]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ubifs/journal.c
VFS: normal filesystems (and lustre): d_inode() annotations
[mirror_ubuntu-bionic-kernel.git] / fs / ubifs / journal.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61 #include "ubifs.h"
62
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71 }
72
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
82 }
83
84 /**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
87 */
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
89 {
90 memset(data->padding, 0, 2);
91 }
92
93 /**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
97 */
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99 {
100 memset(trun->padding, 0, 12);
101 }
102
103 /**
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
108 *
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
114 */
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
116 {
117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119
120 /*
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
124 */
125 ubifs_assert(!c->ro_media && !c->ro_mount);
126 squeeze = (jhead == BASEHD);
127 again:
128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129
130 if (c->ro_error) {
131 err = -EROFS;
132 goto out_unlock;
133 }
134
135 avail = c->leb_size - wbuf->offs - wbuf->used;
136 if (wbuf->lnum != -1 && avail >= len)
137 return 0;
138
139 /*
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
142 */
143 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144 if (lnum >= 0)
145 goto out;
146
147 err = lnum;
148 if (err != -ENOSPC)
149 goto out_unlock;
150
151 /*
152 * No free space, we have to run garbage collector to make
153 * some. But the write-buffer mutex has to be unlocked because
154 * GC also takes it.
155 */
156 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
157 mutex_unlock(&wbuf->io_mutex);
158
159 lnum = ubifs_garbage_collect(c, 0);
160 if (lnum < 0) {
161 err = lnum;
162 if (err != -ENOSPC)
163 return err;
164
165 /*
166 * GC could not make a free LEB. But someone else may
167 * have allocated new bud for this journal head,
168 * because we dropped @wbuf->io_mutex, so try once
169 * again.
170 */
171 dbg_jnl("GC couldn't make a free LEB for jhead %s",
172 dbg_jhead(jhead));
173 if (retries++ < 2) {
174 dbg_jnl("retry (%d)", retries);
175 goto again;
176 }
177
178 dbg_jnl("return -ENOSPC");
179 return err;
180 }
181
182 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
183 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
184 avail = c->leb_size - wbuf->offs - wbuf->used;
185
186 if (wbuf->lnum != -1 && avail >= len) {
187 /*
188 * Someone else has switched the journal head and we have
189 * enough space now. This happens when more than one process is
190 * trying to write to the same journal head at the same time.
191 */
192 dbg_jnl("return LEB %d back, already have LEB %d:%d",
193 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
194 err = ubifs_return_leb(c, lnum);
195 if (err)
196 goto out_unlock;
197 return 0;
198 }
199
200 offs = 0;
201
202 out:
203 /*
204 * Make sure we synchronize the write-buffer before we add the new bud
205 * to the log. Otherwise we may have a power cut after the log
206 * reference node for the last bud (@lnum) is written but before the
207 * write-buffer data are written to the next-to-last bud
208 * (@wbuf->lnum). And the effect would be that the recovery would see
209 * that there is corruption in the next-to-last bud.
210 */
211 err = ubifs_wbuf_sync_nolock(wbuf);
212 if (err)
213 goto out_return;
214 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
215 if (err)
216 goto out_return;
217 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
218 if (err)
219 goto out_unlock;
220
221 return 0;
222
223 out_unlock:
224 mutex_unlock(&wbuf->io_mutex);
225 return err;
226
227 out_return:
228 /* An error occurred and the LEB has to be returned to lprops */
229 ubifs_assert(err < 0);
230 err1 = ubifs_return_leb(c, lnum);
231 if (err1 && err == -EAGAIN)
232 /*
233 * Return original error code only if it is not %-EAGAIN,
234 * which is not really an error. Otherwise, return the error
235 * code of 'ubifs_return_leb()'.
236 */
237 err = err1;
238 mutex_unlock(&wbuf->io_mutex);
239 return err;
240 }
241
242 /**
243 * write_node - write node to a journal head.
244 * @c: UBIFS file-system description object
245 * @jhead: journal head
246 * @node: node to write
247 * @len: node length
248 * @lnum: LEB number written is returned here
249 * @offs: offset written is returned here
250 *
251 * This function writes a node to reserved space of journal head @jhead.
252 * Returns zero in case of success and a negative error code in case of
253 * failure.
254 */
255 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
256 int *lnum, int *offs)
257 {
258 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
259
260 ubifs_assert(jhead != GCHD);
261
262 *lnum = c->jheads[jhead].wbuf.lnum;
263 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
264
265 dbg_jnl("jhead %s, LEB %d:%d, len %d",
266 dbg_jhead(jhead), *lnum, *offs, len);
267 ubifs_prepare_node(c, node, len, 0);
268
269 return ubifs_wbuf_write_nolock(wbuf, node, len);
270 }
271
272 /**
273 * write_head - write data to a journal head.
274 * @c: UBIFS file-system description object
275 * @jhead: journal head
276 * @buf: buffer to write
277 * @len: length to write
278 * @lnum: LEB number written is returned here
279 * @offs: offset written is returned here
280 * @sync: non-zero if the write-buffer has to by synchronized
281 *
282 * This function is the same as 'write_node()' but it does not assume the
283 * buffer it is writing is a node, so it does not prepare it (which means
284 * initializing common header and calculating CRC).
