]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ubifs/journal.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / journal.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61 #include "ubifs.h"
62
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71 }
72
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 dent->padding1 = 0;
81 }
82
83 /**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
87 */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 memset(trun->padding, 0, 12);
91 }
92
93 /**
94 * reserve_space - reserve space in the journal.
95 * @c: UBIFS file-system description object
96 * @jhead: journal head number
97 * @len: node length
98 *
99 * This function reserves space in journal head @head. If the reservation
100 * succeeded, the journal head stays locked and later has to be unlocked using
101 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
102 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
103 * other negative error codes in case of other failures.
104 */
105 static int reserve_space(struct ubifs_info *c, int jhead, int len)
106 {
107 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
108 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
109
110 /*
111 * Typically, the base head has smaller nodes written to it, so it is
112 * better to try to allocate space at the ends of eraseblocks. This is
113 * what the squeeze parameter does.
114 */
115 ubifs_assert(!c->ro_media && !c->ro_mount);
116 squeeze = (jhead == BASEHD);
117 again:
118 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
119
120 if (c->ro_error) {
121 err = -EROFS;
122 goto out_unlock;
123 }
124
125 avail = c->leb_size - wbuf->offs - wbuf->used;
126 if (wbuf->lnum != -1 && avail >= len)
127 return 0;
128
129 /*
130 * Write buffer wasn't seek'ed or there is no enough space - look for an
131 * LEB with some empty space.
132 */
133 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
134 if (lnum >= 0)
135 goto out;
136
137 err = lnum;
138 if (err != -ENOSPC)
139 goto out_unlock;
140
141 /*
142 * No free space, we have to run garbage collector to make
143 * some. But the write-buffer mutex has to be unlocked because
144 * GC also takes it.
145 */
146 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
147 mutex_unlock(&wbuf->io_mutex);
148
149 lnum = ubifs_garbage_collect(c, 0);
150 if (lnum < 0) {
151 err = lnum;
152 if (err != -ENOSPC)
153 return err;
154
155 /*
156 * GC could not make a free LEB. But someone else may
157 * have allocated new bud for this journal head,
158 * because we dropped @wbuf->io_mutex, so try once
159 * again.
160 */
161 dbg_jnl("GC couldn't make a free LEB for jhead %s",
162 dbg_jhead(jhead));
163 if (retries++ < 2) {
164 dbg_jnl("retry (%d)", retries);
165 goto again;
166 }
167
168 dbg_jnl("return -ENOSPC");
169 return err;
170 }
171
172 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
173 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
174 avail = c->leb_size - wbuf->offs - wbuf->used;
175
176 if (wbuf->lnum != -1 && avail >= len) {
177 /*
178 * Someone else has switched the journal head and we have
179 * enough space now. This happens when more than one process is
180 * trying to write to the same journal head at the same time.
181 */
182 dbg_jnl("return LEB %d back, already have LEB %d:%d",
183 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
184 err = ubifs_return_leb(c, lnum);
185 if (err)
186 goto out_unlock;
187 return 0;
188 }
189
190 offs = 0;
191
192 out:
193 /*
194 * Make sure we synchronize the write-buffer before we add the new bud
195 * to the log. Otherwise we may have a power cut after the log
196 * reference node for the last bud (@lnum) is written but before the
197 * write-buffer data are written to the next-to-last bud
198 * (@wbuf->lnum). And the effect would be that the recovery would see
199 * that there is corruption in the next-to-last bud.
200 */
201 err = ubifs_wbuf_sync_nolock(wbuf);
202 if (err)
203 goto out_return;
204 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
205 if (err)
206 goto out_return;
207 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
208 if (err)
209 goto out_unlock;
210
211 return 0;
212
213 out_unlock:
214 mutex_unlock(&wbuf->io_mutex);
215 return err;
216
217 out_return:
218 /* An error occurred and the LEB has to be returned to lprops */
219 ubifs_assert(err < 0);
220 err1 = ubifs_return_leb(c, lnum);
221 if (err1 && err == -EAGAIN)
222 /*
223 * Return original error code only if it is not %-EAGAIN,
224 * which is not really an error. Otherwise, return the error
225 * code of 'ubifs_return_leb()'.
226 */
227 err = err1;
228 mutex_unlock(&wbuf->io_mutex);
229 return err;
230 }
231
232 /**
233 * write_node - write node to a journal head.
234 * @c: UBIFS file-system description object
235 * @jhead: journal head
236 * @node: node to write
237 * @len: node length
238 * @lnum: LEB number written is returned here
239 * @offs: offset written is returned here
240 *
241 * This function writes a node to reserved space of journal head @jhead.
242 * Returns zero in case of success and a negative error code in case of
243 * failure.
244 */
245 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
246 int *lnum, int *offs)
247 {
248 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
249
250 ubifs_assert(jhead != GCHD);
251
252 *lnum = c->jheads[jhead].wbuf.lnum;
253 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
254
255 dbg_jnl("jhead %s, LEB %d:%d, len %d",
256 dbg_jhead(jhead), *lnum, *offs, len);
257 ubifs_prepare_node(c, node, len, 0);
258
259 return ubifs_wbuf_write_nolock(wbuf, node, len);
260 }
261
262 /**
263 * write_head - write data to a journal head.
264 * @c: UBIFS file-system description object
265 * @jhead: journal head
266 * @buf: buffer to write
267 * @len: length to write
268 * @lnum: LEB number written is returned here
269 * @offs: offset written is returned here
270 * @sync: non-zero if the write-buffer has to by synchronized
271 *
272 * This function is the same as 'write_node()' but it does not assume the
273 * buffer it is writing is a node, so it does not prepare it (which means
274 * initializing common header and calculating CRC).
275 */
276 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
277 int *lnum, int *offs, int sync)
278 {
279 int err;
280 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
281
282 ubifs_assert(jhead != GCHD);
283
284 *lnum = c->jheads[jhead].wbuf.lnum;
285 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
286 dbg_jnl("jhead %s, LEB %d:%d, len %d",
287 dbg_jhead(jhead), *lnum, *offs, len);
288
289 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
290 if (err)
291 return err;
292 if (sync)
293 err = ubifs_wbuf_sync_nolock(wbuf);
294 return err;
295 }
296
297 /**
298 * make_reservation - reserve journal space.
