]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ubifs/debug.c
Merge tag 'amdtee-fixes-for-5.10' of git://git.linaro.org:/people/jens.wiklander...
[mirror_ubuntu-hirsute-kernel.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
28 static const char *get_key_fmt(int fmt)
29 {
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36 }
37
38 static const char *get_key_hash(int hash)
39 {
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48 }
49
50 static const char *get_key_type(int type)
51 {
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66 }
67
68 static const char *get_dent_type(int type)
69 {
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88 }
89
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92 {
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127 }
128
129 const char *dbg_ntype(int type)
130 {
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161 }
162
163 static const char *dbg_gtype(int type)
164 {
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175 }
176
177 const char *dbg_cstate(int cmt_state)
178 {
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195 }
196
197 const char *dbg_jhead(int jhead)
198 {
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209 }
210
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222 }
223
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int)inode->i_atime.tv_sec,
241 (unsigned int)inode->i_atime.tv_nsec);
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int)inode->i_mtime.tv_sec,
244 (unsigned int)inode->i_mtime.tv_nsec);
245 pr_err("\tctime %u.%u\n",
246 (unsigned int)inode->i_ctime.tv_sec,
247 (unsigned int)inode->i_ctime.tv_nsec);
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292 }
293
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
295 {
296 int i, n;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 spin_lock(&dbg_lock);
310 dump_ch(node);
311
312 switch (ch->node_type) {
313 case UBIFS_PAD_NODE:
314 {
315 const struct ubifs_pad_node *pad = node;
316
317 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
318 break;
319 }
320 case UBIFS_SB_NODE:
321 {
322 const struct ubifs_sb_node *sup = node;
323 unsigned int sup_flags = le32_to_cpu(sup->flags);
324
325 pr_err("\tkey_hash %d (%s)\n",
326 (int)sup->key_hash, get_key_hash(sup->key_hash));
327 pr_err("\tkey_fmt %d (%s)\n",
328 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
329 pr_err("\tflags %#x\n", sup_flags);
330 pr_err("\tbig_lpt %u\n",
331 !!(sup_flags & UBIFS_FLG_BIGLPT));
332 pr_err("\tspace_fixup %u\n",
333 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
334 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
335 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
336 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
337 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
338 pr_err("\tmax_bud_bytes %llu\n",
339 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
340 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
341 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
342 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
343 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
344 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
345 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
346 pr_err("\tdefault_compr %u\n",
347 (int)le16_to_cpu(sup->default_compr));
348 pr_err("\trp_size %llu\n",
349 (unsigned long long)le64_to_cpu(sup->rp_size));
350 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
351 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
352 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
353 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
354 pr_err("\tUUID %pUB\n", sup->uuid);
355 break;
356 }
357 case UBIFS_MST_NODE:
358 {
359 const struct ubifs_mst_node *mst = node;
360
361 pr_err("\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst->highest_inum));
363 pr_err("\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst->cmt_no));
365 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
366 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
367 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
368 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
369 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
370 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
371 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
372 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
373 pr_err("\tindex_size %llu\n",
374 (unsigned long long)le64_to_cpu(mst->index_size));
375 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
376 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
377 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
378 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
379 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
380 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
381 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
382 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
383 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
384 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
385 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
386 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
387 pr_err("\ttotal_free %llu\n",
388 (unsigned long long)le64_to_cpu(mst->total_free));
389 pr_err("\ttotal_dirty %llu\n",
390 (unsigned long long)le64_to_cpu(mst->total_dirty));
391 pr_err("\ttotal_used %llu\n",
392 (unsigned long long)le64_to_cpu(mst->total_used));
393 pr_err("\ttotal_dead %llu\n",
394 (unsigned long long)le64_to_cpu(mst->total_dead));
395 pr_err("\ttotal_dark %llu\n",
396 (unsigned long long)le64_to_cpu(mst->total_dark));
397 break;
398 }
399 case UBIFS_REF_NODE:
400 {
401 const struct ubifs_ref_node *ref = node;
402
403 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
404 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
405 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
406 break;
407 }
408 case UBIFS_INO_NODE:
409 {
410 const struct ubifs_ino_node *ino = node;
411
412 key_read(c, &ino->key, &key);
413 pr_err("\tkey %s\n",
414 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
415 pr_err("\tcreat_sqnum %llu\n",
416 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417 pr_err("\tsize %llu\n",
418 (unsigned long long)le64_to_cpu(ino->size));
419 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
420 pr_err("\tatime %lld.%u\n",
421 (long long)le64_to_cpu(ino->atime_sec),
422 le32_to_cpu(ino->atime_nsec));
423 pr_err("\tmtime %lld.%u\n",
424 (long long)le64_to_cpu(ino->mtime_sec),
425 le32_to_cpu(ino->mtime_nsec));
426 pr_err("\tctime %lld.%u\n",
427 (long long)le64_to_cpu(ino->ctime_sec),
428 le32_to_cpu(ino->ctime_nsec));
429 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
430 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
431 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
432 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
433 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
434 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
435 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
436 pr_err("\tcompr_type %#x\n",
437 (int)le16_to_cpu(ino->compr_type));
438 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
439 break;
440 }
441 case UBIFS_DENT_NODE:
442 case UBIFS_XENT_NODE:
443 {
444 const struct ubifs_dent_node *dent = node;
445 int nlen = le16_to_cpu(dent->nlen);
446
447 key_read(c, &dent->key, &key);
448 pr_err("\tkey %s\n",
449 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
450 pr_err("\tinum %llu\n",
451 (unsigned long long)le64_to_cpu(dent->inum));
452 pr_err("\ttype %d\n", (int)dent->type);
453 pr_err("\tnlen %d\n", nlen);
454 pr_err("\tname ");
455
456 if (nlen > UBIFS_MAX_NLEN)
457 pr_err("(bad name length, not printing, bad or corrupted node)");
458 else {
459 for (i = 0; i < nlen && dent->name[i]; i++)
460 pr_cont("%c", isprint(dent->name[i]) ?
461 dent->name[i] : '?');
462 }
463 pr_cont("\n");
464
465 break;
466 }
467 case UBIFS_DATA_NODE:
468 {
469 const struct ubifs_data_node *dn = node;
470 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
471
472 key_read(c, &dn->key, &key);
473 pr_err("\tkey %s\n",
474 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
475 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
476 pr_err("\tcompr_typ %d\n",
477 (int)le16_to_cpu(dn->compr_type));
478 pr_err("\tdata size %d\n", dlen);
479 pr_err("\tdata:\n");
480 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
481 (void *)&dn->data, dlen, 0);
482 break;
483 }
484 case UBIFS_TRUN_NODE:
485 {
486 const struct ubifs_trun_node *trun = node;
487
488 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
489 pr_err("\told_size %llu\n",
490 (unsigned long long)le64_to_cpu(trun->old_size));
491 pr_err("\tnew_size %llu\n",
492 (unsigned long long)le64_to_cpu(trun->new_size));
493 break;
494 }
495 case UBIFS_IDX_NODE:
496 {
497 const struct ubifs_idx_node *idx = node;
498
499 n = le16_to_cpu(idx->child_cnt);
500 pr_err("\tchild_cnt %d\n", n);
501 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
502 pr_err("\tBranches:\n");
503
504 for (i = 0; i < n && i < c->fanout - 1; i++) {
505 const struct ubifs_branch *br;
506
507 br = ubifs_idx_branch(c, idx, i);
508 key_read(c, &br->key, &key);
509 pr_err("\t%d: LEB %d:%d len %d key %s\n",
510 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
511 le32_to_cpu(br->len),
512 dbg_snprintf_key(c, &key, key_buf,
513 DBG_KEY_BUF_LEN));
514 }
515 break;
516 }
517 case UBIFS_CS_NODE:
518 break;
519 case UBIFS_ORPH_NODE:
520 {
521 const struct ubifs_orph_node *orph = node;
522
523 pr_err("\tcommit number %llu\n",
524 (unsigned long long)
525 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
526 pr_err("\tlast node flag %llu\n",
527 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
528 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
529 pr_err("\t%d orphan inode numbers:\n", n);
530 for (i = 0; i < n; i++)
531 pr_err("\t ino %llu\n",
532 (unsigned long long)le64_to_cpu(orph->inos[i]));
533 break;
534 }
535 case UBIFS_AUTH_NODE:
536 {
537 break;
538 }
539 default:
540 pr_err("node type %d was not recognized\n",
541 (int)ch->node_type);
542 }
543 spin_unlock(&dbg_lock);
544 }
545
546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
547 {
548 spin_lock(&dbg_lock);
549 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550 req->new_ino, req->dirtied_ino);
551 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
552 req->new_ino_d, req->dirtied_ino_d);
553 pr_err("\tnew_page %d, dirtied_page %d\n",
554 req->new_page, req->dirtied_page);
555 pr_err("\tnew_dent %d, mod_dent %d\n",
556 req->new_dent, req->mod_dent);
557 pr_err("\tidx_growth %d\n", req->idx_growth);
558 pr_err("\tdata_growth %d dd_growth %d\n",
559 req->data_growth, req->dd_growth);
560 spin_unlock(&dbg_lock);
561 }
562
563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
564 {
565 spin_lock(&dbg_lock);
566 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
567 current->pid, lst->empty_lebs, lst->idx_lebs);
568 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
570 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571 lst->total_used, lst->total_dark, lst->total_dead);
572 spin_unlock(&dbg_lock);
573 }
574
575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
576 {
577 int i;
578 struct rb_node *rb;
579 struct ubifs_bud *bud;
580 struct ubifs_gced_idx_leb *idx_gc;
581 long long available, outstanding, free;
582
583 spin_lock(&c->space_lock);
584 spin_lock(&dbg_lock);
585 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586 current->pid, bi->data_growth + bi->dd_growth,
587 bi->data_growth + bi->dd_growth + bi->idx_growth);
588 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589 bi->data_growth, bi->dd_growth, bi->idx_growth);
590 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
592 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593 bi->page_budget, bi->inode_budget, bi->dent_budget);
594 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
595 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
597
598 if (bi != &c->bi)
599 /*
600 * If we are dumping saved budgeting data, do not print
601 * additional information which is about the current state, not
602 * the old one which corresponded to the saved budgeting data.