285 */
286 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
287 int *lnum, int *offs, int sync)
288 {
289 int err;
290 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
291
292 ubifs_assert(jhead != GCHD);
293
294 *lnum = c->jheads[jhead].wbuf.lnum;
295 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
296 dbg_jnl("jhead %s, LEB %d:%d, len %d",
297 dbg_jhead(jhead), *lnum, *offs, len);
298
299 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 if (err)
301 return err;
302 if (sync)
303 err = ubifs_wbuf_sync_nolock(wbuf);
304 return err;
305 }
306
307 /**
308 * make_reservation - reserve journal space.
309 * @c: UBIFS file-system description object
310 * @jhead: journal head
311 * @len: how many bytes to reserve
312 *
313 * This function makes space reservation in journal head @jhead. The function
314 * takes the commit lock and locks the journal head, and the caller has to
315 * unlock the head and finish the reservation with 'finish_reservation()'.
316 * Returns zero in case of success and a negative error code in case of
317 * failure.
318 *
319 * Note, the journal head may be unlocked as soon as the data is written, while
320 * the commit lock has to be released after the data has been added to the
321 * TNC.
322 */
323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
324 {
325 int err, cmt_retries = 0, nospc_retries = 0;
326
327 again:
328 down_read(&c->commit_sem);
329 err = reserve_space(c, jhead, len);
330 if (!err)
331 return 0;
332 up_read(&c->commit_sem);
333
334 if (err == -ENOSPC) {
335 /*
336 * GC could not make any progress. We should try to commit
337 * once because it could make some dirty space and GC would
338 * make progress, so make the error -EAGAIN so that the below
339 * will commit and re-try.
340 */
341 if (nospc_retries++ < 2) {
342 dbg_jnl("no space, retry");
343 err = -EAGAIN;
344 }
345
346 /*
347 * This means that the budgeting is incorrect. We always have
348 * to be able to write to the media, because all operations are
349 * budgeted. Deletions are not budgeted, though, but we reserve
350 * an extra LEB for them.
351 */
352 }
353
354 if (err != -EAGAIN)
355 goto out;
356
357 /*
358 * -EAGAIN means that the journal is full or too large, or the above
359 * code wants to do one commit. Do this and re-try.
360 */
361 if (cmt_retries > 128) {
362 /*
363 * This should not happen unless the journal size limitations
364 * are too tough.
365 */
366 ubifs_err("stuck in space allocation");
367 err = -ENOSPC;
368 goto out;
369 } else if (cmt_retries > 32)
370 ubifs_warn("too many space allocation re-tries (%d)",
371 cmt_retries);
372
373 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
374 cmt_retries);
375 cmt_retries += 1;
376
377 err = ubifs_run_commit(c);
378 if (err)
379 return err;
380 goto again;
381
382 out:
383 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
384 len, jhead, err);
385 if (err == -ENOSPC) {
386 /* This are some budgeting problems, print useful information */
387 down_write(&c->commit_sem);
388 dump_stack();
389 ubifs_dump_budg(c, &c->bi);
390 ubifs_dump_lprops(c);
391 cmt_retries = dbg_check_lprops(c);
392 up_write(&c->commit_sem);
393 }
394 return err;
395 }
396
397 /**
398 * release_head - release a journal head.
399 * @c: UBIFS file-system description object
400 * @jhead: journal head
401 *
402 * This function releases journal head @jhead which was locked by
403 * the 'make_reservation()' function. It has to be called after each successful
404 * 'make_reservation()' invocation.
405 */
406 static inline void release_head(struct ubifs_info *c, int jhead)
407 {
408 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
409 }
410
411 /**
412 * finish_reservation - finish a reservation.
413 * @c: UBIFS file-system description object
414 *
415 * This function finishes journal space reservation. It must be called after
416 * 'make_reservation()'.
417 */
418 static void finish_reservation(struct ubifs_info *c)
419 {
420 up_read(&c->commit_sem);
421 }
422
423 /**
424 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
425 * @mode: inode mode
426 */
427 static int get_dent_type(int mode)
428 {
429 switch (mode & S_IFMT) {
430 case S_IFREG:
431 return UBIFS_ITYPE_REG;
432 case S_IFDIR:
433 return UBIFS_ITYPE_DIR;
434 case S_IFLNK:
435 return UBIFS_ITYPE_LNK;
436 case S_IFBLK:
437 return UBIFS_ITYPE_BLK;
438 case S_IFCHR:
439 return UBIFS_ITYPE_CHR;
440 case S_IFIFO:
441 return UBIFS_ITYPE_FIFO;
442 case S_IFSOCK:
443 return UBIFS_ITYPE_SOCK;
444 default:
445 BUG();
446 }
447 return 0;
448 }
449
450 /**
451 * pack_inode - pack an inode node.
