]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ubifs/gc.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / fs / ubifs / gc.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
34 *
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
43 *
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
54 */
55
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60
61 /*
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 * may move.
65 */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68
69 /**
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
76 *
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
80 */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 int err, gc_lnum = c->gc_lnum;
84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85
86 ubifs_assert(c, gc_lnum != -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 c->leb_size - wbuf->offs - wbuf->used);
90
91 err = ubifs_wbuf_sync_nolock(wbuf);
92 if (err)
93 return err;
94
95 /*
96 * The GC write-buffer was synchronized, we may safely unmap
97 * 'c->gc_lnum'.
98 */
99 err = ubifs_leb_unmap(c, gc_lnum);
100 if (err)
101 return err;
102
103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 if (err)
105 return err;
106
107 c->gc_lnum = -1;
108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
109 return err;
110 }
111
112 /**
113 * data_nodes_cmp - compare 2 data nodes.
114 * @priv: UBIFS file-system description object
115 * @a: first data node
116 * @b: second data node
117 *
118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
119 * inode or block number, and %-1 otherwise.
120 */
121 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 {
123 ino_t inuma, inumb;
124 struct ubifs_info *c = priv;
125 struct ubifs_scan_node *sa, *sb;
126
127 cond_resched();
128 if (a == b)
129 return 0;
130
131 sa = list_entry(a, struct ubifs_scan_node, list);
132 sb = list_entry(b, struct ubifs_scan_node, list);
133
134 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY);
135 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY);
136 ubifs_assert(c, sa->type == UBIFS_DATA_NODE);
137 ubifs_assert(c, sb->type == UBIFS_DATA_NODE);
138
139 inuma = key_inum(c, &sa->key);
140 inumb = key_inum(c, &sb->key);
141
142 if (inuma == inumb) {
143 unsigned int blka = key_block(c, &sa->key);
144 unsigned int blkb = key_block(c, &sb->key);
145
146 if (blka <= blkb)
147 return -1;
148 } else if (inuma <= inumb)
149 return -1;
150
151 return 1;
152 }
153
154 /*
155 * nondata_nodes_cmp - compare 2 non-data nodes.
156 * @priv: UBIFS file-system description object
157 * @a: first node
158 * @a: second node
159 *
160 * This function compares nodes @a and @b. It makes sure that inode nodes go
161 * first and sorted by length in descending order. Directory entry nodes go
162 * after inode nodes and are sorted in ascending hash valuer order.
163 */
164 static int nondata_nodes_cmp(void *priv, struct list_head *a,
165 struct list_head *b)
166 {
167 ino_t inuma, inumb;
168 struct ubifs_info *c = priv;
169 struct ubifs_scan_node *sa, *sb;
170
171 cond_resched();
172 if (a == b)
173 return 0;
174
175 sa = list_entry(a, struct ubifs_scan_node, list);
176 sb = list_entry(b, struct ubifs_scan_node, list);
177
178 ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY &&
179 key_type(c, &sb->key) != UBIFS_DATA_KEY);
180 ubifs_assert(c, sa->type != UBIFS_DATA_NODE &&
181 sb->type != UBIFS_DATA_NODE);
182
183 /* Inodes go before directory entries */
184 if (sa->type == UBIFS_INO_NODE) {
185 if (sb->type == UBIFS_INO_NODE)
186 return sb->len - sa->len;
187 return -1;
188 }
189 if (sb->type == UBIFS_INO_NODE)
190 return 1;
191
192 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY ||
193 key_type(c, &sa->key) == UBIFS_XENT_KEY);
194 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY ||
195 key_type(c, &sb->key) == UBIFS_XENT_KEY);
196 ubifs_assert(c, sa->type == UBIFS_DENT_NODE ||
197 sa->type == UBIFS_XENT_NODE);
198 ubifs_assert(c, sb->type == UBIFS_DENT_NODE ||
199 sb->type == UBIFS_XENT_NODE);
200
201 inuma = key_inum(c, &sa->key);
202 inumb = key_inum(c, &sb->key);
203
204 if (inuma == inumb) {
205 uint32_t hasha = key_hash(c, &sa->key);
206 uint32_t hashb = key_hash(c, &sb->key);
207
208 if (hasha <= hashb)
209 return -1;
210 } else if (inuma <= inumb)
211 return -1;
212
213 return 1;
214 }
215
216 /**
217 * sort_nodes - sort nodes for GC.
