_znode(c, zbr, znode, 0);
1672 if (IS_ERR(child)) {
1673 err = PTR_ERR(child);
1674 goto out_unlock;
1675 }
1676 zbr->znode = child;
1677 }
1678
1679 znode = child;
1680 }
1681
1682 /* Iterate over all indexing nodes */
1683 while (1) {
1684 int idx;
1685
1686 cond_resched();
1687
1688 if (znode_cb) {
1689 err = znode_cb(c, znode, priv);
1690 if (err) {
1691 ubifs_err("znode checking function returned "
1692 "error %d", err);
1693 dbg_dump_znode(c, znode);
1694 goto out_dump;
1695 }
1696 }
1697 if (leaf_cb && znode->level == 0) {
1698 for (idx = 0; idx < znode->child_cnt; idx++) {
1699 zbr = &znode->zbranch[idx];
1700 err = leaf_cb(c, zbr, priv);
1701 if (err) {
1702 ubifs_err("leaf checking function "
1703 "returned error %d, for leaf "
1704 "at LEB %d:%d",
1705 err, zbr->lnum, zbr->offs);
1706 goto out_dump;
1707 }
1708 }
1709 }
1710
1711 if (!znode->parent)
1712 break;
1713
1714 idx = znode->iip + 1;
1715 znode = znode->parent;
1716 if (idx < znode->child_cnt) {
1717 /* Switch to the next index in the parent */
1718 zbr = &znode->zbranch[idx];
1719 child = zbr->znode;
1720 if (!child) {
1721 child = ubifs_load_znode(c, zbr, znode, idx);
1722 if (IS_ERR(child)) {
1723 err = PTR_ERR(child);
1724 goto out_unlock;
1725 }
1726 zbr->znode = child;
1727 }
1728 znode = child;
1729 } else
1730 /*
1731 * This is the last child, switch to the parent and
1732 * continue.
1733 */
1734 continue;
1735
1736 /* Go to the lowest leftmost znode in the new sub-tree */
1737 while (znode->level > 0) {
1738 zbr = &znode->zbranch[0];
1739 child = zbr->znode;
1740 if (!child) {
1741 child = ubifs_load_znode(c, zbr, znode, 0);
1742 if (IS_ERR(child)) {
1743 err = PTR_ERR(child);
1744 goto out_unlock;
1745 }
1746 zbr->znode = child;
1747 }
1748 znode = child;
1749 }
1750 }
1751
1752 mutex_unlock(&c->tnc_mutex);
1753 return 0;
1754
1755 out_dump:
1756 if (znode->parent)
1757 zbr = &znode->parent->zbranch[znode->iip];
1758 else
1759 zbr = &c->zroot;
1760 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1761 dbg_dump_znode(c, znode);
1762 out_unlock:
1763 mutex_unlock(&c->tnc_mutex);
1764 return err;
1765 }
1766
1767 /**
1768 * add_size - add znode size to partially calculated index size.
1769 * @c: UBIFS file-system description object
1770 * @znode: znode to add size for
1771 * @priv: partially calculated index size
1772 *
1773 * This is a helper function for 'dbg_check_idx_size()' which is called for
1774 * every indexing node and adds its size to the 'long long' variable pointed to
1775 * by @priv.
1776 */
1777 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1778 {
1779 long long *idx_size = priv;
1780 int add;
1781
1782 add = ubifs_idx_node_sz(c, znode->child_cnt);
1783 add = ALIGN(add, 8);
1784 *idx_size += add;
1785 return 0;
1786 }
1787
1788 /**
1789 * dbg_check_idx_size - check index size.
1790 * @c: UBIFS file-system description object
1791 * @idx_size: size to check
1792 *
1793 * This function walks the UBIFS index, calculates its size and checks that the
1794 * size is equivalent to @idx_size. Returns zero in case of success and a
1795 * negative error code in case of failure.
1796 */
1797 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1798 {
1799 int err;
1800 long long calc = 0;
1801
1802 if (!dbg_is_chk_index(c))
1803 return 0;
1804
1805 err = dbg_walk_index(c, NULL, add_size, &calc);
1806 if (err) {
1807 ubifs_err("error %d while walking the index", err);
1808 return err;
1809 }
1810
1811 if (calc != idx_size) {
1812 ubifs_err("index size check failed: calculated size is %lld, "
1813 "should be %lld", calc, idx_size);
1814 dump_stack();
1815 return -EINVAL;
1816 }
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * struct fsck_inode - information about an inode used when checking the file-system.
1823 * @rb: link in the RB-tree of inodes
1824 * @inum: inode number
1825 * @mode: inode type, permissions, etc
1826 * @nlink: inode link count
1827 * @xattr_cnt: count of extended attributes
1828 * @references: how many directory/xattr entries refer this inode (calculated
1829 * while walking the index)
1830 * @calc_cnt: for directory inode count of child directories
1831 * @size: inode size (read from on-flash inode)
1832 * @xattr_sz: summary size of all extended attributes (read from on-flash
1833 * inode)
1834 * @calc_sz: for directories calculated directory size
1835 * @calc_xcnt: count of extended attributes
1836 * @calc_xsz: calculated summary size of all extended attributes
1837 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1838 * inode (read from on-flash inode)
1839 * @calc_xnms: calculated sum of lengths of all extended attribute names
1840 */
1841 struct fsck_inode {
1842 struct rb_node rb;
1843 ino_t inum;
1844 umode_t mode;
1845 unsigned int nlink;
1846 unsigned int xattr_cnt;
1847 int references;
1848 int calc_cnt;
1849 long long size;
1850 unsigned int xattr_sz;
1851 long long calc_sz;
1852 long long calc_xcnt;
1853 long long calc_xsz;
1854 unsigned int xattr_nms;
1855 long long calc_xnms;
1856 };
1857
1858 /**
1859 * struct fsck_data - private FS checking information.
1860 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1861 */
1862 struct fsck_data {
1863 struct rb_root inodes;
1864 };
1865
1866 /**
1867 * add_inode - add inode information to RB-tree of inodes.