452 * @c: UBIFS file-system description object
453 * @ino: buffer in which to pack inode node
454 * @inode: inode to pack
455 * @last: indicates the last node of the group
456 */
457 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
458 const struct inode *inode, int last)
459 {
460 int data_len = 0, last_reference = !inode->i_nlink;
461 struct ubifs_inode *ui = ubifs_inode(inode);
462
463 ino->ch.node_type = UBIFS_INO_NODE;
464 ino_key_init_flash(c, &ino->key, inode->i_ino);
465 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
466 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
467 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
468 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
469 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
470 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
471 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
472 ino->uid = cpu_to_le32(i_uid_read(inode));
473 ino->gid = cpu_to_le32(i_gid_read(inode));
474 ino->mode = cpu_to_le32(inode->i_mode);
475 ino->flags = cpu_to_le32(ui->flags);
476 ino->size = cpu_to_le64(ui->ui_size);
477 ino->nlink = cpu_to_le32(inode->i_nlink);
478 ino->compr_type = cpu_to_le16(ui->compr_type);
479 ino->data_len = cpu_to_le32(ui->data_len);
480 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
481 ino->xattr_size = cpu_to_le32(ui->xattr_size);
482 ino->xattr_names = cpu_to_le32(ui->xattr_names);
483 zero_ino_node_unused(ino);
484
485 /*
486 * Drop the attached data if this is a deletion inode, the data is not
487 * needed anymore.
488 */
489 if (!last_reference) {
490 memcpy(ino->data, ui->data, ui->data_len);
491 data_len = ui->data_len;
492 }
493
494 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
495 }
496
497 /**
498 * mark_inode_clean - mark UBIFS inode as clean.
499 * @c: UBIFS file-system description object
500 * @ui: UBIFS inode to mark as clean
501 *
502 * This helper function marks UBIFS inode @ui as clean by cleaning the
503 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
504 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
505 * just do nothing.
506 */
507 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
508 {
509 if (ui->dirty)
510 ubifs_release_dirty_inode_budget(c, ui);
511 ui->dirty = 0;
512 }
513
514 /**
515 * ubifs_jnl_update - update inode.
516 * @c: UBIFS file-system description object
517 * @dir: parent inode or host inode in case of extended attributes
518 * @nm: directory entry name
519 * @inode: inode to update
520 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
521 * @xent: non-zero if the directory entry is an extended attribute entry
522 *
523 * This function updates an inode by writing a directory entry (or extended
524 * attribute entry), the inode itself, and the parent directory inode (or the
525 * host inode) to the journal.
526 *
527 * The function writes the host inode @dir last, which is important in case of
528 * extended attributes. Indeed, then we guarantee that if the host inode gets
529 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
530 * the extended attribute inode gets flushed too. And this is exactly what the
531 * user expects - synchronizing the host inode synchronizes its extended
532 * attributes. Similarly, this guarantees that if @dir is synchronized, its
533 * directory entry corresponding to @nm gets synchronized too.
534 *
535 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
536 * function synchronizes the write-buffer.
537 *
538 * This function marks the @dir and @inode inodes as clean and returns zero on
539 * success. In case of failure, a negative error code is returned.
540 */
541 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
542 const struct qstr *nm, const struct inode *inode,
543 int deletion, int xent)
544 {
545 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
546 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
547 int last_reference = !!(deletion && inode->i_nlink == 0);
548 struct ubifs_inode *ui = ubifs_inode(inode);
549 struct ubifs_inode *host_ui = ubifs_inode(dir);
550 struct ubifs_dent_node *dent;
551 struct ubifs_ino_node *ino;
552 union ubifs_key dent_key, ino_key;
553
554 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
555 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
556 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
557
558 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
559 ilen = UBIFS_INO_NODE_SZ;
560
561 /*
562 * If the last reference to the inode is being deleted, then there is
563 * no need to attach and write inode data, it is being deleted anyway.
564 * And if the inode is being deleted, no need to synchronize
565 * write-buffer even if the inode is synchronous.
566 */
567 if (!last_reference) {
568 ilen += ui->data_len;
569 sync |= IS_SYNC(inode);
570 }
571
572 aligned_dlen = ALIGN(dlen, 8);
573 aligned_ilen = ALIGN(ilen, 8);
574
575 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
576 /* Make sure to also account for extended attributes */
577 len += host_ui->data_len;
578
579 dent = kmalloc(len, GFP_NOFS);
580 if (!dent)
581 return -ENOMEM;
582
583 /* Make reservation before allocating sequence numbers */
584 err = make_reservation(c, BASEHD, len);
585 if (err)
586 goto out_free;
587
588 if (!xent) {
589 dent->ch.node_type = UBIFS_DENT_NODE;
590 dent_key_init(c, &dent_key, dir->i_ino, nm);
591 } else {
592 dent->ch.node_type = UBIFS_XENT_NODE;
593 xent_key_init(c, &dent_key, dir->i_ino, nm);
594 }
595
596 key_write(c, &dent_key, dent->key);
597 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
598 dent->type = get_dent_type(inode->i_mode);
599 dent->nlen = cpu_to_le16(nm->len);
600 memcpy(dent->name, nm->name, nm->len);
601 dent->name[nm->len] = '\0';
602 zero_dent_node_unused(dent);
603 ubifs_prep_grp_node(c, dent, dlen, 0);
604
605 ino = (void *)dent + aligned_dlen;
606 pack_inode(c, ino, inode, 0);
607 ino = (void *)ino + aligned_ilen;
608 pack_inode(c, ino, dir, 1);
609
610 if (last_reference) {
611 err = ubifs_add_orphan(c, inode->i_ino);
612 if (err) {
613 release_head(c, BASEHD);
614 goto out_finish;
615 }
616 ui->del_cmtno = c->cmt_no;
617 }
618
619 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
620 if (err)
621 goto out_release;
622 if (!sync) {
623 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
624
625 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
626 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
627 }
628 release_head(c, BASEHD);
629 kfree(dent);
630
631 if (deletion) {
632 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
633 if (err)
634 goto out_ro;
635 err = ubifs_add_dirt(c, lnum, dlen);
636 } else
637 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
638 if (err)
639 goto out_ro;
640
641 /*
642 * Note, we do not remove the inode from TNC even if the last reference
643 * to it has just been deleted, because the inode may still be opened.
