]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ubifs/journal.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-jammy-kernel.git] / fs / ubifs / journal.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61 #include "ubifs.h"
62
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71 }
72
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 dent->padding1 = 0;
81 }
82
83 /**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
87 */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 memset(trun->padding, 0, 12);
91 }
92
93 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
94 {
95 if (ubifs_authenticated(c))
96 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
97 }
98
99 /**
100 * reserve_space - reserve space in the journal.
101 * @c: UBIFS file-system description object
102 * @jhead: journal head number
103 * @len: node length
104 *
105 * This function reserves space in journal head @head. If the reservation
106 * succeeded, the journal head stays locked and later has to be unlocked using
107 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
108 * be done, and other negative error codes in case of other failures.
109 */
110 static int reserve_space(struct ubifs_info *c, int jhead, int len)
111 {
112 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
113 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
114
115 /*
116 * Typically, the base head has smaller nodes written to it, so it is
117 * better to try to allocate space at the ends of eraseblocks. This is
118 * what the squeeze parameter does.
119 */
120 ubifs_assert(c, !c->ro_media && !c->ro_mount);
121 squeeze = (jhead == BASEHD);
122 again:
123 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
124
125 if (c->ro_error) {
126 err = -EROFS;
127 goto out_unlock;
128 }
129
130 avail = c->leb_size - wbuf->offs - wbuf->used;
131 if (wbuf->lnum != -1 && avail >= len)
132 return 0;
133
134 /*
135 * Write buffer wasn't seek'ed or there is no enough space - look for an
136 * LEB with some empty space.
137 */
138 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
139 if (lnum >= 0)
140 goto out;
141
142 err = lnum;
143 if (err != -ENOSPC)
144 goto out_unlock;
145
146 /*
147 * No free space, we have to run garbage collector to make
148 * some. But the write-buffer mutex has to be unlocked because
149 * GC also takes it.
150 */
151 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
152 mutex_unlock(&wbuf->io_mutex);
153
154 lnum = ubifs_garbage_collect(c, 0);
155 if (lnum < 0) {
156 err = lnum;
157 if (err != -ENOSPC)
158 return err;
159
160 /*
161 * GC could not make a free LEB. But someone else may
162 * have allocated new bud for this journal head,
163 * because we dropped @wbuf->io_mutex, so try once
164 * again.
165 */
166 dbg_jnl("GC couldn't make a free LEB for jhead %s",
167 dbg_jhead(jhead));
168 if (retries++ < 2) {
169 dbg_jnl("retry (%d)", retries);
170 goto again;
171 }
172
173 dbg_jnl("return -ENOSPC");
174 return err;
175 }
176
177 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
178 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
179 avail = c->leb_size - wbuf->offs - wbuf->used;
180
181 if (wbuf->lnum != -1 && avail >= len) {
182 /*
183 * Someone else has switched the journal head and we have
184 * enough space now. This happens when more than one process is
185 * trying to write to the same journal head at the same time.
186 */
187 dbg_jnl("return LEB %d back, already have LEB %d:%d",
188 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
189 err = ubifs_return_leb(c, lnum);
190 if (err)
191 goto out_unlock;
192 return 0;
193 }
194
195 offs = 0;
196
197 out:
198 /*
199 * Make sure we synchronize the write-buffer before we add the new bud
200 * to the log. Otherwise we may have a power cut after the log
201 * reference node for the last bud (@lnum) is written but before the
202 * write-buffer data are written to the next-to-last bud
203 * (@wbuf->lnum). And the effect would be that the recovery would see
204 * that there is corruption in the next-to-last bud.