218 * @c: UBIFS file-system description object
219 * @sleb: describes nodes to sort and contains the result on exit
220 * @nondata: contains non-data nodes on exit
221 * @min: minimum node size is returned here
222 *
223 * This function sorts the list of inodes to garbage collect. First of all, it
224 * kills obsolete nodes and separates data and non-data nodes to the
225 * @sleb->nodes and @nondata lists correspondingly.
226 *
227 * Data nodes are then sorted in block number order - this is important for
228 * bulk-read; data nodes with lower inode number go before data nodes with
229 * higher inode number, and data nodes with lower block number go before data
230 * nodes with higher block number;
231 *
232 * Non-data nodes are sorted as follows.
233 * o First go inode nodes - they are sorted in descending length order.
234 * o Then go directory entry nodes - they are sorted in hash order, which
235 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
236 * inode number go before direntry nodes with higher parent inode number,
237 * and direntry nodes with lower name hash values go before direntry nodes
238 * with higher name hash values.
239 *
240 * This function returns zero in case of success and a negative error code in
241 * case of failure.
242 */
243 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
244 struct list_head *nondata, int *min)
245 {
246 int err;
247 struct ubifs_scan_node *snod, *tmp;
248
249 *min = INT_MAX;
250
251 /* Separate data nodes and non-data nodes */
252 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
253 ubifs_assert(c, snod->type == UBIFS_INO_NODE ||
254 snod->type == UBIFS_DATA_NODE ||
255 snod->type == UBIFS_DENT_NODE ||
256 snod->type == UBIFS_XENT_NODE ||
257 snod->type == UBIFS_TRUN_NODE ||
258 snod->type == UBIFS_AUTH_NODE);
259
260 if (snod->type != UBIFS_INO_NODE &&
261 snod->type != UBIFS_DATA_NODE &&
262 snod->type != UBIFS_DENT_NODE &&
263 snod->type != UBIFS_XENT_NODE) {
264 /* Probably truncation node, zap it */
265 list_del(&snod->list);
266 kfree(snod);
267 continue;
268 }
269
270 ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY ||
271 key_type(c, &snod->key) == UBIFS_INO_KEY ||
272 key_type(c, &snod->key) == UBIFS_DENT_KEY ||
273 key_type(c, &snod->key) == UBIFS_XENT_KEY);
274
275 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
276 snod->offs, 0);
277 if (err < 0)
278 return err;
279
280 if (!err) {
281 /* The node is obsolete, remove it from the list */
282 list_del(&snod->list);
283 kfree(snod);
284 continue;
285 }
286
287 if (snod->len < *min)
288 *min = snod->len;
289
290 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
291 list_move_tail(&snod->list, nondata);
292 }
293
294 /* Sort data and non-data nodes */
295 list_sort(c, &sleb->nodes, &data_nodes_cmp);
296 list_sort(c, nondata, &nondata_nodes_cmp);
297
298 err = dbg_check_data_nodes_order(c, &sleb->nodes);
299 if (err)
300 return err;
301 err = dbg_check_nondata_nodes_order(c, nondata);
302 if (err)
303 return err;
304 return 0;
305 }
306
307 /**
308 * move_node - move a node.
309 * @c: UBIFS file-system description object
310 * @sleb: describes the LEB to move nodes from
311 * @snod: the mode to move
312 * @wbuf: write-buffer to move node to
313 *
314 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
315 * destroys @snod. Returns zero in case of success and a negative error code in
316 * case of failure.