644 * Instead, the inode has been added to orphan lists and the orphan
645 * subsystem will take further care about it.
646 */
647 ino_key_init(c, &ino_key, inode->i_ino);
648 ino_offs = dent_offs + aligned_dlen;
649 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
650 if (err)
651 goto out_ro;
652
653 ino_key_init(c, &ino_key, dir->i_ino);
654 ino_offs += aligned_ilen;
655 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
656 UBIFS_INO_NODE_SZ + host_ui->data_len);
657 if (err)
658 goto out_ro;
659
660 finish_reservation(c);
661 spin_lock(&ui->ui_lock);
662 ui->synced_i_size = ui->ui_size;
663 spin_unlock(&ui->ui_lock);
664 mark_inode_clean(c, ui);
665 mark_inode_clean(c, host_ui);
666 return 0;
667
668 out_finish:
669 finish_reservation(c);
670 out_free:
671 kfree(dent);
672 return err;
673
674 out_release:
675 release_head(c, BASEHD);
676 kfree(dent);
677 out_ro:
678 ubifs_ro_mode(c, err);
679 if (last_reference)
680 ubifs_delete_orphan(c, inode->i_ino);
681 finish_reservation(c);
682 return err;
683 }
684
685 /**
686 * ubifs_jnl_write_data - write a data node to the journal.
687 * @c: UBIFS file-system description object
688 * @inode: inode the data node belongs to
689 * @key: node key
690 * @buf: buffer to write
691 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
692 *
693 * This function writes a data node to the journal. Returns %0 if the data node
694 * was successfully written, and a negative error code in case of failure.
695 */
696 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
697 const union ubifs_key *key, const void *buf, int len)
698 {
699 struct ubifs_data_node *data;
700 int err, lnum, offs, compr_type, out_len;
701 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
702 struct ubifs_inode *ui = ubifs_inode(inode);
703
704 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
705 (unsigned long)key_inum(c, key), key_block(c, key), len);
706 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
707
708 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
709 if (!data) {
710 /*
711 * Fall-back to the write reserve buffer. Note, we might be
712 * currently on the memory reclaim path, when the kernel is
713 * trying to free some memory by writing out dirty pages. The
714 * write reserve buffer helps us to guarantee that we are
715 * always able to write the data.
716 */
717 allocated = 0;
718 mutex_lock(&c->write_reserve_mutex);
719 data = c->write_reserve_buf;
720 }
721
722 data->ch.node_type = UBIFS_DATA_NODE;
723 key_write(c, key, &data->key);
724 data->size = cpu_to_le32(len);
725 zero_data_node_unused(data);
726
727 if (!(ui->flags & UBIFS_COMPR_FL))
728 /* Compression is disabled for this inode */
729 compr_type = UBIFS_COMPR_NONE;
730 else
731 compr_type = ui->compr_type;
732
733 out_len = dlen - UBIFS_DATA_NODE_SZ;
734 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
735 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
736
737 dlen = UBIFS_DATA_NODE_SZ + out_len;
738 data->compr_type = cpu_to_le16(compr_type);
739
740 /* Make reservation before allocating sequence numbers */
741 err = make_reservation(c, DATAHD, dlen);
742 if (err)
743 goto out_free;
744
745 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
746 if (err)
747 goto out_release;
748 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
749 release_head(c, DATAHD);
750
751 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
752 if (err)
753 goto out_ro;
754
755 finish_reservation(c);
756 if (!allocated)
757 mutex_unlock(&c->write_reserve_mutex);
758 else
759 kfree(data);
760 return 0;
761
762 out_release:
763 release_head(c, DATAHD);
764 out_ro:
765 ubifs_ro_mode(c, err);
766 finish_reservation(c);
767 out_free:
768 if (!allocated)
769 mutex_unlock(&c->write_reserve_mutex);
770 else
771 kfree(data);
772 return err;
773 }
774
775 /**
776 * ubifs_jnl_write_inode - flush inode to the journal.
777 * @c: UBIFS file-system description object
778 * @inode: inode to flush
779 *
780 * This function writes inode @inode to the journal. If the inode is
781 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
782 * success and a negative error code in case of failure.
783 */
784 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
785 {
786 int err, lnum, offs;
787 struct ubifs_ino_node *ino;
788 struct ubifs_inode *ui = ubifs_inode(inode);
789 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
790
791 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
792
793 /*
794 * If the inode is being deleted, do not write the attached data. No
795 * need to synchronize the write-buffer either.