299 * @c: UBIFS file-system description object
300 * @jhead: journal head
301 * @len: how many bytes to reserve
302 *
303 * This function makes space reservation in journal head @jhead. The function
304 * takes the commit lock and locks the journal head, and the caller has to
305 * unlock the head and finish the reservation with 'finish_reservation()'.
306 * Returns zero in case of success and a negative error code in case of
307 * failure.
308 *
309 * Note, the journal head may be unlocked as soon as the data is written, while
310 * the commit lock has to be released after the data has been added to the
311 * TNC.
312 */
313 static int make_reservation(struct ubifs_info *c, int jhead, int len)
314 {
315 int err, cmt_retries = 0, nospc_retries = 0;
316
317 again:
318 down_read(&c->commit_sem);
319 err = reserve_space(c, jhead, len);
320 if (!err)
321 return 0;
322 up_read(&c->commit_sem);
323
324 if (err == -ENOSPC) {
325 /*
326 * GC could not make any progress. We should try to commit
327 * once because it could make some dirty space and GC would
328 * make progress, so make the error -EAGAIN so that the below
329 * will commit and re-try.
330 */
331 if (nospc_retries++ < 2) {
332 dbg_jnl("no space, retry");
333 err = -EAGAIN;
334 }
335
336 /*
337 * This means that the budgeting is incorrect. We always have
338 * to be able to write to the media, because all operations are
339 * budgeted. Deletions are not budgeted, though, but we reserve
340 * an extra LEB for them.
341 */
342 }
343
344 if (err != -EAGAIN)
345 goto out;
346
347 /*
348 * -EAGAIN means that the journal is full or too large, or the above
349 * code wants to do one commit. Do this and re-try.
350 */
351 if (cmt_retries > 128) {
352 /*
353 * This should not happen unless the journal size limitations
354 * are too tough.
355 */
356 ubifs_err(c, "stuck in space allocation");
357 err = -ENOSPC;
358 goto out;
359 } else if (cmt_retries > 32)
360 ubifs_warn(c, "too many space allocation re-tries (%d)",
361 cmt_retries);
362
363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 cmt_retries);
365 cmt_retries += 1;
366
367 err = ubifs_run_commit(c);
368 if (err)
369 return err;
370 goto again;
371
372 out:
373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 len, jhead, err);
375 if (err == -ENOSPC) {
376 /* This are some budgeting problems, print useful information */
377 down_write(&c->commit_sem);
378 dump_stack();
379 ubifs_dump_budg(c, &c->bi);
380 ubifs_dump_lprops(c);
381 cmt_retries = dbg_check_lprops(c);
382 up_write(&c->commit_sem);
383 }
384 return err;
385 }
386
387 /**
388 * release_head - release a journal head.
389 * @c: UBIFS file-system description object
390 * @jhead: journal head
391 *
392 * This function releases journal head @jhead which was locked by
393 * the 'make_reservation()' function. It has to be called after each successful
394 * 'make_reservation()' invocation.
395 */
396 static inline void release_head(struct ubifs_info *c, int jhead)
397 {
398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399 }
400
401 /**
402 * finish_reservation - finish a reservation.
403 * @c: UBIFS file-system description object
404 *
405 * This function finishes journal space reservation. It must be called after
406 * 'make_reservation()'.
407 */
408 static void finish_reservation(struct ubifs_info *c)
409 {
410 up_read(&c->commit_sem);
411 }
412
413 /**
414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415 * @mode: inode mode
416 */
417 static int get_dent_type(int mode)
418 {
419 switch (mode & S_IFMT) {
420 case S_IFREG:
421 return UBIFS_ITYPE_REG;
422 case S_IFDIR:
423 return UBIFS_ITYPE_DIR;
424 case S_IFLNK:
425 return UBIFS_ITYPE_LNK;
426 case S_IFBLK:
427 return UBIFS_ITYPE_BLK;
428 case S_IFCHR:
429 return UBIFS_ITYPE_CHR;
430 case S_IFIFO:
431 return UBIFS_ITYPE_FIFO;
432 case S_IFSOCK:
433 return UBIFS_ITYPE_SOCK;
434 default:
435 BUG();
436 }
437 return 0;
438 }
439
440 /**
441 * pack_inode - pack an inode node.
442 * @c: UBIFS file-system description object
443 * @ino: buffer in which to pack inode node
444 * @inode: inode to pack
445 * @last: indicates the last node of the group
446 */
447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 const struct inode *inode, int last)
449 {
450 int data_len = 0, last_reference = !inode->i_nlink;
451 struct ubifs_inode *ui = ubifs_inode(inode);
452
453 ino->ch.node_type = UBIFS_INO_NODE;
454 ino_key_init_flash(c, &ino->key, inode->i_ino);
455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 ino->uid = cpu_to_le32(i_uid_read(inode));
463 ino->gid = cpu_to_le32(i_gid_read(inode));
464 ino->mode = cpu_to_le32(inode->i_mode);
465 ino->flags = cpu_to_le32(ui->flags);
466 ino->size = cpu_to_le64(ui->ui_size);
467 ino->nlink = cpu_to_le32(inode->i_nlink);
468 ino->compr_type = cpu_to_le16(ui->compr_type);
469 ino->data_len = cpu_to_le32(ui->data_len);
470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
471 ino->xattr_size = cpu_to_le32(ui->xattr_size);
472 ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 zero_ino_node_unused(ino);
474
475 /*
476 * Drop the attached data if this is a deletion inode, the data is not
477 * needed anymore.
478 */
479 if (!last_reference) {
480 memcpy(ino->data, ui->data, ui->data_len);
481 data_len = ui->data_len;
482 }
483
484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485 }
486
487 /**
488 * mark_inode_clean - mark UBIFS inode as clean.