317 */
318 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
319 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
320 {
321 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
322
323 cond_resched();
324 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
325 if (err)
326 return err;
327
328 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
329 snod->offs, new_lnum, new_offs,
330 snod->len);
331 list_del(&snod->list);
332 kfree(snod);
333 return err;
334 }
335
336 /**
337 * move_nodes - move nodes.
338 * @c: UBIFS file-system description object
339 * @sleb: describes the LEB to move nodes from
340 *
341 * This function moves valid nodes from data LEB described by @sleb to the GC
342 * journal head. This function returns zero in case of success, %-EAGAIN if
343 * commit is required, and other negative error codes in case of other
344 * failures.
345 */
346 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
347 {
348 int err, min;
349 LIST_HEAD(nondata);
350 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
351
352 if (wbuf->lnum == -1) {
353 /*
354 * The GC journal head is not set, because it is the first GC
355 * invocation since mount.
356 */
357 err = switch_gc_head(c);
358 if (err)
359 return err;
360 }
361
362 err = sort_nodes(c, sleb, &nondata, &min);
363 if (err)
364 goto out;
365
366 /* Write nodes to their new location. Use the first-fit strategy */
367 while (1) {
368 int avail, moved = 0;
369 struct ubifs_scan_node *snod, *tmp;
370
371 /* Move data nodes */
372 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
373 avail = c->leb_size - wbuf->offs - wbuf->used -
374 ubifs_auth_node_sz(c);
375 if (snod->len > avail)
376 /*
377 * Do not skip data nodes in order to optimize
378 * bulk-read.
379 */
380 break;
381
382 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
383 snod->node, snod->len);
384 if (err)
385 goto out;
386
387 err = move_node(c, sleb, snod, wbuf);
388 if (err)
389 goto out;
390 moved = 1;
391 }
392
393 /* Move non-data nodes */
394 list_for_each_entry_safe(snod, tmp, &nondata, list) {
395 avail = c->leb_size - wbuf->offs - wbuf->used -
396 ubifs_auth_node_sz(c);
397 if (avail < min)
398 break;
399
400 if (snod->len > avail) {
401 /*
402 * Keep going only if this is an inode with
403 * some data. Otherwise stop and switch the GC
404 * head. IOW, we assume that data-less inode
405 * nodes and direntry nodes are roughly of the
406 * same size.
407 */
408 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
409 snod->len == UBIFS_INO_NODE_SZ)
410 break;
411 continue;
412 }
413
414 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
415 snod->node, snod->len);
416 if (err)
417 goto out;
418
419 err = move_node(c, sleb, snod, wbuf);
420 if (err)
421 goto out;
422 moved = 1;
423 }
424
425 if (ubifs_authenticated(c) && moved) {
426 struct ubifs_auth_node *auth;
427
428 auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS);
429 if (!auth) {
430 err = -ENOMEM;
431 goto out;
432 }
433
434 err = ubifs_prepare_auth_node(c, auth,
435 c->jheads[GCHD].log_hash);
436 if (err) {
437 kfree(auth);
438 goto out;
439 }
440
441 err = ubifs_wbuf_write_nolock(wbuf, auth,
442 ubifs_auth_node_sz(c));
443 if (err) {
444 kfree(auth);
445 goto out;
446 }
447
448 ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c));
449 }
450
451 if (list_empty(&sleb->nodes) && list_empty(&nondata))
452 break;
453
454 /*
455 * Waste the rest of the space in the LEB and switch to the
456 * next LEB.
457 */
458 err = switch_gc_head(c);
459 if (err)
460 goto out;
461 }
462
463 return 0;
464
465 out:
466 list_splice_tail(&nondata, &sleb->nodes);
467 return err;
468 }
469
470 /**
471 * gc_sync_wbufs - sync write-buffers for GC.
472 * @c: UBIFS file-system description object
473 *
474 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
475 * be in a write-buffer instead. That is, a node could be written to a
476 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
477 * erased before the write-buffer is sync'd and then there is an unclean
478 * unmount, then an existing node is lost. To avoid this, we sync all
479 * write-buffers.