205 */
206 err = ubifs_wbuf_sync_nolock(wbuf);
207 if (err)
208 goto out_return;
209 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
210 if (err)
211 goto out_return;
212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
213 if (err)
214 goto out_unlock;
215
216 return 0;
217
218 out_unlock:
219 mutex_unlock(&wbuf->io_mutex);
220 return err;
221
222 out_return:
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(c, err < 0);
225 err1 = ubifs_return_leb(c, lnum);
226 if (err1 && err == -EAGAIN)
227 /*
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
231 */
232 err = err1;
233 mutex_unlock(&wbuf->io_mutex);
234 return err;
235 }
236
237 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
238 int len, struct shash_desc *hash)
239 {
240 int auth_node_size = ubifs_auth_node_sz(c);
241 int err;
242
243 while (1) {
244 const struct ubifs_ch *ch = node;
245 int nodelen = le32_to_cpu(ch->len);
246
247 ubifs_assert(c, len >= auth_node_size);
248
249 if (len == auth_node_size)
250 break;
251
252 ubifs_assert(c, len > nodelen);
253 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
254
255 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
256 if (err)
257 return err;
258
259 node += ALIGN(nodelen, 8);
260 len -= ALIGN(nodelen, 8);
261 }
262
263 return ubifs_prepare_auth_node(c, node, hash);
264 }
265
266 /**
267 * write_head - write data to a journal head.
268 * @c: UBIFS file-system description object
269 * @jhead: journal head
270 * @buf: buffer to write
271 * @len: length to write
272 * @lnum: LEB number written is returned here
273 * @offs: offset written is returned here
274 * @sync: non-zero if the write-buffer has to by synchronized
275 *
276 * This function writes data to the reserved space of journal head @jhead.
277 * Returns zero in case of success and a negative error code in case of
278 * failure.
279 */
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 int *lnum, int *offs, int sync)
282 {
283 int err;
284 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
285
286 ubifs_assert(c, jhead != GCHD);
287
288 *lnum = c->jheads[jhead].wbuf.lnum;
289 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 dbg_jhead(jhead), *lnum, *offs, len);
292
293 if (ubifs_authenticated(c)) {
294 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
295 if (err)
296 return err;
297 }
298
299 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 if (err)
301 return err;
302 if (sync)
303 err = ubifs_wbuf_sync_nolock(wbuf);
304 return err;
305 }
306
307 /**
308 * make_reservation - reserve journal space.
309 * @c: UBIFS file-system description object
310 * @jhead: journal head
311 * @len: how many bytes to reserve
312 *
313 * This function makes space reservation in journal head @jhead. The function
314 * takes the commit lock and locks the journal head, and the caller has to
315 * unlock the head and finish the reservation with 'finish_reservation()'.
316 * Returns zero in case of success and a negative error code in case of
317 * failure.
318 *
319 * Note, the journal head may be unlocked as soon as the data is written, while
320 * the commit lock has to be released after the data has been added to the
321 * TNC.
322 */
323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
324 {
325 int err, cmt_retries = 0, nospc_retries = 0;
326
327 again:
328 down_read(&c->commit_sem);
329 err = reserve_space(c, jhead, len);
330 if (!err)
331 /* c->commit_sem will get released via finish_reservation(). */
332 return 0;
333 up_read(&c->commit_sem);
334
335 if (err == -ENOSPC) {
336 /*
337 * GC could not make any progress. We should try to commit
338 * once because it could make some dirty space and GC would
339 * make progress, so make the error -EAGAIN so that the below
340 * will commit and re-try.
341 */
342 if (nospc_retries++ < 2) {
343 dbg_jnl("no space, retry");
344 err = -EAGAIN;
345 }
346
347 /*
348 * This means that the budgeting is incorrect. We always have
349 * to be able to write to the media, because all operations are
350 * budgeted. Deletions are not budgeted, though, but we reserve
351 * an extra LEB for them.
352 */
353 }
354
355 if (err != -EAGAIN)
356 goto out;
357
358 /*
359 * -EAGAIN means that the journal is full or too large, or the above
360 * code wants to do one commit. Do this and re-try.
361 */
362 if (cmt_retries > 128) {
363 /*
364 * This should not happen unless the journal size limitations
365 * are too tough.