603 */
604 goto out_unlock;
605
606 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
608 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609 atomic_long_read(&c->dirty_pg_cnt),
610 atomic_long_read(&c->dirty_zn_cnt),
611 atomic_long_read(&c->clean_zn_cnt));
612 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
613
614 /* If we are in R/O mode, journal heads do not exist */
615 if (c->jheads)
616 for (i = 0; i < c->jhead_cnt; i++)
617 pr_err("\tjhead %s\t LEB %d\n",
618 dbg_jhead(c->jheads[i].wbuf.jhead),
619 c->jheads[i].wbuf.lnum);
620 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
621 bud = rb_entry(rb, struct ubifs_bud, rb);
622 pr_err("\tbud LEB %d\n", bud->lnum);
623 }
624 list_for_each_entry(bud, &c->old_buds, list)
625 pr_err("\told bud LEB %d\n", bud->lnum);
626 list_for_each_entry(idx_gc, &c->idx_gc, list)
627 pr_err("\tGC'ed idx LEB %d unmap %d\n",
628 idx_gc->lnum, idx_gc->unmap);
629 pr_err("\tcommit state %d\n", c->cmt_state);
630
631 /* Print budgeting predictions */
632 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
633 outstanding = c->bi.data_growth + c->bi.dd_growth;
634 free = ubifs_get_free_space_nolock(c);
635 pr_err("Budgeting predictions:\n");
636 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637 available, outstanding, free);
638 out_unlock:
639 spin_unlock(&dbg_lock);
640 spin_unlock(&c->space_lock);
641 }
642
643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
644 {
645 int i, spc, dark = 0, dead = 0;
646 struct rb_node *rb;
647 struct ubifs_bud *bud;
648
649 spc = lp->free + lp->dirty;
650 if (spc < c->dead_wm)
651 dead = spc;
652 else
653 dark = ubifs_calc_dark(c, spc);
654
655 if (lp->flags & LPROPS_INDEX)
656 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
658 lp->flags);
659 else
660 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
663
664 if (lp->flags & LPROPS_TAKEN) {
665 if (lp->flags & LPROPS_INDEX)
666 pr_cont("index, taken");
667 else
668 pr_cont("taken");
669 } else {
670 const char *s;
671
672 if (lp->flags & LPROPS_INDEX) {
673 switch (lp->flags & LPROPS_CAT_MASK) {
674 case LPROPS_DIRTY_IDX:
675 s = "dirty index";
676 break;
677 case LPROPS_FRDI_IDX:
678 s = "freeable index";
679 break;
680 default:
681 s = "index";
682 }
683 } else {
684 switch (lp->flags & LPROPS_CAT_MASK) {
685 case LPROPS_UNCAT:
686 s = "not categorized";
687 break;
688 case LPROPS_DIRTY:
689 s = "dirty";
690 break;
691 case LPROPS_FREE:
692 s = "free";
693 break;
694 case LPROPS_EMPTY:
695 s = "empty";
696 break;
697 case LPROPS_FREEABLE:
698 s = "freeable";
699 break;
700 default:
701 s = NULL;
702 break;
703 }
704 }
705 pr_cont("%s", s);
706 }
707
708 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
709 bud = rb_entry(rb, struct ubifs_bud, rb);
710 if (bud->lnum == lp->lnum) {
711 int head = 0;
712 for (i = 0; i < c->jhead_cnt; i++) {
713 /*
714 * Note, if we are in R/O mode or in the middle
715 * of mounting/re-mounting, the write-buffers do
716 * not exist.
717 */
718 if (c->jheads &&
719 lp->lnum == c->jheads[i].wbuf.lnum) {
720 pr_cont(", jhead %s", dbg_jhead(i));
721 head = 1;
722 }
723 }
724 if (!head)
725 pr_cont(", bud of jhead %s",
726 dbg_jhead(bud->jhead));
727 }
728 }
729 if (lp->lnum == c->gc_lnum)
730 pr_cont(", GC LEB");
731 pr_cont(")\n");
732 }
733
734 void ubifs_dump_lprops(struct ubifs_info *c)
735 {
736 int lnum, err;
737 struct ubifs_lprops lp;
738 struct ubifs_lp_stats lst;
739
740 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
741 ubifs_get_lp_stats(c, &lst);
742 ubifs_dump_lstats(&lst);
743
744 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
745 err = ubifs_read_one_lp(c, lnum, &lp);
746 if (err) {
747 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
748 continue;
749 }
750
751 ubifs_dump_lprop(c, &lp);
752 }
753 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 }
755
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
757 {
758 int i;
759
760 spin_lock(&dbg_lock);
761 pr_err("(pid %d) dumping LPT information\n", current->pid);
762 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
763 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
764 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
765 pr_err("\tltab_sz: %d\n", c->ltab_sz);
766 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
767 pr_err("\tbig_lpt: %d\n", c->big_lpt);
768 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
769 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
770 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
771 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
772 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
773 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
774 pr_err("\tspace_bits: %d\n", c->space_bits);
775 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
778 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
779 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
780 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781 pr_err("\tLPT head is at %d:%d\n",
782 c->nhead_lnum, c->nhead_offs);
783 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784 if (c->big_lpt)
785 pr_err("\tLPT lsave is at %d:%d\n",
786 c->lsave_lnum, c->lsave_offs);
787 for (i = 0; i < c->lpt_lebs; i++)
788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790 c->ltab[i].tgc, c->ltab[i].cmt);
791 spin_unlock(&dbg_lock);
792 }
793
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795 const struct ubifs_scan_leb *sleb, int offs)
796 {
797 struct ubifs_scan_node *snod;
798
799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 current->pid, sleb->lnum, offs);
801
802 list_for_each_entry(snod, &sleb->nodes, list) {
803 cond_resched();
804 pr_err("Dumping node at LEB %d:%d len %d\n",
805 sleb->lnum, snod->offs, snod->len);
806 ubifs_dump_node(c, snod->node);
807 }
808 }
809
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 {
812 struct ubifs_scan_leb *sleb;
813 struct ubifs_scan_node *snod;
814 void *buf;
815
816 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817
818 buf = __vmalloc(c->leb_size, GFP_NOFS);
819 if (!buf) {
820 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
821 return;
822 }
823
824 sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 if (IS_ERR(sleb)) {
826 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
827 goto out;
828 }
829
830 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 sleb->nodes_cnt, sleb->endpt);
832
833 list_for_each_entry(snod, &sleb->nodes, list) {
834 cond_resched();
835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836 snod->offs, snod->len);
837 ubifs_dump_node(c, snod->node);
838 }
839
840 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841 ubifs_scan_destroy(sleb);
842
843 out:
844 vfree(buf);
845 return;
846 }
847
848 void ubifs_dump_znode(const struct ubifs_info *c,
849 const struct ubifs_znode *znode)
850 {
851 int n;
852 const struct ubifs_zbranch *zbr;
853 char key_buf[DBG_KEY_BUF_LEN];
854
855 spin_lock(&dbg_lock);
856 if (znode->parent)
857 zbr = &znode->parent->zbranch[znode->iip];
858 else
859 zbr = &c->zroot;
860
861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863 znode->level, znode->child_cnt, znode->flags);
864
865 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866 spin_unlock(&dbg_lock);
867 return;
868 }
869
870 pr_err("zbranches:\n");
871 for (n = 0; n < znode->child_cnt; n++) {
872 zbr = &znode->zbranch[n];
873 if (znode->level > 0)
874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876 dbg_snprintf_key(c, &zbr->key, key_buf,
877 DBG_KEY_BUF_LEN));
878 else
879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881 dbg_snprintf_key(c, &zbr->key, key_buf,
882 DBG_KEY_BUF_LEN));
883 }
884 spin_unlock(&dbg_lock);
885 }
886
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 {
889 int i;
890
891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 current->pid, cat, heap->cnt);
893 for (i = 0; i < heap->cnt; i++) {
894 struct ubifs_lprops *lprops = heap->arr[i];
895
896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 i, lprops->lnum, lprops->hpos, lprops->free,
898 lprops->dirty, lprops->flags);
899 }
900 pr_err("(pid %d) finish dumping heap\n", current->pid);
901 }
902
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904 struct ubifs_nnode *parent, int iip)
905 {
906 int i;
907
908 pr_err("(pid %d) dumping pnode:\n", current->pid);
909 pr_err("\taddress %zx parent %zx cnext %zx\n",
910 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911 pr_err("\tflags %lu iip %d level %d num %d\n",
912 pnode->flags, iip, pnode->level, pnode->num);
913 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914 struct ubifs_lprops *lp = &pnode->lprops[i];
915
916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 i, lp->free, lp->dirty, lp->flags, lp->lnum);
918 }
919 }
920
921 void ubifs_dump_tnc(struct ubifs_info *c)
922 {
923 struct ubifs_znode *znode;
924 int level;
925
926 pr_err("\n");
927 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
929 level = znode->level;
930 pr_err("== Level %d ==\n", level);
931 while (znode) {
932 if (level != znode->level) {
933 level = znode->level;
934 pr_err("== Level %d ==\n", level);
935 }
936 ubifs_dump_znode(c, znode);
937 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
938 }
939 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 }
941
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943 void *priv)
944 {
945 ubifs_dump_znode(c, znode);
946 return 0;
947 }
948
949 /**
950 * ubifs_dump_index - dump the on-flash index.
951 * @c: UBIFS file-system description object
952 *
953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954 * which dumps only in-memory znodes and does not read znodes which from flash.
955 */
956 void ubifs_dump_index(struct ubifs_info *c)
957 {
958 dbg_walk_index(c, NULL, dump_znode, NULL);
959 }
960
961 /**
962 * dbg_save_space_info - save information about flash space.
963 * @c: UBIFS file-system description object
964 *
965 * This function saves information about UBIFS free space, dirty space, etc, in
966 * order to check it later.
967 */
968 void dbg_save_space_info(struct ubifs_info *c)
969 {
970 struct ubifs_debug_info *d = c->dbg;
971 int freeable_cnt;
972
973 spin_lock(&c->space_lock);
974 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976 d->saved_idx_gc_cnt = c->idx_gc_cnt;
977
978 /*
979 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 * affects the free space calculations, and UBIFS might not know about
981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 * only when we read their lprops, and we do this only lazily, upon the
983 * need. So at any given point of time @c->freeable_cnt might be not
984 * exactly accurate.