480 *
481 * This function returns %0 on success or a negative error code on failure.
482 */
483 static int gc_sync_wbufs(struct ubifs_info *c)
484 {
485 int err, i;
486
487 for (i = 0; i < c->jhead_cnt; i++) {
488 if (i == GCHD)
489 continue;
490 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
491 if (err)
492 return err;
493 }
494 return 0;
495 }
496
497 /**
498 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
499 * @c: UBIFS file-system description object
500 * @lp: describes the LEB to garbage collect
501 *
502 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
503 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
504 * required, and other negative error codes in case of failures.
505 */
506 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
507 {
508 struct ubifs_scan_leb *sleb;
509 struct ubifs_scan_node *snod;
510 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
511 int err = 0, lnum = lp->lnum;
512
513 ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
514 c->need_recovery);
515 ubifs_assert(c, c->gc_lnum != lnum);
516 ubifs_assert(c, wbuf->lnum != lnum);
517
518 if (lp->free + lp->dirty == c->leb_size) {
519 /* Special case - a free LEB */
520 dbg_gc("LEB %d is free, return it", lp->lnum);
521 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
522
523 if (lp->free != c->leb_size) {
524 /*
525 * Write buffers must be sync'd before unmapping
526 * freeable LEBs, because one of them may contain data
527 * which obsoletes something in 'lp->lnum'.
528 */
529 err = gc_sync_wbufs(c);
530 if (err)
531 return err;
532 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
533 0, 0, 0, 0);
534 if (err)
535 return err;
536 }
537 err = ubifs_leb_unmap(c, lp->lnum);
538 if (err)
539 return err;
540
541 if (c->gc_lnum == -1) {
542 c->gc_lnum = lnum;
543 return LEB_RETAINED;
544 }
545
546 return LEB_FREED;
547 }
548
549 /*
550 * We scan the entire LEB even though we only really need to scan up to
551 * (c->leb_size - lp->free).
552 */
553 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
554 if (IS_ERR(sleb))
555 return PTR_ERR(sleb);
556
557 ubifs_assert(c, !list_empty(&sleb->nodes));
558 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
559
560 if (snod->type == UBIFS_IDX_NODE) {
561 struct ubifs_gced_idx_leb *idx_gc;
562
563 dbg_gc("indexing LEB %d (free %d, dirty %d)",
564 lnum, lp->free, lp->dirty);
565 list_for_each_entry(snod, &sleb->nodes, list) {
566 struct ubifs_idx_node *idx = snod->node;
567 int level = le16_to_cpu(idx->level);
568
569 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
570 key_read(c, ubifs_idx_key(c, idx), &snod->key);
571 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
572 snod->offs);
573 if (err)
574 goto out;
575 }
576
577 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
578 if (!idx_gc) {
579 err = -ENOMEM;
580 goto out;
581 }
582
583 idx_gc->lnum = lnum;
584 idx_gc->unmap = 0;
585 list_add(&idx_gc->list, &c->idx_gc);
586
587 /*
588 * Don't release the LEB until after the next commit, because
589 * it may contain data which is needed for recovery. So
590 * although we freed this LEB, it will become usable only after
591 * the commit.
592 */
593 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
594 LPROPS_INDEX, 1);
595 if (err)
596 goto out;
597 err = LEB_FREED_IDX;
598 } else {
599 dbg_gc("data LEB %d (free %d, dirty %d)",
600 lnum, lp->free, lp->dirty);
601
602 err = move_nodes(c, sleb);
603 if (err)
604 goto out_inc_seq;
605
606 err = gc_sync_wbufs(c);
607 if (err)
608 goto out_inc_seq;
609
610 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
611 if (err)
612 goto out_inc_seq;
613
614 /* Allow for races with TNC */
615 c->gced_lnum = lnum;
616 smp_wmb();
617 c->gc_seq += 1;
618 smp_wmb();
619
620 if (c->gc_lnum == -1) {
621 c->gc_lnum = lnum;
622 err = LEB_RETAINED;
623 } else {
624 err = ubifs_wbuf_sync_nolock(wbuf);
625 if (err)
626 goto out;
627
628 err = ubifs_leb_unmap(c, lnum);
629 if (err)
630 goto out;
631
632 err = LEB_FREED;
633 }
634 }
635
636 out:
637 ubifs_scan_destroy(sleb);
638 return err;
639
640 out_inc_seq:
641 /* We may have moved at least some nodes so allow for races with TNC */
642 c->gced_lnum = lnum;
643 smp_wmb();
644 c->gc_seq += 1;
645 smp_wmb();
646 goto out;
647 }
648
649 /**
650 * ubifs_garbage_collect - UBIFS garbage collector.