366 */
367 ubifs_err(c, "stuck in space allocation");
368 err = -ENOSPC;
369 goto out;
370 } else if (cmt_retries > 32)
371 ubifs_warn(c, "too many space allocation re-tries (%d)",
372 cmt_retries);
373
374 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
375 cmt_retries);
376 cmt_retries += 1;
377
378 err = ubifs_run_commit(c);
379 if (err)
380 return err;
381 goto again;
382
383 out:
384 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
385 len, jhead, err);
386 if (err == -ENOSPC) {
387 /* This are some budgeting problems, print useful information */
388 down_write(&c->commit_sem);
389 dump_stack();
390 ubifs_dump_budg(c, &c->bi);
391 ubifs_dump_lprops(c);
392 cmt_retries = dbg_check_lprops(c);
393 up_write(&c->commit_sem);
394 }
395 return err;
396 }
397
398 /**
399 * release_head - release a journal head.
400 * @c: UBIFS file-system description object
401 * @jhead: journal head
402 *
403 * This function releases journal head @jhead which was locked by
404 * the 'make_reservation()' function. It has to be called after each successful
405 * 'make_reservation()' invocation.
406 */
407 static inline void release_head(struct ubifs_info *c, int jhead)
408 {
409 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
410 }
411
412 /**
413 * finish_reservation - finish a reservation.
414 * @c: UBIFS file-system description object
415 *
416 * This function finishes journal space reservation. It must be called after
417 * 'make_reservation()'.
418 */
419 static void finish_reservation(struct ubifs_info *c)
420 {
421 up_read(&c->commit_sem);
422 }
423
424 /**
425 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
426 * @mode: inode mode
427 */
428 static int get_dent_type(int mode)
429 {
430 switch (mode & S_IFMT) {
431 case S_IFREG:
432 return UBIFS_ITYPE_REG;
433 case S_IFDIR:
434 return UBIFS_ITYPE_DIR;
435 case S_IFLNK:
436 return UBIFS_ITYPE_LNK;
437 case S_IFBLK:
438 return UBIFS_ITYPE_BLK;
439 case S_IFCHR:
440 return UBIFS_ITYPE_CHR;
441 case S_IFIFO:
442 return UBIFS_ITYPE_FIFO;
443 case S_IFSOCK:
444 return UBIFS_ITYPE_SOCK;
445 default:
446 BUG();
447 }
448 return 0;
449 }
450
451 /**
452 * pack_inode - pack an inode node.
453 * @c: UBIFS file-system description object
454 * @ino: buffer in which to pack inode node
455 * @inode: inode to pack
456 * @last: indicates the last node of the group
457 */
458 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
459 const struct inode *inode, int last)
460 {
461 int data_len = 0, last_reference = !inode->i_nlink;
462 struct ubifs_inode *ui = ubifs_inode(inode);
463
464 ino->ch.node_type = UBIFS_INO_NODE;
465 ino_key_init_flash(c, &ino->key, inode->i_ino);
466 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
467 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
468 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
469 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
470 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
471 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
472 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
473 ino->uid = cpu_to_le32(i_uid_read(inode));
474 ino->gid = cpu_to_le32(i_gid_read(inode));
475 ino->mode = cpu_to_le32(inode->i_mode);
476 ino->flags = cpu_to_le32(ui->flags);
477 ino->size = cpu_to_le64(ui->ui_size);
478 ino->nlink = cpu_to_le32(inode->i_nlink);
479 ino->compr_type = cpu_to_le16(ui->compr_type);
480 ino->data_len = cpu_to_le32(ui->data_len);
481 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
482 ino->xattr_size = cpu_to_le32(ui->xattr_size);
483 ino->xattr_names = cpu_to_le32(ui->xattr_names);
484 zero_ino_node_unused(ino);
485
486 /*
487 * Drop the attached data if this is a deletion inode, the data is not
488 * needed anymore.
489 */
490 if (!last_reference) {
491 memcpy(ino->data, ui->data, ui->data_len);
492 data_len = ui->data_len;
493 }
494
495 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
496 }
497
498 /**
499 * mark_inode_clean - mark UBIFS inode as clean.
500 * @c: UBIFS file-system description object
501 * @ui: UBIFS inode to mark as clean
502 *
503 * This helper function marks UBIFS inode @ui as clean by cleaning the
504 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
505 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
506 * just do nothing.