985 *
986 * Just one example about the issue we hit when we did not zero
987 * @c->freeable_cnt.
988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 * amount of free space in @d->saved_free
990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 * information from flash, where we cache LEBs from various
992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 * -> 'ubifs_get_pnode()' -> 'update_cats()'
995 * -> 'ubifs_add_to_cat()').
996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997 * becomes %1.
998 * 4. We calculate the amount of free space when the re-mount is
999 * finished in 'dbg_check_space_info()' and it does not match
1000 * @d->saved_free.
1001 */
1002 freeable_cnt = c->freeable_cnt;
1003 c->freeable_cnt = 0;
1004 d->saved_free = ubifs_get_free_space_nolock(c);
1005 c->freeable_cnt = freeable_cnt;
1006 spin_unlock(&c->space_lock);
1007 }
1008
1009 /**
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1012 *
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1016 * changed.
1017 */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020 struct ubifs_debug_info *d = c->dbg;
1021 struct ubifs_lp_stats lst;
1022 long long free;
1023 int freeable_cnt;
1024
1025 spin_lock(&c->space_lock);
1026 freeable_cnt = c->freeable_cnt;
1027 c->freeable_cnt = 0;
1028 free = ubifs_get_free_space_nolock(c);
1029 c->freeable_cnt = freeable_cnt;
1030 spin_unlock(&c->space_lock);
1031
1032 if (free != d->saved_free) {
1033 ubifs_err(c, "free space changed from %lld to %lld",
1034 d->saved_free, free);
1035 goto out;
1036 }
1037
1038 return 0;
1039
1040 out:
1041 ubifs_msg(c, "saved lprops statistics dump");
1042 ubifs_dump_lstats(&d->saved_lst);
1043 ubifs_msg(c, "saved budgeting info dump");
1044 ubifs_dump_budg(c, &d->saved_bi);
1045 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046 ubifs_msg(c, "current lprops statistics dump");
1047 ubifs_get_lp_stats(c, &lst);
1048 ubifs_dump_lstats(&lst);
1049 ubifs_msg(c, "current budgeting info dump");
1050 ubifs_dump_budg(c, &c->bi);
1051 dump_stack();
1052 return -EINVAL;
1053 }
1054
1055 /**
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1059 *
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1063 * %-EINVAL if not.
1064 */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067 int err = 0;
1068 struct ubifs_inode *ui = ubifs_inode(inode);
1069
1070 if (!dbg_is_chk_gen(c))
1071 return 0;
1072 if (!S_ISREG(inode->i_mode))
1073 return 0;
1074
1075 mutex_lock(&ui->ui_mutex);
1076 spin_lock(&ui->ui_lock);
1077 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 ui->ui_size, ui->synced_i_size);
1080 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081 inode->i_mode, i_size_read(inode));
1082 dump_stack();
1083 err = -EINVAL;
1084 }
1085 spin_unlock(&ui->ui_lock);
1086 mutex_unlock(&ui->ui_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1095 *
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1098 * failure.
1099 *
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1102 */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105 unsigned int nlink = 2;
1106 union ubifs_key key;
1107 struct ubifs_dent_node *dent, *pdent = NULL;
1108 struct fscrypt_name nm = {0};
1109 loff_t size = UBIFS_INO_NODE_SZ;
1110
1111 if (!dbg_is_chk_gen(c))
1112 return 0;
1113
1114 if (!S_ISDIR(dir->i_mode))
1115 return 0;
1116
1117 lowest_dent_key(c, &key, dir->i_ino);
1118 while (1) {
1119 int err;
1120
1121 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122 if (IS_ERR(dent)) {
1123 err = PTR_ERR(dent);
1124 if (err == -ENOENT)
1125 break;
1126 kfree(pdent);
1127 return err;
1128 }
1129
1130 fname_name(&nm) = dent->name;
1131 fname_len(&nm) = le16_to_cpu(dent->nlen);
1132 size += CALC_DENT_SIZE(fname_len(&nm));
1133 if (dent->type == UBIFS_ITYPE_DIR)
1134 nlink += 1;
1135 kfree(pdent);
1136 pdent = dent;
1137 key_read(c, &dent->key, &key);
1138 }
1139 kfree(pdent);
1140
1141 if (i_size_read(dir) != size) {
1142 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1143 dir->i_ino, (unsigned long long)i_size_read(dir),
1144 (unsigned long long)size);
1145 ubifs_dump_inode(c, dir);
1146 dump_stack();
1147 return -EINVAL;
1148 }
1149 if (dir->i_nlink != nlink) {
1150 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1151 dir->i_ino, dir->i_nlink, nlink);
1152 ubifs_dump_inode(c, dir);
1153 dump_stack();
1154 return -EINVAL;
1155 }
1156
1157 return 0;
1158 }
1159
1160 /**
1161 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1162 * @c: UBIFS file-system description object
1163 * @zbr1: first zbranch
1164 * @zbr2: following zbranch
1165 *
1166 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1167 * names of the direntries/xentries which are referred by the keys. This
1168 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1169 * sure the name of direntry/xentry referred by @zbr1 is less than
1170 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1171 * and a negative error code in case of failure.
1172 */
1173 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1174 struct ubifs_zbranch *zbr2)
1175 {
1176 int err, nlen1, nlen2, cmp;
1177 struct ubifs_dent_node *dent1, *dent2;
1178 union ubifs_key key;
1179 char key_buf[DBG_KEY_BUF_LEN];
1180
1181 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1182 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1183 if (!dent1)
1184 return -ENOMEM;
1185 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1186 if (!dent2) {
1187 err = -ENOMEM;
1188 goto out_free;
1189 }
1190
1191 err = ubifs_tnc_read_node(c, zbr1, dent1);
1192 if (err)
1193 goto out_free;
1194 err = ubifs_validate_entry(c, dent1);
1195 if (err)
1196 goto out_free;
1197
1198 err = ubifs_tnc_read_node(c, zbr2, dent2);
1199 if (err)
1200 goto out_free;
1201 err = ubifs_validate_entry(c, dent2);
1202 if (err)
1203 goto out_free;
1204
1205 /* Make sure node keys are the same as in zbranch */
1206 err = 1;
1207 key_read(c, &dent1->key, &key);
1208 if (keys_cmp(c, &zbr1->key, &key)) {
1209 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1210 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1211 DBG_KEY_BUF_LEN));
1212 ubifs_err(c, "but it should have key %s according to tnc",
1213 dbg_snprintf_key(c, &zbr1->key, key_buf,
1214 DBG_KEY_BUF_LEN));
1215 ubifs_dump_node(c, dent1);
1216 goto out_free;
1217 }
1218
1219 key_read(c, &dent2->key, &key);
1220 if (keys_cmp(c, &zbr2->key, &key)) {
1221 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1222 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1223 DBG_KEY_BUF_LEN));
1224 ubifs_err(c, "but it should have key %s according to tnc",
1225 dbg_snprintf_key(c, &zbr2->key, key_buf,
1226 DBG_KEY_BUF_LEN));
1227 ubifs_dump_node(c, dent2);
1228 goto out_free;
1229 }
1230
1231 nlen1 = le16_to_cpu(dent1->nlen);
1232 nlen2 = le16_to_cpu(dent2->nlen);
1233
1234 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1235 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1236 err = 0;
1237 goto out_free;
1238 }
1239 if (cmp == 0 && nlen1 == nlen2)
1240 ubifs_err(c, "2 xent/dent nodes with the same name");
1241 else
1242 ubifs_err(c, "bad order of colliding key %s",
1243 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1244
1245 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1246 ubifs_dump_node(c, dent1);
1247 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1248 ubifs_dump_node(c, dent2);
1249
1250 out_free:
1251 kfree(dent2);
1252 kfree(dent1);
1253 return err;
1254 }
1255
1256 /**
1257 * dbg_check_znode - check if znode is all right.
1258 * @c: UBIFS file-system description object
1259 * @zbr: zbranch which points to this znode
1260 *
1261 * This function makes sure that znode referred to by @zbr is all right.
1262 * Returns zero if it is, and %-EINVAL if it is not.
1263 */
1264 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1265 {
1266 struct ubifs_znode *znode = zbr->znode;
1267 struct ubifs_znode *zp = znode->parent;
1268 int n, err, cmp;
1269
1270 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1271 err = 1;
1272 goto out;
1273 }
1274 if (znode->level < 0) {
1275 err = 2;
1276 goto out;
1277 }
1278 if (znode->iip < 0 || znode->iip >= c->fanout) {
1279 err = 3;
1280 goto out;
1281 }
1282
1283 if (zbr->len == 0)
1284 /* Only dirty zbranch may have no on-flash nodes */
1285 if (!ubifs_zn_dirty(znode)) {
1286 err = 4;
1287 goto out;
1288 }
1289
1290 if (ubifs_zn_dirty(znode)) {
1291 /*
1292 * If znode is dirty, its parent has to be dirty as well. The
1293 * order of the operation is important, so we have to have
1294 * memory barriers.
1295 */
1296 smp_mb();
1297 if (zp && !ubifs_zn_dirty(zp)) {
1298 /*
1299 * The dirty flag is atomic and is cleared outside the
1300 * TNC mutex, so znode's dirty flag may now have
1301 * been cleared. The child is always cleared before the
1302 * parent, so we just need to check again.
1303 */
1304 smp_mb();
1305 if (ubifs_zn_dirty(znode)) {
1306 err = 5;
1307 goto out;
1308 }
1309 }
1310 }
1311
1312 if (zp) {
1313 const union ubifs_key *min, *max;
1314
1315 if (znode->level != zp->level - 1) {
1316 err = 6;
1317 goto out;
1318 }
1319
1320 /* Make sure the 'parent' pointer in our znode is correct */
1321 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1322 if (!err) {
1323 /* This zbranch does not exist in the parent */
1324 err = 7;
1325 goto out;
1326 }
1327
1328 if (znode->iip >= zp->child_cnt) {
1329 err = 8;
1330 goto out;
1331 }
1332
1333 if (znode->iip != n) {
1334 /* This may happen only in case of collisions */
1335 if (keys_cmp(c, &zp->zbranch[n].key,
1336 &zp->zbranch[znode->iip].key)) {
1337 err = 9;
1338 goto out;
1339 }
1340 n = znode->iip;
1341 }
1342
1343 /*
1344 * Make sure that the first key in our znode is greater than or
1345 * equal to the key in the pointing zbranch.