489 * @c: UBIFS file-system description object
490 * @ui: UBIFS inode to mark as clean
491 *
492 * This helper function marks UBIFS inode @ui as clean by cleaning the
493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495 * just do nothing.
496 */
497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 {
499 if (ui->dirty)
500 ubifs_release_dirty_inode_budget(c, ui);
501 ui->dirty = 0;
502 }
503
504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505 {
506 if (c->double_hash)
507 dent->cookie = prandom_u32();
508 else
509 dent->cookie = 0;
510 }
511
512 /**
513 * ubifs_jnl_update - update inode.
514 * @c: UBIFS file-system description object
515 * @dir: parent inode or host inode in case of extended attributes
516 * @nm: directory entry name
517 * @inode: inode to update
518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519 * @xent: non-zero if the directory entry is an extended attribute entry
520 *
521 * This function updates an inode by writing a directory entry (or extended
522 * attribute entry), the inode itself, and the parent directory inode (or the
523 * host inode) to the journal.
524 *
525 * The function writes the host inode @dir last, which is important in case of
526 * extended attributes. Indeed, then we guarantee that if the host inode gets
527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528 * the extended attribute inode gets flushed too. And this is exactly what the
529 * user expects - synchronizing the host inode synchronizes its extended
530 * attributes. Similarly, this guarantees that if @dir is synchronized, its
531 * directory entry corresponding to @nm gets synchronized too.
532 *
533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534 * function synchronizes the write-buffer.
535 *
536 * This function marks the @dir and @inode inodes as clean and returns zero on
537 * success. In case of failure, a negative error code is returned.
538 */
539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
540 const struct fscrypt_name *nm, const struct inode *inode,
541 int deletion, int xent)
542 {
543 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
544 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
545 int last_reference = !!(deletion && inode->i_nlink == 0);
546 struct ubifs_inode *ui = ubifs_inode(inode);
547 struct ubifs_inode *host_ui = ubifs_inode(dir);
548 struct ubifs_dent_node *dent;
549 struct ubifs_ino_node *ino;
550 union ubifs_key dent_key, ino_key;
551
552 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
553
554 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
555 ilen = UBIFS_INO_NODE_SZ;
556
557 /*
558 * If the last reference to the inode is being deleted, then there is
559 * no need to attach and write inode data, it is being deleted anyway.
560 * And if the inode is being deleted, no need to synchronize
561 * write-buffer even if the inode is synchronous.
562 */
563 if (!last_reference) {
564 ilen += ui->data_len;
565 sync |= IS_SYNC(inode);
566 }
567
568 aligned_dlen = ALIGN(dlen, 8);
569 aligned_ilen = ALIGN(ilen, 8);
570
571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 /* Make sure to also account for extended attributes */
573 len += host_ui->data_len;
574
575 dent = kzalloc(len, GFP_NOFS);
576 if (!dent)
577 return -ENOMEM;
578
579 /* Make reservation before allocating sequence numbers */
580 err = make_reservation(c, BASEHD, len);
581 if (err)
582 goto out_free;
583
584 if (!xent) {
585 dent->ch.node_type = UBIFS_DENT_NODE;
586 if (nm->hash)
587 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
588 else
589 dent_key_init(c, &dent_key, dir->i_ino, nm);
590 } else {
591 dent->ch.node_type = UBIFS_XENT_NODE;
592 xent_key_init(c, &dent_key, dir->i_ino, nm);
593 }
594
595 key_write(c, &dent_key, dent->key);
596 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
597 dent->type = get_dent_type(inode->i_mode);
598 dent->nlen = cpu_to_le16(fname_len(nm));
599 memcpy(dent->name, fname_name(nm), fname_len(nm));
600 dent->name[fname_len(nm)] = '\0';
601 set_dent_cookie(c, dent);
602
603 zero_dent_node_unused(dent);
604 ubifs_prep_grp_node(c, dent, dlen, 0);
605
606 ino = (void *)dent + aligned_dlen;
607 pack_inode(c, ino, inode, 0);
608 ino = (void *)ino + aligned_ilen;
609 pack_inode(c, ino, dir, 1);
610
611 if (last_reference) {
612 err = ubifs_add_orphan(c, inode->i_ino);
613 if (err) {
614 release_head(c, BASEHD);
615 goto out_finish;
616 }
617 ui->del_cmtno = c->cmt_no;
618 }
619
620 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
621 if (err)
622 goto out_release;
623 if (!sync) {
624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
625
626 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
627 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
628 }
629 release_head(c, BASEHD);
630 kfree(dent);
631
632 if (deletion) {
633 if (nm->hash)
634 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
635 else
636 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
637 if (err)
638 goto out_ro;
639 err = ubifs_add_dirt(c, lnum, dlen);
640 } else
641 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
642 if (err)
643 goto out_ro;
644
645 /*
646 * Note, we do not remove the inode from TNC even if the last reference
647 * to it has just been deleted, because the inode may still be opened.
648 * Instead, the inode has been added to orphan lists and the orphan
649 * subsystem will take further care about it.
650 */
651 ino_key_init(c, &ino_key, inode->i_ino);
652 ino_offs = dent_offs + aligned_dlen;
653 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
654 if (err)
655 goto out_ro;
656
657 ino_key_init(c, &ino_key, dir->i_ino);
658 ino_offs += aligned_ilen;
659 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
660 UBIFS_INO_NODE_SZ + host_ui->data_len);
661 if (err)
662 goto out_ro;
663
664 finish_reservation(c);
665 spin_lock(&ui->ui_lock);
666 ui->synced_i_size = ui->ui_size;
667 spin_unlock(&ui->ui_lock);
668 mark_inode_clean(c, ui);
669 mark_inode_clean(c, host_ui);
670 return 0;
671
672 out_finish:
673 finish_reservation(c);
674 out_free:
675 kfree(dent);
676 return err;
677
678 out_release:
679 release_head(c, BASEHD);
680 kfree(dent);
681 out_ro:
682 ubifs_ro_mode(c, err);
683 if (last_reference)
684 ubifs_delete_orphan(c, inode->i_ino);
685 finish_reservation(c);
686 return err;
687 }
688
689 /**
690 * ubifs_jnl_write_data - write a data node to the journal.