796 */
797 if (!last_reference) {
798 len += ui->data_len;
799 sync = IS_SYNC(inode);
800 }
801 ino = kmalloc(len, GFP_NOFS);
802 if (!ino)
803 return -ENOMEM;
804
805 /* Make reservation before allocating sequence numbers */
806 err = make_reservation(c, BASEHD, len);
807 if (err)
808 goto out_free;
809
810 pack_inode(c, ino, inode, 1);
811 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
812 if (err)
813 goto out_release;
814 if (!sync)
815 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
816 inode->i_ino);
817 release_head(c, BASEHD);
818
819 if (last_reference) {
820 err = ubifs_tnc_remove_ino(c, inode->i_ino);
821 if (err)
822 goto out_ro;
823 ubifs_delete_orphan(c, inode->i_ino);
824 err = ubifs_add_dirt(c, lnum, len);
825 } else {
826 union ubifs_key key;
827
828 ino_key_init(c, &key, inode->i_ino);
829 err = ubifs_tnc_add(c, &key, lnum, offs, len);
830 }
831 if (err)
832 goto out_ro;
833
834 finish_reservation(c);
835 spin_lock(&ui->ui_lock);
836 ui->synced_i_size = ui->ui_size;
837 spin_unlock(&ui->ui_lock);
838 kfree(ino);
839 return 0;
840
841 out_release:
842 release_head(c, BASEHD);
843 out_ro:
844 ubifs_ro_mode(c, err);
845 finish_reservation(c);
846 out_free:
847 kfree(ino);
848 return err;
849 }
850
851 /**
852 * ubifs_jnl_delete_inode - delete an inode.
853 * @c: UBIFS file-system description object
854 * @inode: inode to delete
855 *
856 * This function deletes inode @inode which includes removing it from orphans,
857 * deleting it from TNC and, in some cases, writing a deletion inode to the
858 * journal.
859 *
860 * When regular file inodes are unlinked or a directory inode is removed, the
861 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
862 * direntry to the media, and adds the inode to orphans. After this, when the
863 * last reference to this inode has been dropped, this function is called. In
864 * general, it has to write one more deletion inode to the media, because if
865 * a commit happened between 'ubifs_jnl_update()' and
866 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
867 * anymore, and in fact it might not be on the flash anymore, because it might
868 * have been garbage-collected already. And for optimization reasons UBIFS does
869 * not read the orphan area if it has been unmounted cleanly, so it would have
870 * no indication in the journal that there is a deleted inode which has to be
871 * removed from TNC.
872 *
873 * However, if there was no commit between 'ubifs_jnl_update()' and
874 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
875 * inode to the media for the second time. And this is quite a typical case.
876 *
877 * This function returns zero in case of success and a negative error code in
878 * case of failure.
879 */
880 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
881 {
882 int err;
883 struct ubifs_inode *ui = ubifs_inode(inode);
884
885 ubifs_assert(inode->i_nlink == 0);
886
887 if (ui->del_cmtno != c->cmt_no)
888 /* A commit happened for sure */
889 return ubifs_jnl_write_inode(c, inode);
890
891 down_read(&c->commit_sem);
892 /*
893 * Check commit number again, because the first test has been done
894 * without @c->commit_sem, so a commit might have happened.
895 */
896 if (ui->del_cmtno != c->cmt_no) {
897 up_read(&c->commit_sem);
898 return ubifs_jnl_write_inode(c, inode);
899 }
900
901 err = ubifs_tnc_remove_ino(c, inode->i_ino);
902 if (err)
903 ubifs_ro_mode(c, err);
904 else
905 ubifs_delete_orphan(c, inode->i_ino);
906 up_read(&c->commit_sem);
907 return err;
908 }
909
910 /**
911 * ubifs_jnl_rename - rename a directory entry.
912 * @c: UBIFS file-system description object
913 * @old_dir: parent inode of directory entry to rename
914 * @old_dentry: directory entry to rename
915 * @new_dir: parent inode of directory entry to rename
916 * @new_dentry: new directory entry (or directory entry to replace)
917 * @sync: non-zero if the write-buffer has to be synchronized
918 *
919 * This function implements the re-name operation which may involve writing up
920 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
921 * and returns zero on success. In case of failure, a negative error code is
922 * returned.