1346 */
1347 min = &zbr->key;
1348 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1349 if (cmp == 1) {
1350 err = 10;
1351 goto out;
1352 }
1353
1354 if (n + 1 < zp->child_cnt) {
1355 max = &zp->zbranch[n + 1].key;
1356
1357 /*
1358 * Make sure the last key in our znode is less or
1359 * equivalent than the key in the zbranch which goes
1360 * after our pointing zbranch.
1361 */
1362 cmp = keys_cmp(c, max,
1363 &znode->zbranch[znode->child_cnt - 1].key);
1364 if (cmp == -1) {
1365 err = 11;
1366 goto out;
1367 }
1368 }
1369 } else {
1370 /* This may only be root znode */
1371 if (zbr != &c->zroot) {
1372 err = 12;
1373 goto out;
1374 }
1375 }
1376
1377 /*
1378 * Make sure that next key is greater or equivalent then the previous
1379 * one.
1380 */
1381 for (n = 1; n < znode->child_cnt; n++) {
1382 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1383 &znode->zbranch[n].key);
1384 if (cmp > 0) {
1385 err = 13;
1386 goto out;
1387 }
1388 if (cmp == 0) {
1389 /* This can only be keys with colliding hash */
1390 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1391 err = 14;
1392 goto out;
1393 }
1394
1395 if (znode->level != 0 || c->replaying)
1396 continue;
1397
1398 /*
1399 * Colliding keys should follow binary order of
1400 * corresponding xentry/dentry names.
1401 */
1402 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1403 &znode->zbranch[n]);
1404 if (err < 0)
1405 return err;
1406 if (err) {
1407 err = 15;
1408 goto out;
1409 }
1410 }
1411 }
1412
1413 for (n = 0; n < znode->child_cnt; n++) {
1414 if (!znode->zbranch[n].znode &&
1415 (znode->zbranch[n].lnum == 0 ||
1416 znode->zbranch[n].len == 0)) {
1417 err = 16;
1418 goto out;
1419 }
1420
1421 if (znode->zbranch[n].lnum != 0 &&
1422 znode->zbranch[n].len == 0) {
1423 err = 17;
1424 goto out;
1425 }
1426
1427 if (znode->zbranch[n].lnum == 0 &&
1428 znode->zbranch[n].len != 0) {
1429 err = 18;
1430 goto out;
1431 }
1432
1433 if (znode->zbranch[n].lnum == 0 &&
1434 znode->zbranch[n].offs != 0) {
1435 err = 19;
1436 goto out;
1437 }
1438
1439 if (znode->level != 0 && znode->zbranch[n].znode)
1440 if (znode->zbranch[n].znode->parent != znode) {
1441 err = 20;
1442 goto out;
1443 }
1444 }
1445
1446 return 0;
1447
1448 out:
1449 ubifs_err(c, "failed, error %d", err);
1450 ubifs_msg(c, "dump of the znode");
1451 ubifs_dump_znode(c, znode);
1452 if (zp) {
1453 ubifs_msg(c, "dump of the parent znode");
1454 ubifs_dump_znode(c, zp);
1455 }
1456 dump_stack();
1457 return -EINVAL;
1458 }
1459
1460 /**
1461 * dbg_check_tnc - check TNC tree.
1462 * @c: UBIFS file-system description object
1463 * @extra: do extra checks that are possible at start commit
1464 *
1465 * This function traverses whole TNC tree and checks every znode. Returns zero
1466 * if everything is all right and %-EINVAL if something is wrong with TNC.
1467 */
1468 int dbg_check_tnc(struct ubifs_info *c, int extra)
1469 {
1470 struct ubifs_znode *znode;
1471 long clean_cnt = 0, dirty_cnt = 0;
1472 int err, last;
1473
1474 if (!dbg_is_chk_index(c))
1475 return 0;
1476
1477 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1478 if (!c->zroot.znode)
1479 return 0;
1480
1481 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1482 while (1) {
1483 struct ubifs_znode *prev;
1484 struct ubifs_zbranch *zbr;
1485
1486 if (!znode->parent)
1487 zbr = &c->zroot;
1488 else
1489 zbr = &znode->parent->zbranch[znode->iip];
1490
1491 err = dbg_check_znode(c, zbr);
1492 if (err)
1493 return err;
1494
1495 if (extra) {
1496 if (ubifs_zn_dirty(znode))
1497 dirty_cnt += 1;
1498 else
1499 clean_cnt += 1;
1500 }
1501
1502 prev = znode;
1503 znode = ubifs_tnc_postorder_next(c, znode);
1504 if (!znode)
1505 break;
1506
1507 /*
1508 * If the last key of this znode is equivalent to the first key
1509 * of the next znode (collision), then check order of the keys.
1510 */
1511 last = prev->child_cnt - 1;
1512 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1513 !keys_cmp(c, &prev->zbranch[last].key,
1514 &znode->zbranch[0].key)) {
1515 err = dbg_check_key_order(c, &prev->zbranch[last],
1516 &znode->zbranch[0]);
1517 if (err < 0)
1518 return err;
1519 if (err) {
1520 ubifs_msg(c, "first znode");
1521 ubifs_dump_znode(c, prev);
1522 ubifs_msg(c, "second znode");
1523 ubifs_dump_znode(c, znode);
1524 return -EINVAL;
1525 }
1526 }
1527 }
1528
1529 if (extra) {
1530 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1531 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1532 atomic_long_read(&c->clean_zn_cnt),
1533 clean_cnt);
1534 return -EINVAL;
1535 }
1536 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1537 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1538 atomic_long_read(&c->dirty_zn_cnt),
1539 dirty_cnt);
1540 return -EINVAL;
1541 }
1542 }
1543
1544 return 0;
1545 }
1546
1547 /**
1548 * dbg_walk_index - walk the on-flash index.
1549 * @c: UBIFS file-system description object
1550 * @leaf_cb: called for each leaf node
1551 * @znode_cb: called for each indexing node
1552 * @priv: private data which is passed to callbacks
1553 *
1554 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1555 * node and @znode_cb for each indexing node. Returns zero in case of success
1556 * and a negative error code in case of failure.
1557 *
1558 * It would be better if this function removed every znode it pulled to into
1559 * the TNC, so that the behavior more closely matched the non-debugging
1560 * behavior.
1561 */
1562 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1563 dbg_znode_callback znode_cb, void *priv)
1564 {
1565 int err;
1566 struct ubifs_zbranch *zbr;
1567 struct ubifs_znode *znode, *child;
1568
1569 mutex_lock(&c->tnc_mutex);
1570 /* If the root indexing node is not in TNC - pull it */
1571 if (!c->zroot.znode) {
1572 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1573 if (IS_ERR(c->zroot.znode)) {
1574 err = PTR_ERR(c->zroot.znode);
1575 c->zroot.znode = NULL;
1576 goto out_unlock;
1577 }
1578 }
1579
1580 /*
1581 * We are going to traverse the indexing tree in the postorder manner.
1582 * Go down and find the leftmost indexing node where we are going to
1583 * start from.
1584 */
1585 znode = c->zroot.znode;
1586 while (znode->level > 0) {
1587 zbr = &znode->zbranch[0];
1588 child = zbr->znode;
1589 if (!child) {
1590 child = ubifs_load_znode(c, zbr, znode, 0);
1591 if (IS_ERR(child)) {
1592 err = PTR_ERR(child);
1593 goto out_unlock;
1594 }
1595 }
1596
1597 znode = child;
1598 }
1599
1600 /* Iterate over all indexing nodes */
1601 while (1) {
1602 int idx;
1603
1604 cond_resched();
1605
1606 if (znode_cb) {
1607 err = znode_cb(c, znode, priv);
1608 if (err) {
1609 ubifs_err(c, "znode checking function returned error %d",
1610 err);
1611 ubifs_dump_znode(c, znode);
1612 goto out_dump;
1613 }
1614 }
1615 if (leaf_cb && znode->level == 0) {
1616 for (idx = 0; idx < znode->child_cnt; idx++) {
1617 zbr = &znode->zbranch[idx];
1618 err = leaf_cb(c, zbr, priv);
1619 if (err) {
1620 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1621 err, zbr->lnum, zbr->offs);
1622 goto out_dump;
1623 }
1624 }
1625 }
1626
1627 if (!znode->parent)
1628 break;
1629
1630 idx = znode->iip + 1;
1631 znode = znode->parent;
1632 if (idx < znode->child_cnt) {
1633 /* Switch to the next index in the parent */
1634 zbr = &znode->zbranch[idx];
1635 child = zbr->znode;
1636 if (!child) {
1637 child = ubifs_load_znode(c, zbr, znode, idx);
1638 if (IS_ERR(child)) {
1639 err = PTR_ERR(child);
1640 goto out_unlock;
1641 }
1642 zbr->znode = child;
1643 }
1644 znode = child;
1645 } else
1646 /*
1647 * This is the last child, switch to the parent and
1648 * continue.
1649 */
1650 continue;
1651
1652 /* Go to the lowest leftmost znode in the new sub-tree */
1653 while (znode->level > 0) {
1654 zbr = &znode->zbranch[0];
1655 child = zbr->znode;
1656 if (!child) {
1657 child = ubifs_load_znode(c, zbr, znode, 0);
1658 if (IS_ERR(child)) {
1659 err = PTR_ERR(child);
1660 goto out_unlock;
1661 }
1662 zbr->znode = child;
1663 }
1664 znode = child;
1665 }
1666 }
1667
1668 mutex_unlock(&c->tnc_mutex);
1669 return 0;
1670
1671 out_dump:
1672 if (znode->parent)
1673 zbr = &znode->parent->zbranch[znode->iip];
1674 else
1675 zbr = &c->zroot;
1676 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677 ubifs_dump_znode(c, znode);
1678 out_unlock:
1679 mutex_unlock(&c->tnc_mutex);
1680 return err;
1681 }
1682
1683 /**
1684 * add_size - add znode size to partially calculated index size.
1685 * @c: UBIFS file-system description object
1686 * @znode: znode to add size for
1687 * @priv: partially calculated index size
1688 *
1689 * This is a helper function for 'dbg_check_idx_size()' which is called for
1690 * every indexing node and adds its size to the 'long long' variable pointed to
1691 * by @priv.