691 * @c: UBIFS file-system description object
692 * @inode: inode the data node belongs to
693 * @key: node key
694 * @buf: buffer to write
695 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
696 *
697 * This function writes a data node to the journal. Returns %0 if the data node
698 * was successfully written, and a negative error code in case of failure.
699 */
700 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
701 const union ubifs_key *key, const void *buf, int len)
702 {
703 struct ubifs_data_node *data;
704 int err, lnum, offs, compr_type, out_len, compr_len;
705 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
706 struct ubifs_inode *ui = ubifs_inode(inode);
707 bool encrypted = ubifs_crypt_is_encrypted(inode);
708
709 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
710 (unsigned long)key_inum(c, key), key_block(c, key), len);
711 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
712
713 if (encrypted)
714 dlen += UBIFS_CIPHER_BLOCK_SIZE;
715
716 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
717 if (!data) {
718 /*
719 * Fall-back to the write reserve buffer. Note, we might be
720 * currently on the memory reclaim path, when the kernel is
721 * trying to free some memory by writing out dirty pages. The
722 * write reserve buffer helps us to guarantee that we are
723 * always able to write the data.
724 */
725 allocated = 0;
726 mutex_lock(&c->write_reserve_mutex);
727 data = c->write_reserve_buf;
728 }
729
730 data->ch.node_type = UBIFS_DATA_NODE;
731 key_write(c, key, &data->key);
732 data->size = cpu_to_le32(len);
733
734 if (!(ui->flags & UBIFS_COMPR_FL))
735 /* Compression is disabled for this inode */
736 compr_type = UBIFS_COMPR_NONE;
737 else
738 compr_type = ui->compr_type;
739
740 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
741 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
742 ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE);
743
744 if (encrypted) {
745 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
746 if (err)
747 goto out_free;
748
749 } else {
750 data->compr_size = 0;
751 out_len = compr_len;
752 }
753
754 dlen = UBIFS_DATA_NODE_SZ + out_len;
755 data->compr_type = cpu_to_le16(compr_type);
756
757 /* Make reservation before allocating sequence numbers */
758 err = make_reservation(c, DATAHD, dlen);
759 if (err)
760 goto out_free;
761
762 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
763 if (err)
764 goto out_release;
765 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
766 release_head(c, DATAHD);
767
768 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
769 if (err)
770 goto out_ro;
771
772 finish_reservation(c);
773 if (!allocated)
774 mutex_unlock(&c->write_reserve_mutex);
775 else
776 kfree(data);
777 return 0;
778
779 out_release:
780 release_head(c, DATAHD);
781 out_ro:
782 ubifs_ro_mode(c, err);
783 finish_reservation(c);
784 out_free:
785 if (!allocated)
786 mutex_unlock(&c->write_reserve_mutex);
787 else
788 kfree(data);
789 return err;
790 }
791
792 /**
793 * ubifs_jnl_write_inode - flush inode to the journal.
794 * @c: UBIFS file-system description object
795 * @inode: inode to flush
796 *
797 * This function writes inode @inode to the journal. If the inode is
798 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
799 * success and a negative error code in case of failure.
800 */
801 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
802 {
803 int err, lnum, offs;
804 struct ubifs_ino_node *ino;
805 struct ubifs_inode *ui = ubifs_inode(inode);
806 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
807
808 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
809
810 /*
811 * If the inode is being deleted, do not write the attached data. No
812 * need to synchronize the write-buffer either.
813 */
814 if (!last_reference) {
815 len += ui->data_len;
816 sync = IS_SYNC(inode);
817 }
818 ino = kmalloc(len, GFP_NOFS);
819 if (!ino)
820 return -ENOMEM;
821
822 /* Make reservation before allocating sequence numbers */
823 err = make_reservation(c, BASEHD, len);
824 if (err)
825 goto out_free;
826
827 pack_inode(c, ino, inode, 1);
828 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
829 if (err)
830 goto out_release;
831 if (!sync)
832 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
833 inode->i_ino);
834 release_head(c, BASEHD);
835
836 if (last_reference) {
837 err = ubifs_tnc_remove_ino(c, inode->i_ino);
838 if (err)
839 goto out_ro;
840 ubifs_delete_orphan(c, inode->i_ino);
841 err = ubifs_add_dirt(c, lnum, len);
842 } else {
843 union ubifs_key key;
844
845 ino_key_init(c, &key, inode->i_ino);
846 err = ubifs_tnc_add(c, &key, lnum, offs, len);
847 }
848 if (err)
849 goto out_ro;
850
851 finish_reservation(c);
852 spin_lock(&ui->ui_lock);
853 ui->synced_i_size = ui->ui_size;
854 spin_unlock(&ui->ui_lock);
855 kfree(ino);
856 return 0;
857
858 out_release:
859 release_head(c, BASEHD);
860 out_ro:
861 ubifs_ro_mode(c, err);
862 finish_reservation(c);
863 out_free:
864 kfree(ino);
865 return err;
866 }
867
868 /**
869 * ubifs_jnl_delete_inode - delete an inode.
870 * @c: UBIFS file-system description object
871 * @inode: inode to delete
872 *
873 * This function deletes inode @inode which includes removing it from orphans,
874 * deleting it from TNC and, in some cases, writing a deletion inode to the
875 * journal.
876 *
877 * When regular file inodes are unlinked or a directory inode is removed, the
878 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
879 * direntry to the media, and adds the inode to orphans. After this, when the
880 * last reference to this inode has been dropped, this function is called. In
881 * general, it has to write one more deletion inode to the media, because if
882 * a commit happened between 'ubifs_jnl_update()' and
883 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
884 * anymore, and in fact it might not be on the flash anymore, because it might
885 * have been garbage-collected already. And for optimization reasons UBIFS does
886 * not read the orphan area if it has been unmounted cleanly, so it would have
887 * no indication in the journal that there is a deleted inode which has to be
888 * removed from TNC.