507 */
508 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
509 {
510 if (ui->dirty)
511 ubifs_release_dirty_inode_budget(c, ui);
512 ui->dirty = 0;
513 }
514
515 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
516 {
517 if (c->double_hash)
518 dent->cookie = prandom_u32();
519 else
520 dent->cookie = 0;
521 }
522
523 /**
524 * ubifs_jnl_update - update inode.
525 * @c: UBIFS file-system description object
526 * @dir: parent inode or host inode in case of extended attributes
527 * @nm: directory entry name
528 * @inode: inode to update
529 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
530 * @xent: non-zero if the directory entry is an extended attribute entry
531 *
532 * This function updates an inode by writing a directory entry (or extended
533 * attribute entry), the inode itself, and the parent directory inode (or the
534 * host inode) to the journal.
535 *
536 * The function writes the host inode @dir last, which is important in case of
537 * extended attributes. Indeed, then we guarantee that if the host inode gets
538 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
539 * the extended attribute inode gets flushed too. And this is exactly what the
540 * user expects - synchronizing the host inode synchronizes its extended
541 * attributes. Similarly, this guarantees that if @dir is synchronized, its
542 * directory entry corresponding to @nm gets synchronized too.
543 *
544 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
545 * function synchronizes the write-buffer.
546 *
547 * This function marks the @dir and @inode inodes as clean and returns zero on
548 * success. In case of failure, a negative error code is returned.
549 */
550 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
551 const struct fscrypt_name *nm, const struct inode *inode,
552 int deletion, int xent)
553 {
554 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
555 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
556 int last_reference = !!(deletion && inode->i_nlink == 0);
557 struct ubifs_inode *ui = ubifs_inode(inode);
558 struct ubifs_inode *host_ui = ubifs_inode(dir);
559 struct ubifs_dent_node *dent;
560 struct ubifs_ino_node *ino;
561 union ubifs_key dent_key, ino_key;
562 u8 hash_dent[UBIFS_HASH_ARR_SZ];
563 u8 hash_ino[UBIFS_HASH_ARR_SZ];
564 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
565
566 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
567
568 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
569 ilen = UBIFS_INO_NODE_SZ;
570
571 /*
572 * If the last reference to the inode is being deleted, then there is
573 * no need to attach and write inode data, it is being deleted anyway.
574 * And if the inode is being deleted, no need to synchronize
575 * write-buffer even if the inode is synchronous.
576 */
577 if (!last_reference) {
578 ilen += ui->data_len;
579 sync |= IS_SYNC(inode);
580 }
581
582 aligned_dlen = ALIGN(dlen, 8);
583 aligned_ilen = ALIGN(ilen, 8);
584
585 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
586 /* Make sure to also account for extended attributes */
587 if (ubifs_authenticated(c))
588 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
589 else
590 len += host_ui->data_len;
591
592 dent = kzalloc(len, GFP_NOFS);
593 if (!dent)
594 return -ENOMEM;
595
596 /* Make reservation before allocating sequence numbers */
597 err = make_reservation(c, BASEHD, len);
598 if (err)
599 goto out_free;
600
601 if (!xent) {
602 dent->ch.node_type = UBIFS_DENT_NODE;
603 if (nm->hash)
604 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
605 else
606 dent_key_init(c, &dent_key, dir->i_ino, nm);
607 } else {
608 dent->ch.node_type = UBIFS_XENT_NODE;
609 xent_key_init(c, &dent_key, dir->i_ino, nm);
610 }
611
612 key_write(c, &dent_key, dent->key);
613 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
614 dent->type = get_dent_type(inode->i_mode);
615 dent->nlen = cpu_to_le16(fname_len(nm));
616 memcpy(dent->name, fname_name(nm), fname_len(nm));
617 dent->name[fname_len(nm)] = '\0';
618 set_dent_cookie(c, dent);
619
620 zero_dent_node_unused(dent);
621 ubifs_prep_grp_node(c, dent, dlen, 0);
622 err = ubifs_node_calc_hash(c, dent, hash_dent);