1692 */
1693 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1694 {
1695 long long *idx_size = priv;
1696 int add;
1697
1698 add = ubifs_idx_node_sz(c, znode->child_cnt);
1699 add = ALIGN(add, 8);
1700 *idx_size += add;
1701 return 0;
1702 }
1703
1704 /**
1705 * dbg_check_idx_size - check index size.
1706 * @c: UBIFS file-system description object
1707 * @idx_size: size to check
1708 *
1709 * This function walks the UBIFS index, calculates its size and checks that the
1710 * size is equivalent to @idx_size. Returns zero in case of success and a
1711 * negative error code in case of failure.
1712 */
1713 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1714 {
1715 int err;
1716 long long calc = 0;
1717
1718 if (!dbg_is_chk_index(c))
1719 return 0;
1720
1721 err = dbg_walk_index(c, NULL, add_size, &calc);
1722 if (err) {
1723 ubifs_err(c, "error %d while walking the index", err);
1724 return err;
1725 }
1726
1727 if (calc != idx_size) {
1728 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1729 calc, idx_size);
1730 dump_stack();
1731 return -EINVAL;
1732 }
1733
1734 return 0;
1735 }
1736
1737 /**
1738 * struct fsck_inode - information about an inode used when checking the file-system.
1739 * @rb: link in the RB-tree of inodes
1740 * @inum: inode number
1741 * @mode: inode type, permissions, etc
1742 * @nlink: inode link count
1743 * @xattr_cnt: count of extended attributes
1744 * @references: how many directory/xattr entries refer this inode (calculated
1745 * while walking the index)
1746 * @calc_cnt: for directory inode count of child directories
1747 * @size: inode size (read from on-flash inode)
1748 * @xattr_sz: summary size of all extended attributes (read from on-flash
1749 * inode)
1750 * @calc_sz: for directories calculated directory size
1751 * @calc_xcnt: count of extended attributes
1752 * @calc_xsz: calculated summary size of all extended attributes
1753 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1754 * inode (read from on-flash inode)
1755 * @calc_xnms: calculated sum of lengths of all extended attribute names
1756 */
1757 struct fsck_inode {
1758 struct rb_node rb;
1759 ino_t inum;
1760 umode_t mode;
1761 unsigned int nlink;
1762 unsigned int xattr_cnt;
1763 int references;
1764 int calc_cnt;
1765 long long size;
1766 unsigned int xattr_sz;
1767 long long calc_sz;
1768 long long calc_xcnt;
1769 long long calc_xsz;
1770 unsigned int xattr_nms;
1771 long long calc_xnms;
1772 };
1773
1774 /**
1775 * struct fsck_data - private FS checking information.
1776 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1777 */
1778 struct fsck_data {
1779 struct rb_root inodes;
1780 };
1781
1782 /**
1783 * add_inode - add inode information to RB-tree of inodes.
1784 * @c: UBIFS file-system description object
1785 * @fsckd: FS checking information
1786 * @ino: raw UBIFS inode to add
1787 *
1788 * This is a helper function for 'check_leaf()' which adds information about
1789 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1790 * case of success and a negative error code in case of failure.
1791 */
1792 static struct fsck_inode *add_inode(struct ubifs_info *c,
1793 struct fsck_data *fsckd,
1794 struct ubifs_ino_node *ino)
1795 {
1796 struct rb_node **p, *parent = NULL;
1797 struct fsck_inode *fscki;
1798 ino_t inum = key_inum_flash(c, &ino->key);
1799 struct inode *inode;
1800 struct ubifs_inode *ui;
1801
1802 p = &fsckd->inodes.rb_node;
1803 while (*p) {
1804 parent = *p;
1805 fscki = rb_entry(parent, struct fsck_inode, rb);
1806 if (inum < fscki->inum)
1807 p = &(*p)->rb_left;
1808 else if (inum > fscki->inum)
1809 p = &(*p)->rb_right;
1810 else
1811 return fscki;
1812 }
1813
1814 if (inum > c->highest_inum) {
1815 ubifs_err(c, "too high inode number, max. is %lu",
1816 (unsigned long)c->highest_inum);
1817 return ERR_PTR(-EINVAL);
1818 }
1819
1820 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1821 if (!fscki)
1822 return ERR_PTR(-ENOMEM);
1823
1824 inode = ilookup(c->vfs_sb, inum);
1825
1826 fscki->inum = inum;
1827 /*
1828 * If the inode is present in the VFS inode cache, use it instead of
1829 * the on-flash inode which might be out-of-date. E.g., the size might
1830 * be out-of-date. If we do not do this, the following may happen, for
1831 * example:
1832 * 1. A power cut happens
1833 * 2. We mount the file-system R/O, the replay process fixes up the
1834 * inode size in the VFS cache, but on on-flash.
1835 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1836 * size.
1837 */
1838 if (!inode) {
1839 fscki->nlink = le32_to_cpu(ino->nlink);
1840 fscki->size = le64_to_cpu(ino->size);
1841 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844 fscki->mode = le32_to_cpu(ino->mode);
1845 } else {
1846 ui = ubifs_inode(inode);
1847 fscki->nlink = inode->i_nlink;
1848 fscki->size = inode->i_size;
1849 fscki->xattr_cnt = ui->xattr_cnt;
1850 fscki->xattr_sz = ui->xattr_size;
1851 fscki->xattr_nms = ui->xattr_names;
1852 fscki->mode = inode->i_mode;
1853 iput(inode);
1854 }
1855
1856 if (S_ISDIR(fscki->mode)) {
1857 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1858 fscki->calc_cnt = 2;
1859 }
1860
1861 rb_link_node(&fscki->rb, parent, p);
1862 rb_insert_color(&fscki->rb, &fsckd->inodes);
1863
1864 return fscki;
1865 }
1866
1867 /**
1868 * search_inode - search inode in the RB-tree of inodes.
1869 * @fsckd: FS checking information
1870 * @inum: inode number to search
1871 *
1872 * This is a helper function for 'check_leaf()' which searches inode @inum in
1873 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1874 * the inode was not found.
1875 */
1876 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1877 {
1878 struct rb_node *p;
1879 struct fsck_inode *fscki;
1880
1881 p = fsckd->inodes.rb_node;
1882 while (p) {
1883 fscki = rb_entry(p, struct fsck_inode, rb);
1884 if (inum < fscki->inum)
1885 p = p->rb_left;
1886 else if (inum > fscki->inum)
1887 p = p->rb_right;
1888 else
1889 return fscki;
1890 }
1891 return NULL;
1892 }
1893
1894 /**
1895 * read_add_inode - read inode node and add it to RB-tree of inodes.
1896 * @c: UBIFS file-system description object
1897 * @fsckd: FS checking information
1898 * @inum: inode number to read
1899 *
1900 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1901 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1902 * information pointer in case of success and a negative error code in case of
1903 * failure.
1904 */
1905 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1906 struct fsck_data *fsckd, ino_t inum)
1907 {
1908 int n, err;
1909 union ubifs_key key;
1910 struct ubifs_znode *znode;
1911 struct ubifs_zbranch *zbr;
1912 struct ubifs_ino_node *ino;
1913 struct fsck_inode *fscki;
1914
1915 fscki = search_inode(fsckd, inum);
1916 if (fscki)
1917 return fscki;
1918
1919 ino_key_init(c, &key, inum);
1920 err = ubifs_lookup_level0(c, &key, &znode, &n);
1921 if (!err) {
1922 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1923 return ERR_PTR(-ENOENT);
1924 } else if (err < 0) {
1925 ubifs_err(c, "error %d while looking up inode %lu",
1926 err, (unsigned long)inum);
1927 return ERR_PTR(err);
1928 }
1929
1930 zbr = &znode->zbranch[n];
1931 if (zbr->len < UBIFS_INO_NODE_SZ) {
1932 ubifs_err(c, "bad node %lu node length %d",
1933 (unsigned long)inum, zbr->len);
1934 return ERR_PTR(-EINVAL);
1935 }
1936
1937 ino = kmalloc(zbr->len, GFP_NOFS);
1938 if (!ino)
1939 return ERR_PTR(-ENOMEM);
1940
1941 err = ubifs_tnc_read_node(c, zbr, ino);
1942 if (err) {
1943 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1944 zbr->lnum, zbr->offs, err);
1945 kfree(ino);
1946 return ERR_PTR(err);
1947 }
1948
1949 fscki = add_inode(c, fsckd, ino);
1950 kfree(ino);
1951 if (IS_ERR(fscki)) {
1952 ubifs_err(c, "error %ld while adding inode %lu node",
1953 PTR_ERR(fscki), (unsigned long)inum);
1954 return fscki;
1955 }
1956
1957 return fscki;
1958 }
1959
1960 /**
1961 * check_leaf - check leaf node.
1962 * @c: UBIFS file-system description object
1963 * @zbr: zbranch of the leaf node to check
1964 * @priv: FS checking information
1965 *
1966 * This is a helper function for 'dbg_check_filesystem()' which is called for
1967 * every single leaf node while walking the indexing tree. It checks that the
1968 * leaf node referred from the indexing tree exists, has correct CRC, and does
1969 * some other basic validation. This function is also responsible for building
1970 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1971 * calculates reference count, size, etc for each inode in order to later
1972 * compare them to the information stored inside the inodes and detect possible
1973 * inconsistencies. Returns zero in case of success and a negative error code
1974 * in case of failure.
1975 */
1976 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1977 void *priv)
1978 {
1979 ino_t inum;
1980 void *node;
1981 struct ubifs_ch *ch;
1982 int err, type = key_type(c, &zbr->key);
1983 struct fsck_inode *fscki;
1984
1985 if (zbr->len < UBIFS_CH_SZ) {
1986 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1987 zbr->len, zbr->lnum, zbr->offs);
1988 return -EINVAL;
1989 }
1990
1991 node = kmalloc(zbr->len, GFP_NOFS);
1992 if (!node)
1993 return -ENOMEM;
1994
1995 err = ubifs_tnc_read_node(c, zbr, node);
1996 if (err) {
1997 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1998 zbr->lnum, zbr->offs, err);
1999 goto out_free;
2000 }
2001
2002 /* If this is an inode node, add it to RB-tree of inodes */
2003 if (type == UBIFS_INO_KEY) {
2004 fscki = add_inode(c, priv, node);
2005 if (IS_ERR(fscki)) {
2006 err = PTR_ERR(fscki);
2007 ubifs_err(c, "error %d while adding inode node", err);
2008 goto out_dump;
2009 }
2010 goto out;
2011 }
2012
2013 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2014 type != UBIFS_DATA_KEY) {
2015 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2016 type, zbr->lnum, zbr->offs);
2017 err = -EINVAL;
2018 goto out_free;
2019 }
2020
2021 ch = node;
2022 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2023 ubifs_err(c, "too high sequence number, max. is %llu",
2024 c->max_sqnum);
2025 err = -EINVAL;
2026 goto out_dump;
2027 }
2028
2029 if (type == UBIFS_DATA_KEY) {
2030 long long blk_offs;
2031 struct ubifs_data_node *dn = node;
2032
2033 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2034
2035 /*
2036 * Search the inode node this data node belongs to and insert
2037 * it to the RB-tree of inodes.