1868 * @c: UBIFS file-system description object
1869 * @fsckd: FS checking information
1870 * @ino: raw UBIFS inode to add
1871 *
1872 * This is a helper function for 'check_leaf()' which adds information about
1873 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1874 * case of success and a negative error code in case of failure.
1875 */
1876 static struct fsck_inode *add_inode(struct ubifs_info *c,
1877 struct fsck_data *fsckd,
1878 struct ubifs_ino_node *ino)
1879 {
1880 struct rb_node **p, *parent = NULL;
1881 struct fsck_inode *fscki;
1882 ino_t inum = key_inum_flash(c, &ino->key);
1883 struct inode *inode;
1884 struct ubifs_inode *ui;
1885
1886 p = &fsckd->inodes.rb_node;
1887 while (*p) {
1888 parent = *p;
1889 fscki = rb_entry(parent, struct fsck_inode, rb);
1890 if (inum < fscki->inum)
1891 p = &(*p)->rb_left;
1892 else if (inum > fscki->inum)
1893 p = &(*p)->rb_right;
1894 else
1895 return fscki;
1896 }
1897
1898 if (inum > c->highest_inum) {
1899 ubifs_err("too high inode number, max. is %lu",
1900 (unsigned long)c->highest_inum);
1901 return ERR_PTR(-EINVAL);
1902 }
1903
1904 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1905 if (!fscki)
1906 return ERR_PTR(-ENOMEM);
1907
1908 inode = ilookup(c->vfs_sb, inum);
1909
1910 fscki->inum = inum;
1911 /*
1912 * If the inode is present in the VFS inode cache, use it instead of
1913 * the on-flash inode which might be out-of-date. E.g., the size might
1914 * be out-of-date. If we do not do this, the following may happen, for
1915 * example:
1916 * 1. A power cut happens
1917 * 2. We mount the file-system R/O, the replay process fixes up the
1918 * inode size in the VFS cache, but on on-flash.
1919 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1920 * size.
1921 */
1922 if (!inode) {
1923 fscki->nlink = le32_to_cpu(ino->nlink);
1924 fscki->size = le64_to_cpu(ino->size);
1925 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1926 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1927 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1928 fscki->mode = le32_to_cpu(ino->mode);
1929 } else {
1930 ui = ubifs_inode(inode);
1931 fscki->nlink = inode->i_nlink;
1932 fscki->size = inode->i_size;
1933 fscki->xattr_cnt = ui->xattr_cnt;
1934 fscki->xattr_sz = ui->xattr_size;
1935 fscki->xattr_nms = ui->xattr_names;
1936 fscki->mode = inode->i_mode;
1937 iput(inode);
1938 }
1939
1940 if (S_ISDIR(fscki->mode)) {
1941 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1942 fscki->calc_cnt = 2;
1943 }
1944
1945 rb_link_node(&fscki->rb, parent, p);
1946 rb_insert_color(&fscki->rb, &fsckd->inodes);
1947
1948 return fscki;
1949 }
1950
1951 /**
1952 * search_inode - search inode in the RB-tree of inodes.
1953 * @fsckd: FS checking information
1954 * @inum: inode number to search
1955 *
1956 * This is a helper function for 'check_leaf()' which searches inode @inum in
1957 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1958 * the inode was not found.
1959 */
1960 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1961 {
1962 struct rb_node *p;
1963 struct fsck_inode *fscki;
1964
1965 p = fsckd->inodes.rb_node;
1966 while (p) {
1967 fscki = rb_entry(p, struct fsck_inode, rb);
1968 if (inum < fscki->inum)
1969 p = p->rb_left;
1970 else if (inum > fscki->inum)
1971 p = p->rb_right;
1972 else
1973 return fscki;
1974 }
1975 return NULL;
1976 }
1977
1978 /**
1979 * read_add_inode - read inode node and add it to RB-tree of inodes.
1980 * @c: UBIFS file-system description object
1981 * @fsckd: FS checking information
1982 * @inum: inode number to read
1983 *
1984 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1985 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1986 * information pointer in case of success and a negative error code in case of
1987 * failure.
1988 */
1989 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1990 struct fsck_data *fsckd, ino_t inum)
1991 {
1992 int n, err;
1993 union ubifs_key key;
1994 struct ubifs_znode *znode;
1995 struct ubifs_zbranch *zbr;
1996 struct ubifs_ino_node *ino;
1997 struct fsck_inode *fscki;
1998
1999 fscki = search_inode(fsckd, inum);
2000 if (fscki)
2001 return fscki;
2002
2003 ino_key_init(c, &key, inum);
2004 err = ubifs_lookup_level0(c, &key, &znode, &n);
2005 if (!err) {
2006 ubifs_err("inode %lu not found in index", (unsigned long)inum);
2007 return ERR_PTR(-ENOENT);
2008 } else if (err < 0) {
2009 ubifs_err("error %d while looking up inode %lu",
2010 err, (unsigned long)inum);
2011 return ERR_PTR(err);
2012 }
2013
2014 zbr = &znode->zbranch[n];
2015 if (zbr->len < UBIFS_INO_NODE_SZ) {
2016 ubifs_err("bad node %lu node length %d",
2017 (unsigned long)inum, zbr->len);
2018 return ERR_PTR(-EINVAL);
2019 }
2020
2021 ino = kmalloc(zbr->len, GFP_NOFS);
2022 if (!ino)
2023 return ERR_PTR(-ENOMEM);
2024
2025 err = ubifs_tnc_read_node(c, zbr, ino);
2026 if (err) {
2027 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2028 zbr->lnum, zbr->offs, err);
2029 kfree(ino);
2030 return ERR_PTR(err);
2031 }
2032
2033 fscki = add_inode(c, fsckd, ino);
2034 kfree(ino);
2035 if (IS_ERR(fscki)) {
2036 ubifs_err("error %ld while adding inode %lu node",
2037 PTR_ERR(fscki), (unsigned long)inum);
2038 return fscki;
2039 }
2040
2041 return fscki;
2042 }
2043
2044 /**
2045 * check_leaf - check leaf node.