923 */
924 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
925 const struct dentry *old_dentry,
926 const struct inode *new_dir,
927 const struct dentry *new_dentry, int sync)
928 {
929 void *p;
930 union ubifs_key key;
931 struct ubifs_dent_node *dent, *dent2;
932 int err, dlen1, dlen2, ilen, lnum, offs, len;
933 const struct inode *old_inode = d_inode(old_dentry);
934 const struct inode *new_inode = d_inode(new_dentry);
935 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
936 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
937 int move = (old_dir != new_dir);
938 struct ubifs_inode *uninitialized_var(new_ui);
939
940 dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
941 old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
942 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
943 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
944 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
945 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
946
947 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
948 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
949 if (new_inode) {
950 new_ui = ubifs_inode(new_inode);
951 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
952 ilen = UBIFS_INO_NODE_SZ;
953 if (!last_reference)
954 ilen += new_ui->data_len;
955 } else
956 ilen = 0;
957
958 aligned_dlen1 = ALIGN(dlen1, 8);
959 aligned_dlen2 = ALIGN(dlen2, 8);
960 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
961 if (old_dir != new_dir)
962 len += plen;
963 dent = kmalloc(len, GFP_NOFS);
964 if (!dent)
965 return -ENOMEM;
966
967 /* Make reservation before allocating sequence numbers */
968 err = make_reservation(c, BASEHD, len);
969 if (err)
970 goto out_free;
971
972 /* Make new dent */
973 dent->ch.node_type = UBIFS_DENT_NODE;
974 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
975 dent->inum = cpu_to_le64(old_inode->i_ino);
976 dent->type = get_dent_type(old_inode->i_mode);
977 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
978 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
979 dent->name[new_dentry->d_name.len] = '\0';
980 zero_dent_node_unused(dent);
981 ubifs_prep_grp_node(c, dent, dlen1, 0);
982
983 /* Make deletion dent */
984 dent2 = (void *)dent + aligned_dlen1;
985 dent2->ch.node_type = UBIFS_DENT_NODE;
986 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
987 &old_dentry->d_name);
988 dent2->inum = 0;
989 dent2->type = DT_UNKNOWN;
990 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
991 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
992 dent2->name[old_dentry->d_name.len] = '\0';
993 zero_dent_node_unused(dent2);
994 ubifs_prep_grp_node(c, dent2, dlen2, 0);
995
996 p = (void *)dent2 + aligned_dlen2;
997 if (new_inode) {
998 pack_inode(c, p, new_inode, 0);
999 p += ALIGN(ilen, 8);
1000 }
1001
1002 if (!move)
1003 pack_inode(c, p, old_dir, 1);
1004 else {
1005 pack_inode(c, p, old_dir, 0);
1006 p += ALIGN(plen, 8);
1007 pack_inode(c, p, new_dir, 1);
1008 }
1009
1010 if (last_reference) {
1011 err = ubifs_add_orphan(c, new_inode->i_ino);
1012 if (err) {
1013 release_head(c, BASEHD);
1014 goto out_finish;
1015 }
1016 new_ui->del_cmtno = c->cmt_no;
1017 }
1018
1019 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1020 if (err)
1021 goto out_release;
1022 if (!sync) {
1023 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024
1025 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1026 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1027 if (new_inode)
1028 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1029 new_inode->i_ino);
1030 }
1031 release_head(c, BASEHD);
1032
1033 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1034 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1035 if (err)
1036 goto out_ro;
1037
1038 err = ubifs_add_dirt(c, lnum, dlen2);
1039 if (err)
1040 goto out_ro;
1041
1042 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1043 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1044 if (err)
1045 goto out_ro;
1046
1047 offs += aligned_dlen1 + aligned_dlen2;
1048 if (new_inode) {
1049 ino_key_init(c, &key, new_inode->i_ino);
1050 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1051 if (err)
1052 goto out_ro;
1053 offs += ALIGN(ilen, 8);
1054 }
1055
1056 ino_key_init(c, &key, old_dir->i_ino);
1057 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1058 if (err)
1059 goto out_ro;
1060
1061 if (old_dir != new_dir) {
1062 offs += ALIGN(plen, 8);
1063 ino_key_init(c, &key, new_dir->i_ino);
1064 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1065 if (err)
1066 goto out_ro;
1067 }
1068
1069 finish_reservation(c);
1070 if (new_inode) {
1071 mark_inode_clean(c, new_ui);
1072 spin_lock(&new_ui->ui_lock);
1073 new_ui->synced_i_size = new_ui->ui_size;
1074 spin_unlock(&new_ui->ui_lock);
1075 }
1076 mark_inode_clean(c, ubifs_inode(old_dir));
1077 if (move)
1078 mark_inode_clean(c, ubifs_inode(new_dir));
1079 kfree(dent);
1080 return 0;
1081
1082 out_release:
1083 release_head(c, BASEHD);
1084 out_ro:
1085 ubifs_ro_mode(c, err);
1086 if (last_reference)
1087 ubifs_delete_orphan(c, new_inode->i_ino);
1088 out_finish:
1089 finish_reservation(c);
1090 out_free:
1091 kfree(dent);
1092 return err;
1093 }
1094
1095 /**
1096 * recomp_data_node - re-compress a truncated data node.
1097 * @dn: data node to re-compress
1098 * @new_len: new length
1099 *
1100 * This function is used when an inode is truncated and the last data node of
1101 * the inode has to be re-compressed and re-written.
1102 */
1103 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1104 {
1105 void *buf;
1106 int err, len, compr_type, out_len;
1107
1108 out_len = le32_to_cpu(dn->size);
1109 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1110 if (!buf)
1111 return -ENOMEM;
1112
1113 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1114 compr_type = le16_to_cpu(dn->compr_type);
1115 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1116 if (err)
1117 goto out;
1118
1119 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1120 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1121 dn->compr_type = cpu_to_le16(compr_type);
1122 dn->size = cpu_to_le32(*new_len);
1123 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1124 out:
1125 kfree(buf);
1126 return err;
1127 }
1128
1129 /**
1130 * ubifs_jnl_truncate - update the journal for a truncation.
1131 * @c: UBIFS file-system description object
1132 * @inode: inode to truncate
1133 * @old_size: old size
1134 * @new_size: new size
1135 *
1136 * When the size of a file decreases due to truncation, a truncation node is
1137 * written, the journal tree is updated, and the last data block is re-written
1138 * if it has been affected. The inode is also updated in order to synchronize
1139 * the new inode size.