889 *
890 * However, if there was no commit between 'ubifs_jnl_update()' and
891 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
892 * inode to the media for the second time. And this is quite a typical case.
893 *
894 * This function returns zero in case of success and a negative error code in
895 * case of failure.
896 */
897 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
898 {
899 int err;
900 struct ubifs_inode *ui = ubifs_inode(inode);
901
902 ubifs_assert(inode->i_nlink == 0);
903
904 if (ui->del_cmtno != c->cmt_no)
905 /* A commit happened for sure */
906 return ubifs_jnl_write_inode(c, inode);
907
908 down_read(&c->commit_sem);
909 /*
910 * Check commit number again, because the first test has been done
911 * without @c->commit_sem, so a commit might have happened.
912 */
913 if (ui->del_cmtno != c->cmt_no) {
914 up_read(&c->commit_sem);
915 return ubifs_jnl_write_inode(c, inode);
916 }
917
918 err = ubifs_tnc_remove_ino(c, inode->i_ino);
919 if (err)
920 ubifs_ro_mode(c, err);
921 else
922 ubifs_delete_orphan(c, inode->i_ino);
923 up_read(&c->commit_sem);
924 return err;
925 }
926
927 /**
928 * ubifs_jnl_xrename - cross rename two directory entries.
929 * @c: UBIFS file-system description object
930 * @fst_dir: parent inode of 1st directory entry to exchange
931 * @fst_inode: 1st inode to exchange
932 * @fst_nm: name of 1st inode to exchange
933 * @snd_dir: parent inode of 2nd directory entry to exchange
934 * @snd_inode: 2nd inode to exchange
935 * @snd_nm: name of 2nd inode to exchange
936 * @sync: non-zero if the write-buffer has to be synchronized
937 *
938 * This function implements the cross rename operation which may involve
939 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
940 * and returns zero on success. In case of failure, a negative error code is
941 * returned.
942 */
943 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
944 const struct inode *fst_inode,
945 const struct fscrypt_name *fst_nm,
946 const struct inode *snd_dir,
947 const struct inode *snd_inode,
948 const struct fscrypt_name *snd_nm, int sync)
949 {
950 union ubifs_key key;
951 struct ubifs_dent_node *dent1, *dent2;
952 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
953 int aligned_dlen1, aligned_dlen2;
954 int twoparents = (fst_dir != snd_dir);
955 void *p;
956
957 ubifs_assert(ubifs_inode(fst_dir)->data_len == 0);
958 ubifs_assert(ubifs_inode(snd_dir)->data_len == 0);
959 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
960 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
961
962 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
963 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
964 aligned_dlen1 = ALIGN(dlen1, 8);
965 aligned_dlen2 = ALIGN(dlen2, 8);
966
967 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
968 if (twoparents)
969 len += plen;
970
971 dent1 = kzalloc(len, GFP_NOFS);
972 if (!dent1)
973 return -ENOMEM;
974
975 /* Make reservation before allocating sequence numbers */
976 err = make_reservation(c, BASEHD, len);
977 if (err)
978 goto out_free;
979
980 /* Make new dent for 1st entry */
981 dent1->ch.node_type = UBIFS_DENT_NODE;
982 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
983 dent1->inum = cpu_to_le64(fst_inode->i_ino);
984 dent1->type = get_dent_type(fst_inode->i_mode);
985 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
986 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
987 dent1->name[fname_len(snd_nm)] = '\0';
988 set_dent_cookie(c, dent1);
989 zero_dent_node_unused(dent1);
990 ubifs_prep_grp_node(c, dent1, dlen1, 0);
991
992 /* Make new dent for 2nd entry */
993 dent2 = (void *)dent1 + aligned_dlen1;
994 dent2->ch.node_type = UBIFS_DENT_NODE;
995 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
996 dent2->inum = cpu_to_le64(snd_inode->i_ino);
997 dent2->type = get_dent_type(snd_inode->i_mode);
998 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
999 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1000 dent2->name[fname_len(fst_nm)] = '\0';
1001 set_dent_cookie(c, dent2);
1002 zero_dent_node_unused(dent2);
1003 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1004
1005 p = (void *)dent2 + aligned_dlen2;
1006 if (!twoparents)
1007 pack_inode(c, p, fst_dir, 1);
1008 else {
1009 pack_inode(c, p, fst_dir, 0);
1010 p += ALIGN(plen, 8);
1011 pack_inode(c, p, snd_dir, 1);
1012 }
1013
1014 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1015 if (err)
1016 goto out_release;
1017 if (!sync) {
1018 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1019
1020 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1021 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1022 }
1023 release_head(c, BASEHD);
1024
1025 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1026 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1027 if (err)
1028 goto out_ro;
1029
1030 offs += aligned_dlen1;
1031 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1032 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1033 if (err)
1034 goto out_ro;
1035
1036 offs += aligned_dlen2;
1037
1038 ino_key_init(c, &key, fst_dir->i_ino);
1039 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1040 if (err)
1041 goto out_ro;
1042
1043 if (twoparents) {
1044 offs += ALIGN(plen, 8);
1045 ino_key_init(c, &key, snd_dir->i_ino);
1046 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1047 if (err)
1048 goto out_ro;
1049 }
1050
1051 finish_reservation(c);
1052
1053 mark_inode_clean(c, ubifs_inode(fst_dir));
1054 if (twoparents)
1055 mark_inode_clean(c, ubifs_inode(snd_dir));
1056 kfree(dent1);
1057 return 0;
1058
1059 out_release:
1060 release_head(c, BASEHD);
1061 out_ro:
1062 ubifs_ro_mode(c, err);
1063 finish_reservation(c);
1064 out_free:
1065 kfree(dent1);
1066 return err;
1067 }
1068
1069 /**
1070 * ubifs_jnl_rename - rename a directory entry.