2038 */
2039 inum = key_inum_flash(c, &dn->key);
2040 fscki = read_add_inode(c, priv, inum);
2041 if (IS_ERR(fscki)) {
2042 err = PTR_ERR(fscki);
2043 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2044 err, (unsigned long)inum);
2045 goto out_dump;
2046 }
2047
2048 /* Make sure the data node is within inode size */
2049 blk_offs = key_block_flash(c, &dn->key);
2050 blk_offs <<= UBIFS_BLOCK_SHIFT;
2051 blk_offs += le32_to_cpu(dn->size);
2052 if (blk_offs > fscki->size) {
2053 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2054 zbr->lnum, zbr->offs, fscki->size);
2055 err = -EINVAL;
2056 goto out_dump;
2057 }
2058 } else {
2059 int nlen;
2060 struct ubifs_dent_node *dent = node;
2061 struct fsck_inode *fscki1;
2062
2063 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2064
2065 err = ubifs_validate_entry(c, dent);
2066 if (err)
2067 goto out_dump;
2068
2069 /*
2070 * Search the inode node this entry refers to and the parent
2071 * inode node and insert them to the RB-tree of inodes.
2072 */
2073 inum = le64_to_cpu(dent->inum);
2074 fscki = read_add_inode(c, priv, inum);
2075 if (IS_ERR(fscki)) {
2076 err = PTR_ERR(fscki);
2077 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2078 err, (unsigned long)inum);
2079 goto out_dump;
2080 }
2081
2082 /* Count how many direntries or xentries refers this inode */
2083 fscki->references += 1;
2084
2085 inum = key_inum_flash(c, &dent->key);
2086 fscki1 = read_add_inode(c, priv, inum);
2087 if (IS_ERR(fscki1)) {
2088 err = PTR_ERR(fscki1);
2089 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2090 err, (unsigned long)inum);
2091 goto out_dump;
2092 }
2093
2094 nlen = le16_to_cpu(dent->nlen);
2095 if (type == UBIFS_XENT_KEY) {
2096 fscki1->calc_xcnt += 1;
2097 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2098 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2099 fscki1->calc_xnms += nlen;
2100 } else {
2101 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2102 if (dent->type == UBIFS_ITYPE_DIR)
2103 fscki1->calc_cnt += 1;
2104 }
2105 }
2106
2107 out:
2108 kfree(node);
2109 return 0;
2110
2111 out_dump:
2112 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2113 ubifs_dump_node(c, node);
2114 out_free:
2115 kfree(node);
2116 return err;
2117 }
2118
2119 /**
2120 * free_inodes - free RB-tree of inodes.
2121 * @fsckd: FS checking information
2122 */
2123 static void free_inodes(struct fsck_data *fsckd)
2124 {
2125 struct fsck_inode *fscki, *n;
2126
2127 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2128 kfree(fscki);
2129 }
2130
2131 /**
2132 * check_inodes - checks all inodes.
2133 * @c: UBIFS file-system description object
2134 * @fsckd: FS checking information
2135 *
2136 * This is a helper function for 'dbg_check_filesystem()' which walks the
2137 * RB-tree of inodes after the index scan has been finished, and checks that
2138 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2139 * %-EINVAL if not, and a negative error code in case of failure.
2140 */
2141 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2142 {
2143 int n, err;
2144 union ubifs_key key;
2145 struct ubifs_znode *znode;
2146 struct ubifs_zbranch *zbr;
2147 struct ubifs_ino_node *ino;
2148 struct fsck_inode *fscki;
2149 struct rb_node *this = rb_first(&fsckd->inodes);
2150
2151 while (this) {
2152 fscki = rb_entry(this, struct fsck_inode, rb);
2153 this = rb_next(this);
2154
2155 if (S_ISDIR(fscki->mode)) {
2156 /*
2157 * Directories have to have exactly one reference (they
2158 * cannot have hardlinks), although root inode is an
2159 * exception.
2160 */
2161 if (fscki->inum != UBIFS_ROOT_INO &&
2162 fscki->references != 1) {
2163 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2164 (unsigned long)fscki->inum,
2165 fscki->references);
2166 goto out_dump;
2167 }
2168 if (fscki->inum == UBIFS_ROOT_INO &&
2169 fscki->references != 0) {
2170 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2171 (unsigned long)fscki->inum,
2172 fscki->references);
2173 goto out_dump;
2174 }
2175 if (fscki->calc_sz != fscki->size) {
2176 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2177 (unsigned long)fscki->inum,
2178 fscki->size, fscki->calc_sz);
2179 goto out_dump;
2180 }
2181 if (fscki->calc_cnt != fscki->nlink) {
2182 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2183 (unsigned long)fscki->inum,
2184 fscki->nlink, fscki->calc_cnt);
2185 goto out_dump;
2186 }
2187 } else {
2188 if (fscki->references != fscki->nlink) {
2189 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2190 (unsigned long)fscki->inum,
2191 fscki->nlink, fscki->references);
2192 goto out_dump;
2193 }
2194 }
2195 if (fscki->xattr_sz != fscki->calc_xsz) {
2196 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2197 (unsigned long)fscki->inum, fscki->xattr_sz,
2198 fscki->calc_xsz);
2199 goto out_dump;
2200 }
2201 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2202 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2203 (unsigned long)fscki->inum,
2204 fscki->xattr_cnt, fscki->calc_xcnt);
2205 goto out_dump;
2206 }
2207 if (fscki->xattr_nms != fscki->calc_xnms) {
2208 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2209 (unsigned long)fscki->inum, fscki->xattr_nms,
2210 fscki->calc_xnms);
2211 goto out_dump;
2212 }
2213 }
2214
2215 return 0;
2216
2217 out_dump:
2218 /* Read the bad inode and dump it */
2219 ino_key_init(c, &key, fscki->inum);
2220 err = ubifs_lookup_level0(c, &key, &znode, &n);
2221 if (!err) {
2222 ubifs_err(c, "inode %lu not found in index",
2223 (unsigned long)fscki->inum);
2224 return -ENOENT;
2225 } else if (err < 0) {
2226 ubifs_err(c, "error %d while looking up inode %lu",
2227 err, (unsigned long)fscki->inum);
2228 return err;
2229 }
2230
2231 zbr = &znode->zbranch[n];
2232 ino = kmalloc(zbr->len, GFP_NOFS);
2233 if (!ino)
2234 return -ENOMEM;
2235
2236 err = ubifs_tnc_read_node(c, zbr, ino);
2237 if (err) {
2238 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2239 zbr->lnum, zbr->offs, err);
2240 kfree(ino);
2241 return err;
2242 }
2243
2244 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2245 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2246 ubifs_dump_node(c, ino);
2247 kfree(ino);
2248 return -EINVAL;
2249 }
2250
2251 /**
2252 * dbg_check_filesystem - check the file-system.
2253 * @c: UBIFS file-system description object
2254 *
2255 * This function checks the file system, namely:
2256 * o makes sure that all leaf nodes exist and their CRCs are correct;
2257 * o makes sure inode nlink, size, xattr size/count are correct (for all
2258 * inodes).
2259 *
2260 * The function reads whole indexing tree and all nodes, so it is pretty
2261 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2262 * not, and a negative error code in case of failure.
2263 */
2264 int dbg_check_filesystem(struct ubifs_info *c)
2265 {
2266 int err;
2267 struct fsck_data fsckd;
2268
2269 if (!dbg_is_chk_fs(c))
2270 return 0;
2271
2272 fsckd.inodes = RB_ROOT;
2273 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2274 if (err)
2275 goto out_free;
2276
2277 err = check_inodes(c, &fsckd);
2278 if (err)
2279 goto out_free;
2280
2281 free_inodes(&fsckd);
2282 return 0;
2283
2284 out_free:
2285 ubifs_err(c, "file-system check failed with error %d", err);
2286 dump_stack();
2287 free_inodes(&fsckd);
2288 return err;
2289 }
2290
2291 /**
2292 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2293 * @c: UBIFS file-system description object
2294 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2295 *
2296 * This function returns zero if the list of data nodes is sorted correctly,
2297 * and %-EINVAL if not.
2298 */
2299 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2300 {
2301 struct list_head *cur;
2302 struct ubifs_scan_node *sa, *sb;
2303
2304 if (!dbg_is_chk_gen(c))
2305 return 0;
2306
2307 for (cur = head->next; cur->next != head; cur = cur->next) {
2308 ino_t inuma, inumb;
2309 uint32_t blka, blkb;
2310
2311 cond_resched();
2312 sa = container_of(cur, struct ubifs_scan_node, list);
2313 sb = container_of(cur->next, struct ubifs_scan_node, list);
2314
2315 if (sa->type != UBIFS_DATA_NODE) {
2316 ubifs_err(c, "bad node type %d", sa->type);
2317 ubifs_dump_node(c, sa->node);
2318 return -EINVAL;
2319 }
2320 if (sb->type != UBIFS_DATA_NODE) {
2321 ubifs_err(c, "bad node type %d", sb->type);
2322 ubifs_dump_node(c, sb->node);
2323 return -EINVAL;
2324 }
2325
2326 inuma = key_inum(c, &sa->key);
2327 inumb = key_inum(c, &sb->key);
2328
2329 if (inuma < inumb)
2330 continue;
2331 if (inuma > inumb) {
2332 ubifs_err(c, "larger inum %lu goes before inum %lu",
2333 (unsigned long)inuma, (unsigned long)inumb);
2334 goto error_dump;
2335 }
2336
2337 blka = key_block(c, &sa->key);
2338 blkb = key_block(c, &sb->key);
2339
2340 if (blka > blkb) {
2341 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2342 goto error_dump;
2343 }
2344 if (blka == blkb) {
2345 ubifs_err(c, "two data nodes for the same block");
2346 goto error_dump;
2347 }
2348 }
2349
2350 return 0;
2351
2352 error_dump:
2353 ubifs_dump_node(c, sa->node);
2354 ubifs_dump_node(c, sb->node);
2355 return -EINVAL;
2356 }
2357
2358 /**
2359 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2360 * @c: UBIFS file-system description object
2361 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2362 *
2363 * This function returns zero if the list of non-data nodes is sorted correctly,
2364 * and %-EINVAL if not.