2046 * @c: UBIFS file-system description object
2047 * @zbr: zbranch of the leaf node to check
2048 * @priv: FS checking information
2049 *
2050 * This is a helper function for 'dbg_check_filesystem()' which is called for
2051 * every single leaf node while walking the indexing tree. It checks that the
2052 * leaf node referred from the indexing tree exists, has correct CRC, and does
2053 * some other basic validation. This function is also responsible for building
2054 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2055 * calculates reference count, size, etc for each inode in order to later
2056 * compare them to the information stored inside the inodes and detect possible
2057 * inconsistencies. Returns zero in case of success and a negative error code
2058 * in case of failure.
2059 */
2060 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2061 void *priv)
2062 {
2063 ino_t inum;
2064 void *node;
2065 struct ubifs_ch *ch;
2066 int err, type = key_type(c, &zbr->key);
2067 struct fsck_inode *fscki;
2068
2069 if (zbr->len < UBIFS_CH_SZ) {
2070 ubifs_err("bad leaf length %d (LEB %d:%d)",
2071 zbr->len, zbr->lnum, zbr->offs);
2072 return -EINVAL;
2073 }
2074
2075 node = kmalloc(zbr->len, GFP_NOFS);
2076 if (!node)
2077 return -ENOMEM;
2078
2079 err = ubifs_tnc_read_node(c, zbr, node);
2080 if (err) {
2081 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2082 zbr->lnum, zbr->offs, err);
2083 goto out_free;
2084 }
2085
2086 /* If this is an inode node, add it to RB-tree of inodes */
2087 if (type == UBIFS_INO_KEY) {
2088 fscki = add_inode(c, priv, node);
2089 if (IS_ERR(fscki)) {
2090 err = PTR_ERR(fscki);
2091 ubifs_err("error %d while adding inode node", err);
2092 goto out_dump;
2093 }
2094 goto out;
2095 }
2096
2097 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2098 type != UBIFS_DATA_KEY) {
2099 ubifs_err("unexpected node type %d at LEB %d:%d",
2100 type, zbr->lnum, zbr->offs);
2101 err = -EINVAL;
2102 goto out_free;
2103 }
2104
2105 ch = node;
2106 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2107 ubifs_err("too high sequence number, max. is %llu",
2108 c->max_sqnum);
2109 err = -EINVAL;
2110 goto out_dump;
2111 }
2112
2113 if (type == UBIFS_DATA_KEY) {
2114 long long blk_offs;
2115 struct ubifs_data_node *dn = node;
2116
2117 /*
2118 * Search the inode node this data node belongs to and insert
2119 * it to the RB-tree of inodes.
2120 */
2121 inum = key_inum_flash(c, &dn->key);
2122 fscki = read_add_inode(c, priv, inum);
2123 if (IS_ERR(fscki)) {
2124 err = PTR_ERR(fscki);
2125 ubifs_err("error %d while processing data node and "
2126 "trying to find inode node %lu",
2127 err, (unsigned long)inum);
2128 goto out_dump;
2129 }
2130
2131 /* Make sure the data node is within inode size */
2132 blk_offs = key_block_flash(c, &dn->key);
2133 blk_offs <<= UBIFS_BLOCK_SHIFT;
2134 blk_offs += le32_to_cpu(dn->size);
2135 if (blk_offs > fscki->size) {
2136 ubifs_err("data node at LEB %d:%d is not within inode "
2137 "size %lld", zbr->lnum, zbr->offs,
2138 fscki->size);
2139 err = -EINVAL;
2140 goto out_dump;
2141 }
2142 } else {
2143 int nlen;
2144 struct ubifs_dent_node *dent = node;
2145 struct fsck_inode *fscki1;
2146
2147 err = ubifs_validate_entry(c, dent);
2148 if (err)
2149 goto out_dump;
2150
2151 /*
2152 * Search the inode node this entry refers to and the parent
2153 * inode node and insert them to the RB-tree of inodes.
2154 */
2155 inum = le64_to_cpu(dent->inum);
2156 fscki = read_add_inode(c, priv, inum);
2157 if (IS_ERR(fscki)) {
2158 err = PTR_ERR(fscki);
2159 ubifs_err("error %d while processing entry node and "
2160 "trying to find inode node %lu",
2161 err, (unsigned long)inum);
2162 goto out_dump;
2163 }
2164
2165 /* Count how many direntries or xentries refers this inode */
2166 fscki->references += 1;
2167
2168 inum = key_inum_flash(c, &dent->key);
2169 fscki1 = read_add_inode(c, priv, inum);
2170 if (IS_ERR(fscki1)) {
2171 err = PTR_ERR(fscki1);
2172 ubifs_err("error %d while processing entry node and "
2173 "trying to find parent inode node %lu",
2174 err, (unsigned long)inum);
2175 goto out_dump;
2176 }
2177
2178 nlen = le16_to_cpu(dent->nlen);
2179 if (type == UBIFS_XENT_KEY) {
2180 fscki1->calc_xcnt += 1;
2181 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2182 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2183 fscki1->calc_xnms += nlen;
2184 } else {
2185 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2186 if (dent->type == UBIFS_ITYPE_DIR)
2187 fscki1->calc_cnt += 1;
2188 }
2189 }
2190
2191 out:
2192 kfree(node);
2193 return 0;
2194
2195 out_dump:
2196 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2197 dbg_dump_node(c, node);
2198 out_free:
2199 kfree(node);
2200 return err;
2201 }
2202
2203 /**
2204 * free_inodes - free RB-tree of inodes.
2205 * @fsckd: FS checking information
2206 */
2207 static void free_inodes(struct fsck_data *fsckd)
2208 {
2209 struct rb_node *this = fsckd->inodes.rb_node;
2210 struct fsck_inode *fscki;
2211
2212 while (this) {
2213 if (this->rb_left)
2214 this = this->rb_left;
2215 else if (this->rb_right)
2216 this = this->rb_right;
2217 else {
2218 fscki = rb_entry(this, struct fsck_inode, rb);
2219 this = rb_parent(this);
2220 if (this) {
2221 if (this->rb_left == &fscki->rb)
2222 this->rb_left = NULL;
2223 else
2224 this->rb_right = NULL;
2225 }
2226 kfree(fscki);
2227 }
2228 }
2229 }
2230
2231 /**
2232 * check_inodes - checks all inodes.