1071 * @c: UBIFS file-system description object
1072 * @old_dir: parent inode of directory entry to rename
1073 * @old_dentry: directory entry to rename
1074 * @new_dir: parent inode of directory entry to rename
1075 * @new_dentry: new directory entry (or directory entry to replace)
1076 * @sync: non-zero if the write-buffer has to be synchronized
1077 *
1078 * This function implements the re-name operation which may involve writing up
1079 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1080 * and returns zero on success. In case of failure, a negative error code is
1081 * returned.
1082 */
1083 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1084 const struct inode *old_inode,
1085 const struct fscrypt_name *old_nm,
1086 const struct inode *new_dir,
1087 const struct inode *new_inode,
1088 const struct fscrypt_name *new_nm,
1089 const struct inode *whiteout, int sync)
1090 {
1091 void *p;
1092 union ubifs_key key;
1093 struct ubifs_dent_node *dent, *dent2;
1094 int err, dlen1, dlen2, ilen, lnum, offs, len;
1095 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1096 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1097 int move = (old_dir != new_dir);
1098 struct ubifs_inode *uninitialized_var(new_ui);
1099
1100 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
1101 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
1102 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1103 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1104
1105 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1106 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1107 if (new_inode) {
1108 new_ui = ubifs_inode(new_inode);
1109 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
1110 ilen = UBIFS_INO_NODE_SZ;
1111 if (!last_reference)
1112 ilen += new_ui->data_len;
1113 } else
1114 ilen = 0;
1115
1116 aligned_dlen1 = ALIGN(dlen1, 8);
1117 aligned_dlen2 = ALIGN(dlen2, 8);
1118 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1119 if (move)
1120 len += plen;
1121 dent = kzalloc(len, GFP_NOFS);
1122 if (!dent)
1123 return -ENOMEM;
1124
1125 /* Make reservation before allocating sequence numbers */
1126 err = make_reservation(c, BASEHD, len);
1127 if (err)
1128 goto out_free;
1129
1130 /* Make new dent */
1131 dent->ch.node_type = UBIFS_DENT_NODE;
1132 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1133 dent->inum = cpu_to_le64(old_inode->i_ino);
1134 dent->type = get_dent_type(old_inode->i_mode);
1135 dent->nlen = cpu_to_le16(fname_len(new_nm));
1136 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1137 dent->name[fname_len(new_nm)] = '\0';
1138 set_dent_cookie(c, dent);
1139 zero_dent_node_unused(dent);
1140 ubifs_prep_grp_node(c, dent, dlen1, 0);
1141
1142 dent2 = (void *)dent + aligned_dlen1;
1143 dent2->ch.node_type = UBIFS_DENT_NODE;
1144 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1145
1146 if (whiteout) {
1147 dent2->inum = cpu_to_le64(whiteout->i_ino);
1148 dent2->type = get_dent_type(whiteout->i_mode);
1149 } else {
1150 /* Make deletion dent */
1151 dent2->inum = 0;
1152 dent2->type = DT_UNKNOWN;
1153 }
1154 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1155 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1156 dent2->name[fname_len(old_nm)] = '\0';
1157 set_dent_cookie(c, dent2);
1158 zero_dent_node_unused(dent2);
1159 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1160
1161 p = (void *)dent2 + aligned_dlen2;
1162 if (new_inode) {
1163 pack_inode(c, p, new_inode, 0);
1164 p += ALIGN(ilen, 8);
1165 }
1166
1167 if (!move)
1168 pack_inode(c, p, old_dir, 1);
1169 else {
1170 pack_inode(c, p, old_dir, 0);
1171 p += ALIGN(plen, 8);
1172 pack_inode(c, p, new_dir, 1);
1173 }
1174
1175 if (last_reference) {
1176 err = ubifs_add_orphan(c, new_inode->i_ino);
1177 if (err) {
1178 release_head(c, BASEHD);
1179 goto out_finish;
1180 }
1181 new_ui->del_cmtno = c->cmt_no;
1182 }
1183
1184 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1185 if (err)
1186 goto out_release;
1187 if (!sync) {
1188 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1189
1190 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1191 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1192 if (new_inode)
1193 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1194 new_inode->i_ino);
1195 }
1196 release_head(c, BASEHD);
1197
1198 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1199 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1200 if (err)
1201 goto out_ro;
1202
1203 offs += aligned_dlen1;
1204 if (whiteout) {
1205 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1206 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1207 if (err)
1208 goto out_ro;
1209
1210 ubifs_delete_orphan(c, whiteout->i_ino);
1211 } else {
1212 err = ubifs_add_dirt(c, lnum, dlen2);
1213 if (err)
1214 goto out_ro;
1215
1216 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1217 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1218 if (err)
1219 goto out_ro;
1220 }
1221
1222 offs += aligned_dlen2;
1223 if (new_inode) {
1224 ino_key_init(c, &key, new_inode->i_ino);
1225 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1226 if (err)
1227 goto out_ro;
1228 offs += ALIGN(ilen, 8);
1229 }
1230
1231 ino_key_init(c, &key, old_dir->i_ino);
1232 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1233 if (err)
1234 goto out_ro;
1235
1236 if (move) {
1237 offs += ALIGN(plen, 8);
1238 ino_key_init(c, &key, new_dir->i_ino);
1239 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1240 if (err)
1241 goto out_ro;
1242 }
1243
1244 finish_reservation(c);
1245 if (new_inode) {
1246 mark_inode_clean(c, new_ui);
1247 spin_lock(&new_ui->ui_lock);
1248 new_ui->synced_i_size = new_ui->ui_size;
1249 spin_unlock(&new_ui->ui_lock);
1250 }
1251 mark_inode_clean(c, ubifs_inode(old_dir));
1252 if (move)
1253 mark_inode_clean(c, ubifs_inode(new_dir));
1254 kfree(dent);
1255 return 0;
1256
1257 out_release:
1258 release_head(c, BASEHD);
1259 out_ro:
1260 ubifs_ro_mode(c, err);
1261 if (last_reference)
1262 ubifs_delete_orphan(c, new_inode->i_ino);
1263 out_finish:
1264 finish_reservation(c);
1265 out_free:
1266 kfree(dent);
1267 return err;
1268 }
1269
1270 /**
1271 * truncate_data_node - re-compress/encrypt a truncated data node.