2365 */
2366 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2367 {
2368 struct list_head *cur;
2369 struct ubifs_scan_node *sa, *sb;
2370
2371 if (!dbg_is_chk_gen(c))
2372 return 0;
2373
2374 for (cur = head->next; cur->next != head; cur = cur->next) {
2375 ino_t inuma, inumb;
2376 uint32_t hasha, hashb;
2377
2378 cond_resched();
2379 sa = container_of(cur, struct ubifs_scan_node, list);
2380 sb = container_of(cur->next, struct ubifs_scan_node, list);
2381
2382 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2383 sa->type != UBIFS_XENT_NODE) {
2384 ubifs_err(c, "bad node type %d", sa->type);
2385 ubifs_dump_node(c, sa->node);
2386 return -EINVAL;
2387 }
2388 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2389 sb->type != UBIFS_XENT_NODE) {
2390 ubifs_err(c, "bad node type %d", sb->type);
2391 ubifs_dump_node(c, sb->node);
2392 return -EINVAL;
2393 }
2394
2395 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2396 ubifs_err(c, "non-inode node goes before inode node");
2397 goto error_dump;
2398 }
2399
2400 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2401 continue;
2402
2403 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2404 /* Inode nodes are sorted in descending size order */
2405 if (sa->len < sb->len) {
2406 ubifs_err(c, "smaller inode node goes first");
2407 goto error_dump;
2408 }
2409 continue;
2410 }
2411
2412 /*
2413 * This is either a dentry or xentry, which should be sorted in
2414 * ascending (parent ino, hash) order.
2415 */
2416 inuma = key_inum(c, &sa->key);
2417 inumb = key_inum(c, &sb->key);
2418
2419 if (inuma < inumb)
2420 continue;
2421 if (inuma > inumb) {
2422 ubifs_err(c, "larger inum %lu goes before inum %lu",
2423 (unsigned long)inuma, (unsigned long)inumb);
2424 goto error_dump;
2425 }
2426
2427 hasha = key_block(c, &sa->key);
2428 hashb = key_block(c, &sb->key);
2429
2430 if (hasha > hashb) {
2431 ubifs_err(c, "larger hash %u goes before %u",
2432 hasha, hashb);
2433 goto error_dump;
2434 }
2435 }
2436
2437 return 0;
2438
2439 error_dump:
2440 ubifs_msg(c, "dumping first node");
2441 ubifs_dump_node(c, sa->node);
2442 ubifs_msg(c, "dumping second node");
2443 ubifs_dump_node(c, sb->node);
2444 return -EINVAL;
2445 return 0;
2446 }
2447
2448 static inline int chance(unsigned int n, unsigned int out_of)
2449 {
2450 return !!((prandom_u32() % out_of) + 1 <= n);
2451
2452 }
2453
2454 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2455 {
2456 struct ubifs_debug_info *d = c->dbg;
2457
2458 ubifs_assert(c, dbg_is_tst_rcvry(c));
2459
2460 if (!d->pc_cnt) {
2461 /* First call - decide delay to the power cut */
2462 if (chance(1, 2)) {
2463 unsigned long delay;
2464
2465 if (chance(1, 2)) {
2466 d->pc_delay = 1;
2467 /* Fail within 1 minute */
2468 delay = prandom_u32() % 60000;
2469 d->pc_timeout = jiffies;
2470 d->pc_timeout += msecs_to_jiffies(delay);
2471 ubifs_warn(c, "failing after %lums", delay);
2472 } else {
2473 d->pc_delay = 2;
2474 delay = prandom_u32() % 10000;
2475 /* Fail within 10000 operations */
2476 d->pc_cnt_max = delay;
2477 ubifs_warn(c, "failing after %lu calls", delay);
2478 }
2479 }
2480
2481 d->pc_cnt += 1;
2482 }
2483
2484 /* Determine if failure delay has expired */
2485 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2486 return 0;
2487 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2488 return 0;
2489
2490 if (lnum == UBIFS_SB_LNUM) {
2491 if (write && chance(1, 2))
2492 return 0;
2493 if (chance(19, 20))
2494 return 0;
2495 ubifs_warn(c, "failing in super block LEB %d", lnum);
2496 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2497 if (chance(19, 20))
2498 return 0;
2499 ubifs_warn(c, "failing in master LEB %d", lnum);
2500 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2501 if (write && chance(99, 100))
2502 return 0;
2503 if (chance(399, 400))
2504 return 0;
2505 ubifs_warn(c, "failing in log LEB %d", lnum);
2506 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2507 if (write && chance(7, 8))
2508 return 0;
2509 if (chance(19, 20))
2510 return 0;
2511 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2512 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2513 if (write && chance(1, 2))
2514 return 0;
2515 if (chance(9, 10))
2516 return 0;
2517 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2518 } else if (lnum == c->ihead_lnum) {
2519 if (chance(99, 100))
2520 return 0;
2521 ubifs_warn(c, "failing in index head LEB %d", lnum);
2522 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2523 if (chance(9, 10))
2524 return 0;
2525 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2526 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2527 !ubifs_search_bud(c, lnum)) {
2528 if (chance(19, 20))
2529 return 0;
2530 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2531 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2532 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2533 if (chance(999, 1000))
2534 return 0;
2535 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2536 } else {
2537 if (chance(9999, 10000))
2538 return 0;
2539 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2540 }
2541
2542 d->pc_happened = 1;
2543 ubifs_warn(c, "========== Power cut emulated ==========");
2544 dump_stack();
2545 return 1;
2546 }
2547
2548 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2549 unsigned int len)
2550 {
2551 unsigned int from, to, ffs = chance(1, 2);
2552 unsigned char *p = (void *)buf;
2553
2554 from = prandom_u32() % len;
2555 /* Corruption span max to end of write unit */
2556 to = min(len, ALIGN(from + 1, c->max_write_size));
2557
2558 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2559 ffs ? "0xFFs" : "random data");
2560
2561 if (ffs)
2562 memset(p + from, 0xFF, to - from);
2563 else
2564 prandom_bytes(p + from, to - from);
2565
2566 return to;
2567 }
2568
2569 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2570 int offs, int len)
2571 {
2572 int err, failing;
2573
2574 if (dbg_is_power_cut(c))
2575 return -EROFS;
2576
2577 failing = power_cut_emulated(c, lnum, 1);
2578 if (failing) {
2579 len = corrupt_data(c, buf, len);
2580 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2581 len, lnum, offs);
2582 }
2583 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2584 if (err)
2585 return err;
2586 if (failing)
2587 return -EROFS;
2588 return 0;
2589 }
2590
2591 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2592 int len)
2593 {
2594 int err;
2595
2596 if (dbg_is_power_cut(c))
2597 return -EROFS;
2598 if (power_cut_emulated(c, lnum, 1))
2599 return -EROFS;
2600 err = ubi_leb_change(c->ubi, lnum, buf, len);
2601 if (err)
2602 return err;
2603 if (power_cut_emulated(c, lnum, 1))
2604 return -EROFS;
2605 return 0;
2606 }
2607
2608 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2609 {
2610 int err;
2611
2612 if (dbg_is_power_cut(c))
2613 return -EROFS;
2614 if (power_cut_emulated(c, lnum, 0))
2615 return -EROFS;
2616 err = ubi_leb_unmap(c->ubi, lnum);
2617 if (err)
2618 return err;
2619 if (power_cut_emulated(c, lnum, 0))
2620 return -EROFS;
2621 return 0;
2622 }
2623
2624 int dbg_leb_map(struct ubifs_info *c, int lnum)
2625 {
2626 int err;
2627
2628 if (dbg_is_power_cut(c))
2629 return -EROFS;
2630 if (power_cut_emulated(c, lnum, 0))
2631 return -EROFS;
2632 err = ubi_leb_map(c->ubi, lnum);
2633 if (err)
2634 return err;
2635 if (power_cut_emulated(c, lnum, 0))
2636 return -EROFS;
2637 return 0;
2638 }
2639
2640 /*
2641 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2642 * contain the stuff specific to particular file-system mounts.
2643 */
2644 static struct dentry *dfs_rootdir;
2645
2646 static int dfs_file_open(struct inode *inode, struct file *file)
2647 {
2648 file->private_data = inode->i_private;
2649 return nonseekable_open(inode, file);
2650 }
2651
2652 /**
2653 * provide_user_output - provide output to the user reading a debugfs file.
2654 * @val: boolean value for the answer
2655 * @u: the buffer to store the answer at
2656 * @count: size of the buffer
2657 * @ppos: position in the @u output buffer
2658 *
2659 * This is a simple helper function which stores @val boolean value in the user
2660 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2661 * bytes written to @u in case of success and a negative error code in case of
2662 * failure.
2663 */
2664 static int provide_user_output(int val, char __user *u, size_t count,
2665 loff_t *ppos)
2666 {
2667 char buf[3];
2668
2669 if (val)
2670 buf[0] = '1';
2671 else
2672 buf[0] = '0';
2673 buf[1] = '\n';
2674 buf[2] = 0x00;
2675
2676 return simple_read_from_buffer(u, count, ppos, buf, 2);
2677 }
2678
2679 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2680 loff_t *ppos)
2681 {
2682 struct dentry *dent = file->f_path.dentry;
2683 struct ubifs_info *c = file->private_data;
2684 struct ubifs_debug_info *d = c->dbg;
2685 int val;
2686
2687 if (dent == d->dfs_chk_gen)
2688 val = d->chk_gen;
2689 else if (dent == d->dfs_chk_index)
2690 val = d->chk_index;
2691 else if (dent == d->dfs_chk_orph)
2692 val = d->chk_orph;
2693 else if (dent == d->dfs_chk_lprops)
2694 val = d->chk_lprops;
2695 else if (dent == d->dfs_chk_fs)
2696 val = d->chk_fs;
2697 else if (dent == d->dfs_tst_rcvry)
2698 val = d->tst_rcvry;
2699 else if (dent == d->dfs_ro_error)
2700 val = c->ro_error;
2701 else
2702 return -EINVAL;
2703
2704 return provide_user_output(val, u, count, ppos);
2705 }
2706
2707 /**
2708 * interpret_user_input - interpret user debugfs file input.