1140 *
1141 * This function marks the inode as clean and returns zero on success. In case
1142 * of failure, a negative error code is returned.
1143 */
1144 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1145 loff_t old_size, loff_t new_size)
1146 {
1147 union ubifs_key key, to_key;
1148 struct ubifs_ino_node *ino;
1149 struct ubifs_trun_node *trun;
1150 struct ubifs_data_node *uninitialized_var(dn);
1151 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1152 struct ubifs_inode *ui = ubifs_inode(inode);
1153 ino_t inum = inode->i_ino;
1154 unsigned int blk;
1155
1156 dbg_jnl("ino %lu, size %lld -> %lld",
1157 (unsigned long)inum, old_size, new_size);
1158 ubifs_assert(!ui->data_len);
1159 ubifs_assert(S_ISREG(inode->i_mode));
1160 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1161
1162 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1163 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1164 ino = kmalloc(sz, GFP_NOFS);
1165 if (!ino)
1166 return -ENOMEM;
1167
1168 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1169 trun->ch.node_type = UBIFS_TRUN_NODE;
1170 trun->inum = cpu_to_le32(inum);
1171 trun->old_size = cpu_to_le64(old_size);
1172 trun->new_size = cpu_to_le64(new_size);
1173 zero_trun_node_unused(trun);
1174
1175 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1176 if (dlen) {
1177 /* Get last data block so it can be truncated */
1178 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1179 blk = new_size >> UBIFS_BLOCK_SHIFT;
1180 data_key_init(c, &key, inum, blk);
1181 dbg_jnlk(&key, "last block key ");
1182 err = ubifs_tnc_lookup(c, &key, dn);
1183 if (err == -ENOENT)
1184 dlen = 0; /* Not found (so it is a hole) */
1185 else if (err)
1186 goto out_free;
1187 else {
1188 if (le32_to_cpu(dn->size) <= dlen)
1189 dlen = 0; /* Nothing to do */
1190 else {
1191 int compr_type = le16_to_cpu(dn->compr_type);
1192
1193 if (compr_type != UBIFS_COMPR_NONE) {
1194 err = recomp_data_node(dn, &dlen);
1195 if (err)
1196 goto out_free;
1197 } else {
1198 dn->size = cpu_to_le32(dlen);
1199 dlen += UBIFS_DATA_NODE_SZ;
1200 }
1201 zero_data_node_unused(dn);
1202 }
1203 }
1204 }
1205
1206 /* Must make reservation before allocating sequence numbers */
1207 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1208 if (dlen)
1209 len += dlen;
1210 err = make_reservation(c, BASEHD, len);
1211 if (err)
1212 goto out_free;
1213
1214 pack_inode(c, ino, inode, 0);
1215 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1216 if (dlen)
1217 ubifs_prep_grp_node(c, dn, dlen, 1);
1218
1219 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1220 if (err)
1221 goto out_release;
1222 if (!sync)
1223 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1224 release_head(c, BASEHD);
1225
1226 if (dlen) {
1227 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1228 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1229 if (err)
1230 goto out_ro;
1231 }
1232
1233 ino_key_init(c, &key, inum);
1234 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1235 if (err)
1236 goto out_ro;
1237
1238 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1239 if (err)
1240 goto out_ro;
1241
1242 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1243 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1244 data_key_init(c, &key, inum, blk);
1245
1246 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1247 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1248 data_key_init(c, &to_key, inum, blk);
1249
1250 err = ubifs_tnc_remove_range(c, &key, &to_key);
1251 if (err)
1252 goto out_ro;
1253
1254 finish_reservation(c);
1255 spin_lock(&ui->ui_lock);
1256 ui->synced_i_size = ui->ui_size;
1257 spin_unlock(&ui->ui_lock);
1258 mark_inode_clean(c, ui);
1259 kfree(ino);
1260 return 0;
1261
1262 out_release:
1263 release_head(c, BASEHD);
1264 out_ro:
1265 ubifs_ro_mode(c, err);
1266 finish_reservation(c);
1267 out_free:
1268 kfree(ino);
1269 return err;
1270 }
1271
1272
1273 /**
1274 * ubifs_jnl_delete_xattr - delete an extended attribute.
1275 * @c: UBIFS file-system description object
1276 * @host: host inode
1277 * @inode: extended attribute inode
1278 * @nm: extended attribute entry name
1279 *
1280 * This function delete an extended attribute which is very similar to
1281 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1282 * updates the target inode. Returns zero in case of success and a negative
1283 * error code in case of failure.