1272 * @c: UBIFS file-system description object
1273 * @inode: inode which referes to the data node
1274 * @block: data block number
1275 * @dn: data node to re-compress
1276 * @new_len: new length
1277 *
1278 * This function is used when an inode is truncated and the last data node of
1279 * the inode has to be re-compressed/encrypted and re-written.
1280 */
1281 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1282 unsigned int block, struct ubifs_data_node *dn,
1283 int *new_len)
1284 {
1285 void *buf;
1286 int err, dlen, compr_type, out_len, old_dlen;
1287
1288 out_len = le32_to_cpu(dn->size);
1289 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1290 if (!buf)
1291 return -ENOMEM;
1292
1293 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1294 compr_type = le16_to_cpu(dn->compr_type);
1295
1296 if (ubifs_crypt_is_encrypted(inode)) {
1297 err = ubifs_decrypt(inode, dn, &dlen, block);
1298 if (err)
1299 goto out;
1300 }
1301
1302 if (compr_type == UBIFS_COMPR_NONE) {
1303 out_len = *new_len;
1304 } else {
1305 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1306 if (err)
1307 goto out;
1308
1309 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1310 }
1311
1312 if (ubifs_crypt_is_encrypted(inode)) {
1313 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1314 if (err)
1315 goto out;
1316
1317 out_len = old_dlen;
1318 } else {
1319 dn->compr_size = 0;
1320 }
1321
1322 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1323 dn->compr_type = cpu_to_le16(compr_type);
1324 dn->size = cpu_to_le32(*new_len);
1325 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1326 err = 0;
1327 out:
1328 kfree(buf);
1329 return err;
1330 }
1331
1332 /**
1333 * ubifs_jnl_truncate - update the journal for a truncation.
1334 * @c: UBIFS file-system description object
1335 * @inode: inode to truncate
1336 * @old_size: old size
1337 * @new_size: new size
1338 *
1339 * When the size of a file decreases due to truncation, a truncation node is
1340 * written, the journal tree is updated, and the last data block is re-written
1341 * if it has been affected. The inode is also updated in order to synchronize
1342 * the new inode size.
1343 *
1344 * This function marks the inode as clean and returns zero on success. In case
1345 * of failure, a negative error code is returned.
1346 */
1347 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1348 loff_t old_size, loff_t new_size)
1349 {
1350 union ubifs_key key, to_key;
1351 struct ubifs_ino_node *ino;
1352 struct ubifs_trun_node *trun;
1353 struct ubifs_data_node *uninitialized_var(dn);
1354 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1355 struct ubifs_inode *ui = ubifs_inode(inode);
1356 ino_t inum = inode->i_ino;
1357 unsigned int blk;
1358
1359 dbg_jnl("ino %lu, size %lld -> %lld",
1360 (unsigned long)inum, old_size, new_size);
1361 ubifs_assert(!ui->data_len);
1362 ubifs_assert(S_ISREG(inode->i_mode));
1363 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1364
1365 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1366 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1367 ino = kmalloc(sz, GFP_NOFS);
1368 if (!ino)
1369 return -ENOMEM;
1370
1371 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1372 trun->ch.node_type = UBIFS_TRUN_NODE;
1373 trun->inum = cpu_to_le32(inum);
1374 trun->old_size = cpu_to_le64(old_size);
1375 trun->new_size = cpu_to_le64(new_size);
1376 zero_trun_node_unused(trun);
1377
1378 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1379 if (dlen) {
1380 /* Get last data block so it can be truncated */
1381 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1382 blk = new_size >> UBIFS_BLOCK_SHIFT;
1383 data_key_init(c, &key, inum, blk);
1384 dbg_jnlk(&key, "last block key ");
1385 err = ubifs_tnc_lookup(c, &key, dn);
1386 if (err == -ENOENT)
1387 dlen = 0; /* Not found (so it is a hole) */
1388 else if (err)
1389 goto out_free;
1390 else {
1391 if (le32_to_cpu(dn->size) <= dlen)
1392 dlen = 0; /* Nothing to do */
1393 else {
1394 err = truncate_data_node(c, inode, blk, dn, &dlen);
1395 if (err)
1396 goto out_free;
1397 }
1398 }
1399 }
1400
1401 /* Must make reservation before allocating sequence numbers */
1402 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1403 if (dlen)
1404 len += dlen;
1405 err = make_reservation(c, BASEHD, len);
1406 if (err)
1407 goto out_free;
1408
1409 pack_inode(c, ino, inode, 0);
1410 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1411 if (dlen)
1412 ubifs_prep_grp_node(c, dn, dlen, 1);
1413
1414 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1415 if (err)
1416 goto out_release;
1417 if (!sync)
1418 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1419 release_head(c, BASEHD);
1420
1421 if (dlen) {
1422 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1423 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1424 if (err)
1425 goto out_ro;
1426 }
1427
1428 ino_key_init(c, &key, inum);
1429 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1430 if (err)
1431 goto out_ro;
1432
1433 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1434 if (err)
1435 goto out_ro;
1436
1437 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1438 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1439 data_key_init(c, &key, inum, blk);
1440
1441 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1442 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1443 data_key_init(c, &to_key, inum, blk);
1444
1445 err = ubifs_tnc_remove_range(c, &key, &to_key);
1446 if (err)
1447 goto out_ro;
1448
1449 finish_reservation(c);
1450 spin_lock(&ui->ui_lock);
1451 ui->synced_i_size = ui->ui_size;
1452 spin_unlock(&ui->ui_lock);
1453 mark_inode_clean(c, ui);
1454 kfree(ino);
1455 return 0;
1456
1457 out_release:
1458 release_head(c, BASEHD);
1459 out_ro:
1460 ubifs_ro_mode(c, err);
1461 finish_reservation(c);
1462 out_free:
1463 kfree(ino);
1464 return err;
1465 }
1466
1467
1468 /**
1469 * ubifs_jnl_delete_xattr - delete an extended attribute.