651 * @c: UBIFS file-system description object
652 * @anyway: do GC even if there are free LEBs
653 *
654 * This function does out-of-place garbage collection. The return codes are:
655 * o positive LEB number if the LEB has been freed and may be used;
656 * o %-EAGAIN if the caller has to run commit;
657 * o %-ENOSPC if GC failed to make any progress;
658 * o other negative error codes in case of other errors.
659 *
660 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
661 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
662 * commit may be required. But commit cannot be run from inside GC, because the
663 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
664 * And this error code means that the caller has to run commit, and re-run GC
665 * if there is still no free space.
666 *
667 * There are many reasons why this function may return %-EAGAIN:
668 * o the log is full and there is no space to write an LEB reference for
669 * @c->gc_lnum;
670 * o the journal is too large and exceeds size limitations;
671 * o GC moved indexing LEBs, but they can be used only after the commit;
672 * o the shrinker fails to find clean znodes to free and requests the commit;
673 * o etc.
674 *
675 * Note, if the file-system is close to be full, this function may return
676 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
677 * the function. E.g., this happens if the limits on the journal size are too
678 * tough and GC writes too much to the journal before an LEB is freed. This
679 * might also mean that the journal is too large, and the TNC becomes to big,
680 * so that the shrinker is constantly called, finds not clean znodes to free,
681 * and requests commit. Well, this may also happen if the journal is all right,
682 * but another kernel process consumes too much memory. Anyway, infinite
683 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
684 */
685 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
686 {
687 int i, err, ret, min_space = c->dead_wm;
688 struct ubifs_lprops lp;
689 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
690
691 ubifs_assert_cmt_locked(c);
692 ubifs_assert(c, !c->ro_media && !c->ro_mount);
693
694 if (ubifs_gc_should_commit(c))
695 return -EAGAIN;
696
697 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
698
699 if (c->ro_error) {
700 ret = -EROFS;
701 goto out_unlock;
702 }
703
704 /* We expect the write-buffer to be empty on entry */
705 ubifs_assert(c, !wbuf->used);
706
707 for (i = 0; ; i++) {
708 int space_before, space_after;
709
710 cond_resched();
711
712 /* Give the commit an opportunity to run */
713 if (ubifs_gc_should_commit(c)) {
714 ret = -EAGAIN;
715 break;
716 }
717
718 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
719 /*
720 * We've done enough iterations. Indexing LEBs were
721 * moved and will be available after the commit.
722 */
723 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
724 ubifs_commit_required(c);
725 ret = -EAGAIN;
726 break;
727 }
728
729 if (i > HARD_LEBS_LIMIT) {
730 /*
731 * We've moved too many LEBs and have not made
732 * progress, give up.
733 */
734 dbg_gc("hard limit, -ENOSPC");
735 ret = -ENOSPC;
736 break;
737 }
738
739 /*
740 * Empty and freeable LEBs can turn up while we waited for
741 * the wbuf lock, or while we have been running GC. In that
742 * case, we should just return one of those instead of
743 * continuing to GC dirty LEBs. Hence we request
744 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
745 */
746 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
747 if (ret) {
748 if (ret == -ENOSPC)
749 dbg_gc("no more dirty LEBs");
750 break;
751 }
752
753 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
754 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
755 min_space);
756
757 space_before = c->leb_size - wbuf->offs - wbuf->used;
758 if (wbuf->lnum == -1)
759 space_before = 0;
760
761 ret = ubifs_garbage_collect_leb(c, &lp);
762 if (ret < 0) {
763 if (ret == -EAGAIN) {
764 /*
765 * This is not error, so we have to return the
766 * LEB to lprops. But if 'ubifs_return_leb()'
767 * fails, its failure code is propagated to the
768 * caller instead of the original '-EAGAIN'.