2709 * @u: user-provided buffer with the input
2710 * @count: buffer size
2711 *
2712 * This is a helper function which interpret user input to a boolean UBIFS
2713 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2714 * in case of failure.
2715 */
2716 static int interpret_user_input(const char __user *u, size_t count)
2717 {
2718 size_t buf_size;
2719 char buf[8];
2720
2721 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2722 if (copy_from_user(buf, u, buf_size))
2723 return -EFAULT;
2724
2725 if (buf[0] == '1')
2726 return 1;
2727 else if (buf[0] == '0')
2728 return 0;
2729
2730 return -EINVAL;
2731 }
2732
2733 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2734 size_t count, loff_t *ppos)
2735 {
2736 struct ubifs_info *c = file->private_data;
2737 struct ubifs_debug_info *d = c->dbg;
2738 struct dentry *dent = file->f_path.dentry;
2739 int val;
2740
2741 if (file->f_path.dentry == d->dfs_dump_lprops) {
2742 ubifs_dump_lprops(c);
2743 return count;
2744 }
2745 if (file->f_path.dentry == d->dfs_dump_budg) {
2746 ubifs_dump_budg(c, &c->bi);
2747 return count;
2748 }
2749 if (file->f_path.dentry == d->dfs_dump_tnc) {
2750 mutex_lock(&c->tnc_mutex);
2751 ubifs_dump_tnc(c);
2752 mutex_unlock(&c->tnc_mutex);
2753 return count;
2754 }
2755
2756 val = interpret_user_input(u, count);
2757 if (val < 0)
2758 return val;
2759
2760 if (dent == d->dfs_chk_gen)
2761 d->chk_gen = val;
2762 else if (dent == d->dfs_chk_index)
2763 d->chk_index = val;
2764 else if (dent == d->dfs_chk_orph)
2765 d->chk_orph = val;
2766 else if (dent == d->dfs_chk_lprops)
2767 d->chk_lprops = val;
2768 else if (dent == d->dfs_chk_fs)
2769 d->chk_fs = val;
2770 else if (dent == d->dfs_tst_rcvry)
2771 d->tst_rcvry = val;
2772 else if (dent == d->dfs_ro_error)
2773 c->ro_error = !!val;
2774 else
2775 return -EINVAL;
2776
2777 return count;
2778 }
2779
2780 static const struct file_operations dfs_fops = {
2781 .open = dfs_file_open,
2782 .read = dfs_file_read,
2783 .write = dfs_file_write,
2784 .owner = THIS_MODULE,
2785 .llseek = no_llseek,
2786 };
2787
2788 /**
2789 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2790 * @c: UBIFS file-system description object
2791 *
2792 * This function creates all debugfs files for this instance of UBIFS.
2793 *
2794 * Note, the only reason we have not merged this function with the
2795 * 'ubifs_debugging_init()' function is because it is better to initialize
2796 * debugfs interfaces at the very end of the mount process, and remove them at
2797 * the very beginning of the mount process.
2798 */
2799 void dbg_debugfs_init_fs(struct ubifs_info *c)
2800 {
2801 int n;
2802 const char *fname;
2803 struct ubifs_debug_info *d = c->dbg;
2804
2805 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2806 c->vi.ubi_num, c->vi.vol_id);
2807 if (n == UBIFS_DFS_DIR_LEN) {
2808 /* The array size is too small */
2809 return;
2810 }
2811
2812 fname = d->dfs_dir_name;
2813 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2814
2815 fname = "dump_lprops";
2816 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2817 &dfs_fops);
2818
2819 fname = "dump_budg";
2820 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2821 &dfs_fops);
2822
2823 fname = "dump_tnc";
2824 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2825 &dfs_fops);
2826
2827 fname = "chk_general";
2828 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2829 d->dfs_dir, c, &dfs_fops);
2830
2831 fname = "chk_index";
2832 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2833 d->dfs_dir, c, &dfs_fops);
2834
2835 fname = "chk_orphans";
2836 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2837 d->dfs_dir, c, &dfs_fops);
2838
2839 fname = "chk_lprops";
2840 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2841 d->dfs_dir, c, &dfs_fops);
2842
2843 fname = "chk_fs";
2844 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2845 d->dfs_dir, c, &dfs_fops);
2846
2847 fname = "tst_recovery";
2848 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849 d->dfs_dir, c, &dfs_fops);
2850
2851 fname = "ro_error";
2852 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 d->dfs_dir, c, &dfs_fops);
2854 }
2855
2856 /**
2857 * dbg_debugfs_exit_fs - remove all debugfs files.
2858 * @c: UBIFS file-system description object
2859 */
2860 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2861 {
2862 debugfs_remove_recursive(c->dbg->dfs_dir);
2863 }
2864
2865 struct ubifs_global_debug_info ubifs_dbg;
2866
2867 static struct dentry *dfs_chk_gen;
2868 static struct dentry *dfs_chk_index;
2869 static struct dentry *dfs_chk_orph;
2870 static struct dentry *dfs_chk_lprops;
2871 static struct dentry *dfs_chk_fs;
2872 static struct dentry *dfs_tst_rcvry;
2873
2874 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2875 size_t count, loff_t *ppos)
2876 {
2877 struct dentry *dent = file->f_path.dentry;
2878 int val;
2879
2880 if (dent == dfs_chk_gen)
2881 val = ubifs_dbg.chk_gen;
2882 else if (dent == dfs_chk_index)
2883 val = ubifs_dbg.chk_index;
2884 else if (dent == dfs_chk_orph)
2885 val = ubifs_dbg.chk_orph;
2886 else if (dent == dfs_chk_lprops)
2887 val = ubifs_dbg.chk_lprops;
2888 else if (dent == dfs_chk_fs)
2889 val = ubifs_dbg.chk_fs;
2890 else if (dent == dfs_tst_rcvry)
2891 val = ubifs_dbg.tst_rcvry;
2892 else
2893 return -EINVAL;
2894
2895 return provide_user_output(val, u, count, ppos);
2896 }
2897
2898 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2899 size_t count, loff_t *ppos)
2900 {
2901 struct dentry *dent = file->f_path.dentry;
2902 int val;
2903
2904 val = interpret_user_input(u, count);
2905 if (val < 0)
2906 return val;
2907
2908 if (dent == dfs_chk_gen)
2909 ubifs_dbg.chk_gen = val;
2910 else if (dent == dfs_chk_index)
2911 ubifs_dbg.chk_index = val;
2912 else if (dent == dfs_chk_orph)
2913 ubifs_dbg.chk_orph = val;
2914 else if (dent == dfs_chk_lprops)
2915 ubifs_dbg.chk_lprops = val;
2916 else if (dent == dfs_chk_fs)
2917 ubifs_dbg.chk_fs = val;
2918 else if (dent == dfs_tst_rcvry)
2919 ubifs_dbg.tst_rcvry = val;
2920 else
2921 return -EINVAL;
2922
2923 return count;
2924 }
2925
2926 static const struct file_operations dfs_global_fops = {
2927 .read = dfs_global_file_read,
2928 .write = dfs_global_file_write,
2929 .owner = THIS_MODULE,
2930 .llseek = no_llseek,
2931 };
2932
2933 /**
2934 * dbg_debugfs_init - initialize debugfs file-system.
2935 *
2936 * UBIFS uses debugfs file-system to expose various debugging knobs to
2937 * user-space. This function creates "ubifs" directory in the debugfs
2938 * file-system.
2939 */
2940 void dbg_debugfs_init(void)
2941 {
2942 const char *fname;
2943
2944 fname = "ubifs";
2945 dfs_rootdir = debugfs_create_dir(fname, NULL);
2946
2947 fname = "chk_general";
2948 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2949 NULL, &dfs_global_fops);
2950
2951 fname = "chk_index";
2952 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2953 dfs_rootdir, NULL, &dfs_global_fops);
2954
2955 fname = "chk_orphans";
2956 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2957 dfs_rootdir, NULL, &dfs_global_fops);
2958
2959 fname = "chk_lprops";
2960 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2961 dfs_rootdir, NULL, &dfs_global_fops);
2962
2963 fname = "chk_fs";
2964 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2965 NULL, &dfs_global_fops);
2966
2967 fname = "tst_recovery";
2968 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2969 dfs_rootdir, NULL, &dfs_global_fops);
2970 }
2971
2972 /**
2973 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2974 */
2975 void dbg_debugfs_exit(void)
2976 {
2977 debugfs_remove_recursive(dfs_rootdir);
2978 }
2979
2980 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2981 const char *file, int line)
2982 {
2983 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2984
2985 switch (c->assert_action) {
2986 case ASSACT_PANIC:
2987 BUG();
2988 break;
2989
2990 case ASSACT_RO:
2991 ubifs_ro_mode(c, -EINVAL);
2992 break;
2993
2994 case ASSACT_REPORT:
2995 default:
2996 dump_stack();
2997 break;
2998
2999 }
3000 }
3001
3002 /**
3003 * ubifs_debugging_init - initialize UBIFS debugging.
3004 * @c: UBIFS file-system description object
3005 *
3006 * This function initializes debugging-related data for the file system.
3007 * Returns zero in case of success and a negative error code in case of
3008 * failure.
3009 */
3010 int ubifs_debugging_init(struct ubifs_info *c)
3011 {
3012 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3013 if (!c->dbg)
3014 return -ENOMEM;
3015
3016 return 0;
3017 }
3018
3019 /**
3020 * ubifs_debugging_exit - free debugging data.
3021 * @c: UBIFS file-system description object
3022 */
3023 void ubifs_debugging_exit(struct ubifs_info *c)
3024 {
3025 kfree(c->dbg);
3026 }