2233 * @c: UBIFS file-system description object
2234 * @fsckd: FS checking information
2235 *
2236 * This is a helper function for 'dbg_check_filesystem()' which walks the
2237 * RB-tree of inodes after the index scan has been finished, and checks that
2238 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2239 * %-EINVAL if not, and a negative error code in case of failure.
2240 */
2241 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2242 {
2243 int n, err;
2244 union ubifs_key key;
2245 struct ubifs_znode *znode;
2246 struct ubifs_zbranch *zbr;
2247 struct ubifs_ino_node *ino;
2248 struct fsck_inode *fscki;
2249 struct rb_node *this = rb_first(&fsckd->inodes);
2250
2251 while (this) {
2252 fscki = rb_entry(this, struct fsck_inode, rb);
2253 this = rb_next(this);
2254
2255 if (S_ISDIR(fscki->mode)) {
2256 /*
2257 * Directories have to have exactly one reference (they
2258 * cannot have hardlinks), although root inode is an
2259 * exception.
2260 */
2261 if (fscki->inum != UBIFS_ROOT_INO &&
2262 fscki->references != 1) {
2263 ubifs_err("directory inode %lu has %d "
2264 "direntries which refer it, but "
2265 "should be 1",
2266 (unsigned long)fscki->inum,
2267 fscki->references);
2268 goto out_dump;
2269 }
2270 if (fscki->inum == UBIFS_ROOT_INO &&
2271 fscki->references != 0) {
2272 ubifs_err("root inode %lu has non-zero (%d) "
2273 "direntries which refer it",
2274 (unsigned long)fscki->inum,
2275 fscki->references);
2276 goto out_dump;
2277 }
2278 if (fscki->calc_sz != fscki->size) {
2279 ubifs_err("directory inode %lu size is %lld, "
2280 "but calculated size is %lld",
2281 (unsigned long)fscki->inum,
2282 fscki->size, fscki->calc_sz);
2283 goto out_dump;
2284 }
2285 if (fscki->calc_cnt != fscki->nlink) {
2286 ubifs_err("directory inode %lu nlink is %d, "
2287 "but calculated nlink is %d",
2288 (unsigned long)fscki->inum,
2289 fscki->nlink, fscki->calc_cnt);
2290 goto out_dump;
2291 }
2292 } else {
2293 if (fscki->references != fscki->nlink) {
2294 ubifs_err("inode %lu nlink is %d, but "
2295 "calculated nlink is %d",
2296 (unsigned long)fscki->inum,
2297 fscki->nlink, fscki->references);
2298 goto out_dump;
2299 }
2300 }
2301 if (fscki->xattr_sz != fscki->calc_xsz) {
2302 ubifs_err("inode %lu has xattr size %u, but "
2303 "calculated size is %lld",
2304 (unsigned long)fscki->inum, fscki->xattr_sz,
2305 fscki->calc_xsz);
2306 goto out_dump;
2307 }
2308 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2309 ubifs_err("inode %lu has %u xattrs, but "
2310 "calculated count is %lld",
2311 (unsigned long)fscki->inum,
2312 fscki->xattr_cnt, fscki->calc_xcnt);
2313 goto out_dump;
2314 }
2315 if (fscki->xattr_nms != fscki->calc_xnms) {
2316 ubifs_err("inode %lu has xattr names' size %u, but "
2317 "calculated names' size is %lld",
2318 (unsigned long)fscki->inum, fscki->xattr_nms,
2319 fscki->calc_xnms);
2320 goto out_dump;
2321 }
2322 }
2323
2324 return 0;
2325
2326 out_dump:
2327 /* Read the bad inode and dump it */
2328 ino_key_init(c, &key, fscki->inum);
2329 err = ubifs_lookup_level0(c, &key, &znode, &n);
2330 if (!err) {
2331 ubifs_err("inode %lu not found in index",
2332 (unsigned long)fscki->inum);
2333 return -ENOENT;
2334 } else if (err < 0) {
2335 ubifs_err("error %d while looking up inode %lu",
2336 err, (unsigned long)fscki->inum);
2337 return err;
2338 }
2339
2340 zbr = &znode->zbranch[n];
2341 ino = kmalloc(zbr->len, GFP_NOFS);
2342 if (!ino)
2343 return -ENOMEM;
2344
2345 err = ubifs_tnc_read_node(c, zbr, ino);
2346 if (err) {
2347 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2348 zbr->lnum, zbr->offs, err);
2349 kfree(ino);
2350 return err;
2351 }
2352
2353 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2354 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2355 dbg_dump_node(c, ino);
2356 kfree(ino);
2357 return -EINVAL;
2358 }
2359
2360 /**
2361 * dbg_check_filesystem - check the file-system.
2362 * @c: UBIFS file-system description object
2363 *
2364 * This function checks the file system, namely:
2365 * o makes sure that all leaf nodes exist and their CRCs are correct;
2366 * o makes sure inode nlink, size, xattr size/count are correct (for all
2367 * inodes).
2368 *
2369 * The function reads whole indexing tree and all nodes, so it is pretty
2370 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2371 * not, and a negative error code in case of failure.
2372 */
2373 int dbg_check_filesystem(struct ubifs_info *c)
2374 {
2375 int err;
2376 struct fsck_data fsckd;
2377
2378 if (!dbg_is_chk_fs(c))
2379 return 0;
2380
2381 fsckd.inodes = RB_ROOT;
2382 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2383 if (err)
2384 goto out_free;
2385
2386 err = check_inodes(c, &fsckd);
2387 if (err)
2388 goto out_free;
2389
2390 free_inodes(&fsckd);
2391 return 0;
2392
2393 out_free:
2394 ubifs_err("file-system check failed with error %d", err);
2395 dump_stack();
2396 free_inodes(&fsckd);
2397 return err;
2398 }
2399
2400 /**
2401 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2402 * @c: UBIFS file-system description object
2403 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2404 *
2405 * This function returns zero if the list of data nodes is sorted correctly,
2406 * and %-EINVAL if not.