623 if (err)
624 goto out_release;
625
626 ino = (void *)dent + aligned_dlen;
627 pack_inode(c, ino, inode, 0);
628 err = ubifs_node_calc_hash(c, ino, hash_ino);
629 if (err)
630 goto out_release;
631
632 ino = (void *)ino + aligned_ilen;
633 pack_inode(c, ino, dir, 1);
634 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
635 if (err)
636 goto out_release;
637
638 if (last_reference) {
639 err = ubifs_add_orphan(c, inode->i_ino);
640 if (err) {
641 release_head(c, BASEHD);
642 goto out_finish;
643 }
644 ui->del_cmtno = c->cmt_no;
645 }
646
647 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
648 if (err)
649 goto out_release;
650 if (!sync) {
651 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
652
653 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
654 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
655 }
656 release_head(c, BASEHD);
657 kfree(dent);
658 ubifs_add_auth_dirt(c, lnum);
659
660 if (deletion) {
661 if (nm->hash)
662 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
663 else
664 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
665 if (err)
666 goto out_ro;
667 err = ubifs_add_dirt(c, lnum, dlen);
668 } else
669 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
670 hash_dent, nm);
671 if (err)
672 goto out_ro;
673
674 /*
675 * Note, we do not remove the inode from TNC even if the last reference
676 * to it has just been deleted, because the inode may still be opened.
677 * Instead, the inode has been added to orphan lists and the orphan
678 * subsystem will take further care about it.
679 */
680 ino_key_init(c, &ino_key, inode->i_ino);
681 ino_offs = dent_offs + aligned_dlen;
682 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
683 if (err)
684 goto out_ro;
685
686 ino_key_init(c, &ino_key, dir->i_ino);
687 ino_offs += aligned_ilen;
688 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
689 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
690 if (err)
691 goto out_ro;
692
693 finish_reservation(c);
694 spin_lock(&ui->ui_lock);
695 ui->synced_i_size = ui->ui_size;
696 spin_unlock(&ui->ui_lock);
697 if (xent) {
698 spin_lock(&host_ui->ui_lock);
699 host_ui->synced_i_size = host_ui->ui_size;
700 spin_unlock(&host_ui->ui_lock);
701 }
702 mark_inode_clean(c, ui);
703 mark_inode_clean(c, host_ui);
704 return 0;
705
706 out_finish:
707 finish_reservation(c);
708 out_free:
709 kfree(dent);
710 return err;
711
712 out_release:
713 release_head(c, BASEHD);
714 kfree(dent);
715 out_ro:
716 ubifs_ro_mode(c, err);
717 if (last_reference)
718 ubifs_delete_orphan(c, inode->i_ino);
719 finish_reservation(c);
720 return err;
721 }
722
723 /**
724 * ubifs_jnl_write_data - write a data node to the journal.
725 * @c: UBIFS file-system description object
726 * @inode: inode the data node belongs to
727 * @key: node key
728 * @buf: buffer to write
729 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
730 *
731 * This function writes a data node to the journal. Returns %0 if the data node
732 * was successfully written, and a negative error code in case of failure.
733 */
734 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
735 const union ubifs_key *key, const void *buf, int len)
736 {
737 struct ubifs_data_node *data;
738 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
739 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
740 int write_len;
741 struct ubifs_inode *ui = ubifs_inode(inode);
742 bool encrypted = ubifs_crypt_is_encrypted(inode);
743 u8 hash[UBIFS_HASH_ARR_SZ];
744
745 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
746 (unsigned long)key_inum(c, key), key_block(c, key), len);
747 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
748
749 if (encrypted)
750 dlen += UBIFS_CIPHER_BLOCK_SIZE;
751
752 auth_len = ubifs_auth_node_sz(c);
753
754 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
755 if (!data) {
756 /*
757 * Fall-back to the write reserve buffer. Note, we might be
758 * currently on the memory reclaim path, when the kernel is
759 * trying to free some memory by writing out dirty pages. The
760 * write reserve buffer helps us to guarantee that we are
761 * always able to write the data.