1284 */
1285 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1286 const struct inode *inode, const struct qstr *nm)
1287 {
1288 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1289 struct ubifs_dent_node *xent;
1290 struct ubifs_ino_node *ino;
1291 union ubifs_key xent_key, key1, key2;
1292 int sync = IS_DIRSYNC(host);
1293 struct ubifs_inode *host_ui = ubifs_inode(host);
1294
1295 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1296 host->i_ino, inode->i_ino, nm->name,
1297 ubifs_inode(inode)->data_len);
1298 ubifs_assert(inode->i_nlink == 0);
1299 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1300
1301 /*
1302 * Since we are deleting the inode, we do not bother to attach any data
1303 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1304 */
1305 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1306 aligned_xlen = ALIGN(xlen, 8);
1307 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1308 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1309
1310 xent = kmalloc(len, GFP_NOFS);
1311 if (!xent)
1312 return -ENOMEM;
1313
1314 /* Make reservation before allocating sequence numbers */
1315 err = make_reservation(c, BASEHD, len);
1316 if (err) {
1317 kfree(xent);
1318 return err;
1319 }
1320
1321 xent->ch.node_type = UBIFS_XENT_NODE;
1322 xent_key_init(c, &xent_key, host->i_ino, nm);
1323 key_write(c, &xent_key, xent->key);
1324 xent->inum = 0;
1325 xent->type = get_dent_type(inode->i_mode);
1326 xent->nlen = cpu_to_le16(nm->len);
1327 memcpy(xent->name, nm->name, nm->len);
1328 xent->name[nm->len] = '\0';
1329 zero_dent_node_unused(xent);
1330 ubifs_prep_grp_node(c, xent, xlen, 0);
1331
1332 ino = (void *)xent + aligned_xlen;
1333 pack_inode(c, ino, inode, 0);
1334 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1335 pack_inode(c, ino, host, 1);
1336
1337 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1338 if (!sync && !err)
1339 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1340 release_head(c, BASEHD);
1341 kfree(xent);
1342 if (err)
1343 goto out_ro;
1344
1345 /* Remove the extended attribute entry from TNC */
1346 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1347 if (err)
1348 goto out_ro;
1349 err = ubifs_add_dirt(c, lnum, xlen);
1350 if (err)
1351 goto out_ro;
1352
1353 /*
1354 * Remove all nodes belonging to the extended attribute inode from TNC.
1355 * Well, there actually must be only one node - the inode itself.
1356 */
1357 lowest_ino_key(c, &key1, inode->i_ino);
1358 highest_ino_key(c, &key2, inode->i_ino);
1359 err = ubifs_tnc_remove_range(c, &key1, &key2);
1360 if (err)
1361 goto out_ro;
1362 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1363 if (err)
1364 goto out_ro;
1365
1366 /* And update TNC with the new host inode position */
1367 ino_key_init(c, &key1, host->i_ino);
1368 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1369 if (err)
1370 goto out_ro;
1371
1372 finish_reservation(c);
1373 spin_lock(&host_ui->ui_lock);
1374 host_ui->synced_i_size = host_ui->ui_size;
1375 spin_unlock(&host_ui->ui_lock);
1376 mark_inode_clean(c, host_ui);
1377 return 0;
1378
1379 out_ro:
1380 ubifs_ro_mode(c, err);
1381 finish_reservation(c);
1382 return err;
1383 }
1384
1385 /**
1386 * ubifs_jnl_change_xattr - change an extended attribute.
1387 * @c: UBIFS file-system description object
1388 * @inode: extended attribute inode
1389 * @host: host inode
1390 *
1391 * This function writes the updated version of an extended attribute inode and
1392 * the host inode to the journal (to the base head). The host inode is written
1393 * after the extended attribute inode in order to guarantee that the extended
1394 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1395 * consequently, the write-buffer is synchronized. This function returns zero
1396 * in case of success and a negative error code in case of failure.
1397 */
1398 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1399 const struct inode *host)
1400 {
1401 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1402 struct ubifs_inode *host_ui = ubifs_inode(host);
1403 struct ubifs_ino_node *ino;
1404 union ubifs_key key;
1405 int sync = IS_DIRSYNC(host);
1406
1407 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1408 ubifs_assert(host->i_nlink > 0);
1409 ubifs_assert(inode->i_nlink > 0);
1410 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1411
1412 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1413 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1414 aligned_len1 = ALIGN(len1, 8);
1415 aligned_len = aligned_len1 + ALIGN(len2, 8);
1416
1417 ino = kmalloc(aligned_len, GFP_NOFS);
1418 if (!ino)
1419 return -ENOMEM;
1420
1421 /* Make reservation before allocating sequence numbers */
1422 err = make_reservation(c, BASEHD, aligned_len);
1423 if (err)
1424 goto out_free;
1425
1426 pack_inode(c, ino, host, 0);
1427 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1428
1429 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1430 if (!sync && !err) {
1431 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1432
1433 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1434 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1435 }
1436 release_head(c, BASEHD);
1437 if (err)
1438 goto out_ro;
1439
1440 ino_key_init(c, &key, host->i_ino);
1441 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1442 if (err)
1443 goto out_ro;
1444
1445 ino_key_init(c, &key, inode->i_ino);
1446 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1447 if (err)
1448 goto out_ro;
1449
1450 finish_reservation(c);
1451 spin_lock(&host_ui->ui_lock);
1452 host_ui->synced_i_size = host_ui->ui_size;
1453 spin_unlock(&host_ui->ui_lock);
1454 mark_inode_clean(c, host_ui);
1455 kfree(ino);
1456 return 0;
1457
1458 out_ro:
1459 ubifs_ro_mode(c, err);
1460 finish_reservation(c);
1461 out_free:
1462 kfree(ino);
1463 return err;
1464 }
1465