2407 */
2408 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2409 {
2410 struct list_head *cur;
2411 struct ubifs_scan_node *sa, *sb;
2412
2413 if (!dbg_is_chk_gen(c))
2414 return 0;
2415
2416 for (cur = head->next; cur->next != head; cur = cur->next) {
2417 ino_t inuma, inumb;
2418 uint32_t blka, blkb;
2419
2420 cond_resched();
2421 sa = container_of(cur, struct ubifs_scan_node, list);
2422 sb = container_of(cur->next, struct ubifs_scan_node, list);
2423
2424 if (sa->type != UBIFS_DATA_NODE) {
2425 ubifs_err("bad node type %d", sa->type);
2426 dbg_dump_node(c, sa->node);
2427 return -EINVAL;
2428 }
2429 if (sb->type != UBIFS_DATA_NODE) {
2430 ubifs_err("bad node type %d", sb->type);
2431 dbg_dump_node(c, sb->node);
2432 return -EINVAL;
2433 }
2434
2435 inuma = key_inum(c, &sa->key);
2436 inumb = key_inum(c, &sb->key);
2437
2438 if (inuma < inumb)
2439 continue;
2440 if (inuma > inumb) {
2441 ubifs_err("larger inum %lu goes before inum %lu",
2442 (unsigned long)inuma, (unsigned long)inumb);
2443 goto error_dump;
2444 }
2445
2446 blka = key_block(c, &sa->key);
2447 blkb = key_block(c, &sb->key);
2448
2449 if (blka > blkb) {
2450 ubifs_err("larger block %u goes before %u", blka, blkb);
2451 goto error_dump;
2452 }
2453 if (blka == blkb) {
2454 ubifs_err("two data nodes for the same block");
2455 goto error_dump;
2456 }
2457 }
2458
2459 return 0;
2460
2461 error_dump:
2462 dbg_dump_node(c, sa->node);
2463 dbg_dump_node(c, sb->node);
2464 return -EINVAL;
2465 }
2466
2467 /**
2468 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2469 * @c: UBIFS file-system description object
2470 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2471 *
2472 * This function returns zero if the list of non-data nodes is sorted correctly,
2473 * and %-EINVAL if not.
2474 */
2475 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2476 {
2477 struct list_head *cur;
2478 struct ubifs_scan_node *sa, *sb;
2479
2480 if (!dbg_is_chk_gen(c))
2481 return 0;
2482
2483 for (cur = head->next; cur->next != head; cur = cur->next) {
2484 ino_t inuma, inumb;
2485 uint32_t hasha, hashb;
2486
2487 cond_resched();
2488 sa = container_of(cur, struct ubifs_scan_node, list);
2489 sb = container_of(cur->next, struct ubifs_scan_node, list);
2490
2491 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2492 sa->type != UBIFS_XENT_NODE) {
2493 ubifs_err("bad node type %d", sa->type);
2494 dbg_dump_node(c, sa->node);
2495 return -EINVAL;
2496 }
2497 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2498 sa->type != UBIFS_XENT_NODE) {
2499 ubifs_err("bad node type %d", sb->type);
2500 dbg_dump_node(c, sb->node);
2501 return -EINVAL;
2502 }
2503
2504 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2505 ubifs_err("non-inode node goes before inode node");
2506 goto error_dump;
2507 }
2508
2509 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2510 continue;
2511
2512 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2513 /* Inode nodes are sorted in descending size order */
2514 if (sa->len < sb->len) {
2515 ubifs_err("smaller inode node goes first");
2516 goto error_dump;
2517 }
2518 continue;
2519 }
2520
2521 /*
2522 * This is either a dentry or xentry, which should be sorted in
2523 * ascending (parent ino, hash) order.
2524 */
2525 inuma = key_inum(c, &sa->key);
2526 inumb = key_inum(c, &sb->key);
2527
2528 if (inuma < inumb)
2529 continue;
2530 if (inuma > inumb) {
2531 ubifs_err("larger inum %lu goes before inum %lu",
2532 (unsigned long)inuma, (unsigned long)inumb);
2533 goto error_dump;
2534 }
2535
2536 hasha = key_block(c, &sa->key);
2537 hashb = key_block(c, &sb->key);
2538
2539 if (hasha > hashb) {
2540 ubifs_err("larger hash %u goes before %u",
2541 hasha, hashb);
2542 goto error_dump;
2543 }
2544 }
2545
2546 return 0;
2547
2548 error_dump:
2549 ubifs_msg("dumping first node");
2550 dbg_dump_node(c, sa->node);
2551 ubifs_msg("dumping second node");
2552 dbg_dump_node(c, sb->node);
2553 return -EINVAL;
2554 return 0;
2555 }
2556
2557 static inline int chance(unsigned int n, unsigned int out_of)
2558 {
2559 return !!((random32() % out_of) + 1 <= n);
2560
2561 }
2562
2563 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2564 {
2565 struct ubifs_debug_info *d = c->dbg;
2566
2567 ubifs_assert(dbg_is_tst_rcvry(c));
2568
2569 if (!d->pc_cnt) {
2570 /* First call - decide delay to the power cut */
2571 if (chance(1, 2)) {
2572 unsigned long delay;
2573
2574 if (chance(1, 2)) {
2575 d->pc_delay = 1;
2576 /* Fail withing 1 minute */
2577 delay = random32() % 60000;
2578 d->pc_timeout = jiffies;
2579 d->pc_timeout += msecs_to_jiffies(delay);
2580 ubifs_warn("failing after %lums", delay);
2581 } else {
2582 d->pc_delay = 2;
2583 delay = random32() % 10000;
2584 /* Fail within 10000 operations */
2585 d->pc_cnt_max = delay;
2586 ubifs_warn("failing after %lu calls", delay);
2587 }
2588 }
2589
2590 d->pc_cnt += 1;
2591 }
2592
2593 /* Determine if failure delay has expired */
2594 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2595 return 0;
2596 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2597 return 0;
2598
2599 if (lnum == UBIFS_SB_LNUM) {
2600 if (write && chance(1, 2))
2601 return 0;
2602 if (chance(19, 20))
2603 return 0;
2604 ubifs_warn("failing in super block LEB %d", lnum);
2605 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2606 if (chance(19, 20))
2607 return 0;
2608 ubifs_warn("failing in master LEB %d", lnum);
2609 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2610 if (write && chance(99, 100))