769 */
770 err = ubifs_return_leb(c, lp.lnum);
771 if (err)
772 ret = err;
773 break;
774 }
775 goto out;
776 }
777
778 if (ret == LEB_FREED) {
779 /* An LEB has been freed and is ready for use */
780 dbg_gc("LEB %d freed, return", lp.lnum);
781 ret = lp.lnum;
782 break;
783 }
784
785 if (ret == LEB_FREED_IDX) {
786 /*
787 * This was an indexing LEB and it cannot be
788 * immediately used. And instead of requesting the
789 * commit straight away, we try to garbage collect some
790 * more.
791 */
792 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
793 continue;
794 }
795
796 ubifs_assert(c, ret == LEB_RETAINED);
797 space_after = c->leb_size - wbuf->offs - wbuf->used;
798 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
799 space_after - space_before);
800
801 if (space_after > space_before) {
802 /* GC makes progress, keep working */
803 min_space >>= 1;
804 if (min_space < c->dead_wm)
805 min_space = c->dead_wm;
806 continue;
807 }
808
809 dbg_gc("did not make progress");
810
811 /*
812 * GC moved an LEB bud have not done any progress. This means
813 * that the previous GC head LEB contained too few free space
814 * and the LEB which was GC'ed contained only large nodes which
815 * did not fit that space.
816 *
817 * We can do 2 things:
818 * 1. pick another LEB in a hope it'll contain a small node
819 * which will fit the space we have at the end of current GC
820 * head LEB, but there is no guarantee, so we try this out
821 * unless we have already been working for too long;
822 * 2. request an LEB with more dirty space, which will force
823 * 'ubifs_find_dirty_leb()' to start scanning the lprops
824 * table, instead of just picking one from the heap
825 * (previously it already picked the dirtiest LEB).
826 */
827 if (i < SOFT_LEBS_LIMIT) {
828 dbg_gc("try again");
829 continue;
830 }
831
832 min_space <<= 1;
833 if (min_space > c->dark_wm)
834 min_space = c->dark_wm;
835 dbg_gc("set min. space to %d", min_space);
836 }
837
838 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
839 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
840 ubifs_commit_required(c);
841 ret = -EAGAIN;
842 }
843
844 err = ubifs_wbuf_sync_nolock(wbuf);
845 if (!err)
846 err = ubifs_leb_unmap(c, c->gc_lnum);
847 if (err) {
848 ret = err;
849 goto out;
850 }
851 out_unlock:
852 mutex_unlock(&wbuf->io_mutex);
853 return ret;
854
855 out:
856 ubifs_assert(c, ret < 0);
857 ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN);
858 ubifs_wbuf_sync_nolock(wbuf);
859 ubifs_ro_mode(c, ret);
860 mutex_unlock(&wbuf->io_mutex);
861 ubifs_return_leb(c, lp.lnum);
862 return ret;
863 }
864
865 /**
866 * ubifs_gc_start_commit - garbage collection at start of commit.
867 * @c: UBIFS file-system description object
868 *
869 * If a LEB has only dirty and free space, then we may safely unmap it and make
870 * it free. Note, we cannot do this with indexing LEBs because dirty space may
871 * correspond index nodes that are required for recovery. In that case, the
872 * LEB cannot be unmapped until after the next commit.
873 *
874 * This function returns %0 upon success and a negative error code upon failure.