1470 * @c: UBIFS file-system description object
1471 * @host: host inode
1472 * @inode: extended attribute inode
1473 * @nm: extended attribute entry name
1474 *
1475 * This function delete an extended attribute which is very similar to
1476 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1477 * updates the target inode. Returns zero in case of success and a negative
1478 * error code in case of failure.
1479 */
1480 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1481 const struct inode *inode,
1482 const struct fscrypt_name *nm)
1483 {
1484 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1485 struct ubifs_dent_node *xent;
1486 struct ubifs_ino_node *ino;
1487 union ubifs_key xent_key, key1, key2;
1488 int sync = IS_DIRSYNC(host);
1489 struct ubifs_inode *host_ui = ubifs_inode(host);
1490
1491 ubifs_assert(inode->i_nlink == 0);
1492 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1493
1494 /*
1495 * Since we are deleting the inode, we do not bother to attach any data
1496 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1497 */
1498 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1499 aligned_xlen = ALIGN(xlen, 8);
1500 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1501 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1502
1503 xent = kzalloc(len, GFP_NOFS);
1504 if (!xent)
1505 return -ENOMEM;
1506
1507 /* Make reservation before allocating sequence numbers */
1508 err = make_reservation(c, BASEHD, len);
1509 if (err) {
1510 kfree(xent);
1511 return err;
1512 }
1513
1514 xent->ch.node_type = UBIFS_XENT_NODE;
1515 xent_key_init(c, &xent_key, host->i_ino, nm);
1516 key_write(c, &xent_key, xent->key);
1517 xent->inum = 0;
1518 xent->type = get_dent_type(inode->i_mode);
1519 xent->nlen = cpu_to_le16(fname_len(nm));
1520 memcpy(xent->name, fname_name(nm), fname_len(nm));
1521 xent->name[fname_len(nm)] = '\0';
1522 zero_dent_node_unused(xent);
1523 ubifs_prep_grp_node(c, xent, xlen, 0);
1524
1525 ino = (void *)xent + aligned_xlen;
1526 pack_inode(c, ino, inode, 0);
1527 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1528 pack_inode(c, ino, host, 1);
1529
1530 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1531 if (!sync && !err)
1532 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1533 release_head(c, BASEHD);
1534 kfree(xent);
1535 if (err)
1536 goto out_ro;
1537
1538 /* Remove the extended attribute entry from TNC */
1539 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1540 if (err)
1541 goto out_ro;
1542 err = ubifs_add_dirt(c, lnum, xlen);
1543 if (err)
1544 goto out_ro;
1545
1546 /*
1547 * Remove all nodes belonging to the extended attribute inode from TNC.
1548 * Well, there actually must be only one node - the inode itself.
1549 */
1550 lowest_ino_key(c, &key1, inode->i_ino);
1551 highest_ino_key(c, &key2, inode->i_ino);
1552 err = ubifs_tnc_remove_range(c, &key1, &key2);
1553 if (err)
1554 goto out_ro;
1555 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1556 if (err)
1557 goto out_ro;
1558
1559 /* And update TNC with the new host inode position */
1560 ino_key_init(c, &key1, host->i_ino);
1561 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1562 if (err)
1563 goto out_ro;
1564
1565 finish_reservation(c);
1566 spin_lock(&host_ui->ui_lock);
1567 host_ui->synced_i_size = host_ui->ui_size;
1568 spin_unlock(&host_ui->ui_lock);
1569 mark_inode_clean(c, host_ui);
1570 return 0;
1571
1572 out_ro:
1573 ubifs_ro_mode(c, err);
1574 finish_reservation(c);
1575 return err;
1576 }
1577
1578 /**
1579 * ubifs_jnl_change_xattr - change an extended attribute.
1580 * @c: UBIFS file-system description object
1581 * @inode: extended attribute inode
1582 * @host: host inode
1583 *
1584 * This function writes the updated version of an extended attribute inode and
1585 * the host inode to the journal (to the base head). The host inode is written
1586 * after the extended attribute inode in order to guarantee that the extended
1587 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1588 * consequently, the write-buffer is synchronized. This function returns zero
1589 * in case of success and a negative error code in case of failure.
1590 */
1591 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1592 const struct inode *host)
1593 {
1594 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1595 struct ubifs_inode *host_ui = ubifs_inode(host);
1596 struct ubifs_ino_node *ino;
1597 union ubifs_key key;
1598 int sync = IS_DIRSYNC(host);
1599
1600 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1601 ubifs_assert(host->i_nlink > 0);
1602 ubifs_assert(inode->i_nlink > 0);
1603 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1604
1605 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1606 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1607 aligned_len1 = ALIGN(len1, 8);
1608 aligned_len = aligned_len1 + ALIGN(len2, 8);
1609
1610 ino = kzalloc(aligned_len, GFP_NOFS);
1611 if (!ino)
1612 return -ENOMEM;
1613
1614 /* Make reservation before allocating sequence numbers */
1615 err = make_reservation(c, BASEHD, aligned_len);
1616 if (err)
1617 goto out_free;
1618
1619 pack_inode(c, ino, host, 0);
1620 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1621
1622 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1623 if (!sync && !err) {
1624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1625
1626 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1627 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1628 }
1629 release_head(c, BASEHD);
1630 if (err)
1631 goto out_ro;
1632
1633 ino_key_init(c, &key, host->i_ino);
1634 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1635 if (err)
1636 goto out_ro;
1637
1638 ino_key_init(c, &key, inode->i_ino);
1639 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1640 if (err)
1641 goto out_ro;
1642
1643 finish_reservation(c);
1644 spin_lock(&host_ui->ui_lock);
1645 host_ui->synced_i_size = host_ui->ui_size;
1646 spin_unlock(&host_ui->ui_lock);
1647 mark_inode_clean(c, host_ui);
1648 kfree(ino);
1649 return 0;
1650
1651 out_ro:
1652 ubifs_ro_mode(c, err);
1653 finish_reservation(c);
1654 out_free:
1655 kfree(ino);
1656 return err;
1657 }
1658