762 */
763 allocated = 0;
764 mutex_lock(&c->write_reserve_mutex);
765 data = c->write_reserve_buf;
766 }
767
768 data->ch.node_type = UBIFS_DATA_NODE;
769 key_write(c, key, &data->key);
770 data->size = cpu_to_le32(len);
771
772 if (!(ui->flags & UBIFS_COMPR_FL))
773 /* Compression is disabled for this inode */
774 compr_type = UBIFS_COMPR_NONE;
775 else
776 compr_type = ui->compr_type;
777
778 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
779 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
780 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
781
782 if (encrypted) {
783 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
784 if (err)
785 goto out_free;
786
787 } else {
788 data->compr_size = 0;
789 out_len = compr_len;
790 }
791
792 dlen = UBIFS_DATA_NODE_SZ + out_len;
793 if (ubifs_authenticated(c))
794 write_len = ALIGN(dlen, 8) + auth_len;
795 else
796 write_len = dlen;
797
798 data->compr_type = cpu_to_le16(compr_type);
799
800 /* Make reservation before allocating sequence numbers */
801 err = make_reservation(c, DATAHD, write_len);
802 if (err)
803 goto out_free;
804
805 ubifs_prepare_node(c, data, dlen, 0);
806 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
807 if (err)
808 goto out_release;
809
810 err = ubifs_node_calc_hash(c, data, hash);
811 if (err)
812 goto out_release;
813
814 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
815 release_head(c, DATAHD);
816
817 ubifs_add_auth_dirt(c, lnum);
818
819 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
820 if (err)
821 goto out_ro;
822
823 finish_reservation(c);
824 if (!allocated)
825 mutex_unlock(&c->write_reserve_mutex);
826 else
827 kfree(data);
828 return 0;
829
830 out_release:
831 release_head(c, DATAHD);
832 out_ro:
833 ubifs_ro_mode(c, err);
834 finish_reservation(c);
835 out_free:
836 if (!allocated)
837 mutex_unlock(&c->write_reserve_mutex);
838 else
839 kfree(data);
840 return err;
841 }
842
843 /**
844 * ubifs_jnl_write_inode - flush inode to the journal.
845 * @c: UBIFS file-system description object
846 * @inode: inode to flush
847 *
848 * This function writes inode @inode to the journal. If the inode is
849 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
850 * success and a negative error code in case of failure.
851 */
852 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
853 {
854 int err, lnum, offs;
855 struct ubifs_ino_node *ino, *ino_start;
856 struct ubifs_inode *ui = ubifs_inode(inode);
857 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
858 int last_reference = !inode->i_nlink;
859 int kill_xattrs = ui->xattr_cnt && last_reference;
860 u8 hash[UBIFS_HASH_ARR_SZ];
861
862 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
863
864 /*
865 * If the inode is being deleted, do not write the attached data. No
866 * need to synchronize the write-buffer either.