875 */
876 int ubifs_gc_start_commit(struct ubifs_info *c)
877 {
878 struct ubifs_gced_idx_leb *idx_gc;
879 const struct ubifs_lprops *lp;
880 int err = 0, flags;
881
882 ubifs_get_lprops(c);
883
884 /*
885 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
886 * wbufs are sync'd before this, which is done in 'do_commit()'.
887 */
888 while (1) {
889 lp = ubifs_fast_find_freeable(c);
890 if (!lp)
891 break;
892 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
893 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
894 err = ubifs_leb_unmap(c, lp->lnum);
895 if (err)
896 goto out;
897 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
898 if (IS_ERR(lp)) {
899 err = PTR_ERR(lp);
900 goto out;
901 }
902 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
903 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
904 }
905
906 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
907 list_for_each_entry(idx_gc, &c->idx_gc, list)
908 idx_gc->unmap = 1;
909
910 /* Record index freeable LEBs for unmapping after commit */
911 while (1) {
912 lp = ubifs_fast_find_frdi_idx(c);
913 if (IS_ERR(lp)) {
914 err = PTR_ERR(lp);
915 goto out;
916 }
917 if (!lp)
918 break;
919 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
920 if (!idx_gc) {
921 err = -ENOMEM;
922 goto out;
923 }
924 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
925 ubifs_assert(c, lp->flags & LPROPS_INDEX);
926 /* Don't release the LEB until after the next commit */
927 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
928 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
929 if (IS_ERR(lp)) {
930 err = PTR_ERR(lp);
931 kfree(idx_gc);
932 goto out;
933 }
934 ubifs_assert(c, lp->flags & LPROPS_TAKEN);
935 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
936 idx_gc->lnum = lp->lnum;
937 idx_gc->unmap = 1;
938 list_add(&idx_gc->list, &c->idx_gc);
939 }
940 out:
941 ubifs_release_lprops(c);
942 return err;
943 }
944
945 /**
946 * ubifs_gc_end_commit - garbage collection at end of commit.
947 * @c: UBIFS file-system description object
948 *
949 * This function completes out-of-place garbage collection of index LEBs.
950 */
951 int ubifs_gc_end_commit(struct ubifs_info *c)
952 {
953 struct ubifs_gced_idx_leb *idx_gc, *tmp;
954 struct ubifs_wbuf *wbuf;
955 int err = 0;
956
957 wbuf = &c->jheads[GCHD].wbuf;
958 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
959 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
960 if (idx_gc->unmap) {
961 dbg_gc("LEB %d", idx_gc->lnum);
962 err = ubifs_leb_unmap(c, idx_gc->lnum);
963 if (err)
964 goto out;
965 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
966 LPROPS_NC, 0, LPROPS_TAKEN, -1);
967 if (err)
968 goto out;
969 list_del(&idx_gc->list);
970 kfree(idx_gc);
971 }
972 out:
973 mutex_unlock(&wbuf->io_mutex);
974 return err;
975 }
976
977 /**
978 * ubifs_destroy_idx_gc - destroy idx_gc list.
979 * @c: UBIFS file-system description object
980 *
981 * This function destroys the @c->idx_gc list. It is called when unmounting
982 * so locks are not needed. Returns zero in case of success and a negative
983 * error code in case of failure.
984 */
985 void ubifs_destroy_idx_gc(struct ubifs_info *c)
986 {
987 while (!list_empty(&c->idx_gc)) {
988 struct ubifs_gced_idx_leb *idx_gc;
989
990 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
991 list);
992 c->idx_gc_cnt -= 1;
993 list_del(&idx_gc->list);
994 kfree(idx_gc);
995 }
996 }
997
998 /**
999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000 * @c: UBIFS file-system description object
1001 *
1002 * Called during start commit so locks are not needed.
1003 */
1004 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1005 {
1006 struct ubifs_gced_idx_leb *idx_gc;
1007 int lnum;
1008
1009 if (list_empty(&c->idx_gc))
1010 return -ENOSPC;
1011 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1012 lnum = idx_gc->lnum;
1013 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014 list_del(&idx_gc->list);
1015 kfree(idx_gc);
1016 return lnum;
1017 }