2611 return 0;
2612 if (chance(399, 400))
2613 return 0;
2614 ubifs_warn("failing in log LEB %d", lnum);
2615 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2616 if (write && chance(7, 8))
2617 return 0;
2618 if (chance(19, 20))
2619 return 0;
2620 ubifs_warn("failing in LPT LEB %d", lnum);
2621 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2622 if (write && chance(1, 2))
2623 return 0;
2624 if (chance(9, 10))
2625 return 0;
2626 ubifs_warn("failing in orphan LEB %d", lnum);
2627 } else if (lnum == c->ihead_lnum) {
2628 if (chance(99, 100))
2629 return 0;
2630 ubifs_warn("failing in index head LEB %d", lnum);
2631 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2632 if (chance(9, 10))
2633 return 0;
2634 ubifs_warn("failing in GC head LEB %d", lnum);
2635 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2636 !ubifs_search_bud(c, lnum)) {
2637 if (chance(19, 20))
2638 return 0;
2639 ubifs_warn("failing in non-bud LEB %d", lnum);
2640 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2641 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2642 if (chance(999, 1000))
2643 return 0;
2644 ubifs_warn("failing in bud LEB %d commit running", lnum);
2645 } else {
2646 if (chance(9999, 10000))
2647 return 0;
2648 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2649 }
2650
2651 d->pc_happened = 1;
2652 ubifs_warn("========== Power cut emulated ==========");
2653 dump_stack();
2654 return 1;
2655 }
2656
2657 static void cut_data(const void *buf, unsigned int len)
2658 {
2659 unsigned int from, to, i, ffs = chance(1, 2);
2660 unsigned char *p = (void *)buf;
2661
2662 from = random32() % (len + 1);
2663 if (chance(1, 2))
2664 to = random32() % (len - from + 1);
2665 else
2666 to = len;
2667
2668 if (from < to)
2669 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2670 ffs ? "0xFFs" : "random data");
2671
2672 if (ffs)
2673 for (i = from; i < to; i++)
2674 p[i] = 0xFF;
2675 else
2676 for (i = from; i < to; i++)
2677 p[i] = random32() % 0x100;
2678 }
2679
2680 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2681 int offs, int len, int dtype)
2682 {
2683 int err, failing;
2684
2685 if (c->dbg->pc_happened)
2686 return -EROFS;
2687
2688 failing = power_cut_emulated(c, lnum, 1);
2689 if (failing)
2690 cut_data(buf, len);
2691 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2692 if (err)
2693 return err;
2694 if (failing)
2695 return -EROFS;
2696 return 0;
2697 }
2698
2699 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2700 int len, int dtype)
2701 {
2702 int err;
2703
2704 if (c->dbg->pc_happened)
2705 return -EROFS;
2706 if (power_cut_emulated(c, lnum, 1))
2707 return -EROFS;
2708 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2709 if (err)
2710 return err;
2711 if (power_cut_emulated(c, lnum, 1))
2712 return -EROFS;
2713 return 0;
2714 }
2715
2716 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2717 {
2718 int err;
2719
2720 if (c->dbg->pc_happened)
2721 return -EROFS;
2722 if (power_cut_emulated(c, lnum, 0))
2723 return -EROFS;
2724 err = ubi_leb_unmap(c->ubi, lnum);
2725 if (err)
2726 return err;
2727 if (power_cut_emulated(c, lnum, 0))
2728 return -EROFS;
2729 return 0;
2730 }
2731
2732 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2733 {
2734 int err;
2735
2736 if (c->dbg->pc_happened)
2737 return -EROFS;
2738 if (power_cut_emulated(c, lnum, 0))
2739 return -EROFS;
2740 err = ubi_leb_map(c->ubi, lnum, dtype);
2741 if (err)
2742 return err;
2743 if (power_cut_emulated(c, lnum, 0))
2744 return -EROFS;
2745 return 0;
2746 }
2747
2748 /*
2749 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2750 * contain the stuff specific to particular file-system mounts.
2751 */
2752 static struct dentry *dfs_rootdir;
2753
2754 static int dfs_file_open(struct inode *inode, struct file *file)
2755 {
2756 file->private_data = inode->i_private;
2757 return nonseekable_open(inode, file);
2758 }
2759
2760 /**
2761 * provide_user_output - provide output to the user reading a debugfs file.
2762 * @val: boolean value for the answer
2763 * @u: the buffer to store the answer at
2764 * @count: size of the buffer
2765 * @ppos: position in the @u output buffer
2766 *
2767 * This is a simple helper function which stores @val boolean value in the user
2768 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2769 * bytes written to @u in case of success and a negative error code in case of
2770 * failure.
2771 */
2772 static int provide_user_output(int val, char __user *u, size_t count,
2773 loff_t *ppos)
2774 {
2775 char buf[3];
2776
2777 if (val)
2778 buf[0] = '1';
2779 else
2780 buf[0] = '0';
2781 buf[1] = '\n';
2782 buf[2] = 0x00;
2783
2784 return simple_read_from_buffer(u, count, ppos, buf, 2);
2785 }
2786
2787 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2788 loff_t *ppos)
2789 {
2790 struct dentry *dent = file->f_path.dentry;
2791 struct ubifs_info *c = file->private_data;
2792 struct ubifs_debug_info *d = c->dbg;
2793 int val;
2794
2795 if (dent == d->dfs_chk_gen)
2796 val = d->chk_gen;
2797 else if (dent == d->dfs_chk_index)
2798 val = d->chk_index;
2799 else if (dent == d->dfs_chk_orph)
2800 val = d->chk_orph;
2801 else if (dent == d->dfs_chk_lprops)
2802 val = d->chk_lprops;
2803 else if (dent == d->dfs_chk_fs)
2804 val = d->chk_fs;
2805 else if (dent == d->dfs_tst_rcvry)
2806 val = d->tst_rcvry;
2807 else
2808 return -EINVAL;
2809
2810 return provide_user_output(val, u, count, ppos);
2811 }
2812
2813 /**
2814 * interpret_user_input - interpret user debugfs file input.
2815 * @u: user-provided buffer with the input
2816 * @count: buffer size
2817 *
2818 * This is a helper function which interpret user input to a boolean UBIFS
2819 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820 * in case of failure.
2821 */
2822 static int interpret_user_input(const char __user *u, size_t count)
2823 {
2824 size_t buf_size;
2825 char buf[8];
2826
2827 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828 if (copy_from_user(buf, u, buf_size))
2829 return -EFAULT;
2830
2831 if (buf[0] == '1')
2832 return 1;
2833 else if (buf[0] == '0')
2834 return 0;
2835
2836 return -EINVAL;
2837 }
2838
2839 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840 size_t count, loff_t *ppos)
2841 {
2842 struct ubifs_info *c = file->private_data;
2843 struct ubifs_debug_info *d = c->dbg;
2844 struct dentry *dent = file->f_path.dentry;
2845 int val;
2846
2847 /*
2848 * TODO: this is racy - the file-system might have already been
2849 * unmounted and we'd oops in this case. The plan is to fix it with
2850 * help of 'iterate_supers_type()' which we should have in v3.0: when
2851 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853 * superblocks and fine the one with the same UUID, and take the
2854 * locking right.
2855 *
2856 * The other way to go suggested by Al Viro is to create a separate
2857 * 'ubifs-debug' file-system instead.
2858 */
2859 if (file->f_path.dentry == d->dfs_dump_lprops) {
2860 dbg_dump_lprops(c);
2861 return count;
2862 }
2863 if (file->f_path.dentry == d->dfs_dump_budg) {
2864 dbg_dump_budg(c, &c->bi);
2865 return count;
2866 }
2867 if (file->f_path.dentry == d->dfs_dump_tnc) {
2868 mutex_lock(&c->tnc_mutex);
2869 dbg_dump_tnc(c);
2870 mutex_unlock(&c->tnc_mutex);
2871 return count;
2872 }
2873
2874 val = interpret_user_input(u, count);
2875 if (val < 0)
2876 return val;
2877
2878 if (dent == d->dfs_chk_gen)
2879 d->chk_gen = val;
2880 else if (dent == d->dfs_chk_index)
2881 d->chk_index = val;
2882 else if (dent == d->dfs_chk_orph)
2883 d->chk_orph = val;
2884 else if (dent == d->dfs_chk_lprops)
2885 d->chk_lprops = val;
2886 else if (dent == d->dfs_chk_fs)
2887 d->chk_fs = val;
2888 else if (dent == d->dfs_tst_rcvry)
2889 d->tst_rcvry = val;
2890 else
2891 return -EINVAL;
2892
2893 return count;
2894 }
2895
2896 static const struct file_operations dfs_fops = {
2897 .open = dfs_file_open,
2898 .read = dfs_file_read,
2899 .write = dfs_file_write,
2900 .owner = THIS_MODULE,
2901 .llseek = no_llseek,
2902 };
2903
2904 /**
2905 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2906 * @c: UBIFS file-system description object
2907 *
2908 * This function creates all debugfs files for this instance of UBIFS. Returns
2909 * zero in case of success and a negative error code in case of failure.
2910 *
2911 * Note, the only reason we have not merged this function with the
2912 * 'ubifs_debugging_init()' function is because it is better to initialize
2913 * debugfs interfaces at the very end of the mount process, and remove them at
2914 * the very beginning of the mount process.
2915 */
2916 int dbg_debugfs_init_fs(struct ubifs_info *c)
2917 {
2918 int err, n;
2919 const char *fname;
2920 struct dentry *dent;
2921 struct ubifs_debug_info *d = c->dbg;
2922
2923 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2924 c->vi.ubi_num, c->vi.vol_id);
2925 if (n == UBIFS_DFS_DIR_LEN) {
2926 /* The array size is too small */
2927 fname = UBIFS_DFS_DIR_NAME;
2928 dent = ERR_PTR(-EINVAL);
2929 goto out;
2930 }
2931
2932 fname = d->dfs_dir_name;
2933 dent = debugfs_create_dir(fname, dfs_rootdir);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out;
2936 d->dfs_dir = dent;
2937
2938 fname = "dump_lprops";
2939 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2940 if (IS_ERR_OR_NULL(dent))
2941 goto out_remove;
2942 d->dfs_dump_lprops = dent;
2943
2944 fname = "dump_budg";
2945 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2946 if (IS_ERR_OR_NULL(dent))
2947 goto out_remove;
2948 d->dfs_dump_budg = dent;
2949
2950 fname = "dump_tnc";
2951 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2952 if (IS_ERR_OR_NULL(dent))
2953 goto out_remove;
2954 d->dfs_dump_tnc = dent;
2955
2956 fname = "chk_general";
2957 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2958 &dfs_fops);
2959 if (IS_ERR_OR_NULL(dent))
2960 goto out_remove;
2961 d->dfs_chk_gen = dent;
2962
2963 fname = "chk_index";
2964 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2965 &dfs_fops);
2966 if (IS_ERR_OR_NULL(dent))
2967 goto out_remove;
2968 d->dfs_chk_index = dent;
2969
2970 fname = "chk_orphans";
2971 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2972 &dfs_fops);
2973 if (IS_ERR_OR_NULL(dent))
2974 goto out_remove;
2975 d->dfs_chk_orph = dent;
2976
2977 fname = "chk_lprops";
2978 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2979 &dfs_fops);
2980 if (IS_ERR_OR_NULL(dent))
2981 goto out_remove;
2982 d->dfs_chk_lprops = dent;
2983
2984 fname = "chk_fs";
2985 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2986 &dfs_fops);
2987 if (IS_ERR_OR_NULL(dent))
2988 goto out_remove;
2989 d->dfs_chk_fs = dent;
2990
2991 fname = "tst_recovery";
2992 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2993 &dfs_fops);
2994 if (IS_ERR_OR_NULL(dent))
2995 goto out_remove;
2996 d->dfs_tst_rcvry = dent;
2997
2998 return 0;
2999
3000 out_remove:
3001 debugfs_remove_recursive(d->dfs_dir);
3002 out:
3003 err = dent ? PTR_ERR(dent) : -ENODEV;
3004 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3005 fname, err);
3006 return err;
3007 }
3008
3009 /**
3010 * dbg_debugfs_exit_fs - remove all debugfs files.
3011 * @c: UBIFS file-system description object
3012 */
3013 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3014 {
3015 debugfs_remove_recursive(c->dbg->dfs_dir);
3016 }
3017
3018 struct ubifs_global_debug_info ubifs_dbg;
3019
3020 static struct dentry *dfs_chk_gen;
3021 static struct dentry *dfs_chk_index;
3022 static struct dentry *dfs_chk_orph;
3023 static struct dentry *dfs_chk_lprops;
3024 static struct dentry *dfs_chk_fs;
3025 static struct dentry *dfs_tst_rcvry;
3026
3027 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3028 size_t count, loff_t *ppos)
3029 {
3030 struct dentry *dent = file->f_path.dentry;
3031 int val;
3032
3033 if (dent == dfs_chk_gen)
3034 val = ubifs_dbg.chk_gen;
3035 else if (dent == dfs_chk_index)
3036 val = ubifs_dbg.chk_index;
3037 else if (dent == dfs_chk_orph)
3038 val = ubifs_dbg.chk_orph;
3039 else if (dent == dfs_chk_lprops)
3040 val = ubifs_dbg.chk_lprops;
3041 else if (dent == dfs_chk_fs)
3042 val = ubifs_dbg.chk_fs;
3043 else if (dent == dfs_tst_rcvry)
3044 val = ubifs_dbg.tst_rcvry;
3045 else
3046 return -EINVAL;
3047
3048 return provide_user_output(val, u, count, ppos);
3049 }
3050
3051 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3052 size_t count, loff_t *ppos)
3053 {
3054 struct dentry *dent = file->f_path.dentry;
3055 int val;
3056
3057 val = interpret_user_input(u, count);
3058 if (val < 0)
3059 return val;
3060
3061 if (dent == dfs_chk_gen)
3062 ubifs_dbg.chk_gen = val;
3063 else if (dent == dfs_chk_index)
3064 ubifs_dbg.chk_index = val;
3065 else if (dent == dfs_chk_orph)
3066 ubifs_dbg.chk_orph = val;
3067 else if (dent == dfs_chk_lprops)
3068 ubifs_dbg.chk_lprops = val;
3069 else if (dent == dfs_chk_fs)
3070 ubifs_dbg.chk_fs = val;
3071 else if (dent == dfs_tst_rcvry)
3072 ubifs_dbg.tst_rcvry = val;
3073 else
3074 return -EINVAL;
3075
3076 return count;
3077 }
3078
3079 static const struct file_operations dfs_global_fops = {
3080 .read = dfs_global_file_read,
3081 .write = dfs_global_file_write,
3082 .owner = THIS_MODULE,
3083 .llseek = no_llseek,
3084 };
3085
3086 /**
3087 * dbg_debugfs_init - initialize debugfs file-system.
3088 *
3089 * UBIFS uses debugfs file-system to expose various debugging knobs to
3090 * user-space. This function creates "ubifs" directory in the debugfs
3091 * file-system. Returns zero in case of success and a negative error code in
3092 * case of failure.
3093 */
3094 int dbg_debugfs_init(void)
3095 {
3096 int err;
3097 const char *fname;
3098 struct dentry *dent;
3099
3100 fname = "ubifs";
3101 dent = debugfs_create_dir(fname, NULL);
3102 if (IS_ERR_OR_NULL(dent))
3103 goto out;
3104 dfs_rootdir = dent;
3105
3106 fname = "chk_general";
3107 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3108 &dfs_global_fops);
3109 if (IS_ERR_OR_NULL(dent))
3110 goto out_remove;
3111 dfs_chk_gen = dent;
3112
3113 fname = "chk_index";
3114 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3115 &dfs_global_fops);
3116 if (IS_ERR_OR_NULL(dent))
3117 goto out_remove;
3118 dfs_chk_index = dent;
3119
3120 fname = "chk_orphans";
3121 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3122 &dfs_global_fops);
3123 if (IS_ERR_OR_NULL(dent))
3124 goto out_remove;
3125 dfs_chk_orph = dent;
3126
3127 fname = "chk_lprops";
3128 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3129 &dfs_global_fops);
3130 if (IS_ERR_OR_NULL(dent))
3131 goto out_remove;
3132 dfs_chk_lprops = dent;
3133
3134 fname = "chk_fs";
3135 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3136 &dfs_global_fops);
3137 if (IS_ERR_OR_NULL(dent))
3138 goto out_remove;
3139 dfs_chk_fs = dent;
3140
3141 fname = "tst_recovery";
3142 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3143 &dfs_global_fops);
3144 if (IS_ERR_OR_NULL(dent))
3145 goto out_remove;
3146 dfs_tst_rcvry = dent;
3147
3148 return 0;
3149
3150 out_remove:
3151 debugfs_remove_recursive(dfs_rootdir);
3152 out:
3153 err = dent ? PTR_ERR(dent) : -ENODEV;
3154 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3155 fname, err);
3156 return err;
3157 }
3158
3159 /**
3160 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3161 */
3162 void dbg_debugfs_exit(void)
3163 {
3164 debugfs_remove_recursive(dfs_rootdir);
3165 }
3166
3167 /**
3168 * ubifs_debugging_init - initialize UBIFS debugging.
3169 * @c: UBIFS file-system description object
3170 *
3171 * This function initializes debugging-related data for the file system.
3172 * Returns zero in case of success and a negative error code in case of
3173 * failure.
3174 */
3175 int ubifs_debugging_init(struct ubifs_info *c)
3176 {
3177 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3178 if (!c->dbg)
3179 return -ENOMEM;
3180
3181 return 0;
3182 }
3183
3184 /**
3185 * ubifs_debugging_exit - free debugging data.
3186 * @c: UBIFS file-system description object
3187 */
3188 void ubifs_debugging_exit(struct ubifs_info *c)
3189 {
3190 kfree(c->dbg);
3191 }
3192
3193 #endif /* CONFIG_UBIFS_FS_DEBUG */