867 */
868 if (!last_reference) {
869 ilen += ui->data_len;
870 sync = IS_SYNC(inode);
871 } else if (kill_xattrs) {
872 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
873 }
874
875 if (ubifs_authenticated(c))
876 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
877 else
878 write_len += ilen;
879
880 ino_start = ino = kmalloc(write_len, GFP_NOFS);
881 if (!ino)
882 return -ENOMEM;
883
884 /* Make reservation before allocating sequence numbers */
885 err = make_reservation(c, BASEHD, write_len);
886 if (err)
887 goto out_free;
888
889 if (kill_xattrs) {
890 union ubifs_key key;
891 struct fscrypt_name nm = {0};
892 struct inode *xino;
893 struct ubifs_dent_node *xent, *pxent = NULL;
894
895 if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
896 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
897 goto out_release;
898 }
899
900 lowest_xent_key(c, &key, inode->i_ino);
901 while (1) {
902 xent = ubifs_tnc_next_ent(c, &key, &nm);
903 if (IS_ERR(xent)) {
904 err = PTR_ERR(xent);
905 if (err == -ENOENT)
906 break;
907
908 goto out_release;
909 }
910
911 fname_name(&nm) = xent->name;
912 fname_len(&nm) = le16_to_cpu(xent->nlen);
913
914 xino = ubifs_iget(c->vfs_sb, xent->inum);
915 if (IS_ERR(xino)) {
916 err = PTR_ERR(xino);
917 ubifs_err(c, "dead directory entry '%s', error %d",
918 xent->name, err);
919 ubifs_ro_mode(c, err);
920 goto out_release;
921 }
922 ubifs_assert(c, ubifs_inode(xino)->xattr);
923
924 clear_nlink(xino);
925 pack_inode(c, ino, xino, 0);
926 ino = (void *)ino + UBIFS_INO_NODE_SZ;
927 iput(xino);
928
929 kfree(pxent);
930 pxent = xent;
931 key_read(c, &xent->key, &key);
932 }
933 kfree(pxent);
934 }
935
936 pack_inode(c, ino, inode, 1);
937 err = ubifs_node_calc_hash(c, ino, hash);
938 if (err)
939 goto out_release;
940
941 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
942 if (err)
943 goto out_release;
944 if (!sync)
945 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
946 inode->i_ino);
947 release_head(c, BASEHD);
948
949 ubifs_add_auth_dirt(c, lnum);
950
951 if (last_reference) {
952 err = ubifs_tnc_remove_ino(c, inode->i_ino);
953 if (err)
954 goto out_ro;
955 ubifs_delete_orphan(c, inode->i_ino);
956 err = ubifs_add_dirt(c, lnum, write_len);
957 } else {
958 union ubifs_key key;
959
960 ino_key_init(c, &key, inode->i_ino);
961 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
962 }
963 if (err)
964 goto out_ro;
965
966 finish_reservation(c);
967 spin_lock(&ui->ui_lock);
968 ui->synced_i_size = ui->ui_size;
969 spin_unlock(&ui->ui_lock);
970 kfree(ino_start);
971 return 0;
972
973 out_release:
974 release_head(c, BASEHD);
975 out_ro:
976 ubifs_ro_mode(c, err);
977 finish_reservation(c);
978 out_free:
979 kfree(ino_start);
980 return err;
981 }
982
983 /**
984 * ubifs_jnl_delete_inode - delete an inode.
985 * @c: UBIFS file-system description object
986 * @inode: inode to delete
987 *
988 * This function deletes inode @inode which includes removing it from orphans,
989 * deleting it from TNC and, in some cases, writing a deletion inode to the
990 * journal.
991 *
992 * When regular file inodes are unlinked or a directory inode is removed, the
993 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
994 * direntry to the media, and adds the inode to orphans. After this, when the
995 * last reference to this inode has been dropped, this function is called. In
996 * general, it has to write one more deletion inode to the media, because if
997 * a commit happened between 'ubifs_jnl_update()' and
998 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
999 * anymore, and in fact it might not be on the flash anymore, because it might
1000 * have been garbage-collected already. And for optimization reasons UBIFS does
1001 * not read the orphan area if it has been unmounted cleanly, so it would have
1002 * no indication in the journal that there is a deleted inode which has to be
1003 * removed from TNC.
1004 *
1005 * However, if there was no commit between 'ubifs_jnl_update()' and
1006 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1007 * inode to the media for the second time. And this is quite a typical case.
1008 *
1009 * This function returns zero in case of success and a negative error code in
1010 * case of failure.
1011 */
1012 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1013 {
1014 int err;
1015 struct ubifs_inode *ui = ubifs_inode(inode);
1016
1017 ubifs_assert(c, inode->i_nlink == 0);
1018
1019 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1020 /* A commit happened for sure or inode hosts xattrs */
1021 return ubifs_jnl_write_inode(c, inode);
1022
1023 down_read(&c->commit_sem);
1024 /*
1025 * Check commit number again, because the first test has been done
1026 * without @c->commit_sem, so a commit might have happened.
1027 */
1028 if (ui->del_cmtno != c->cmt_no) {
1029 up_read(&c->commit_sem);
1030 return ubifs_jnl_write_inode(c, inode);
1031 }
1032
1033 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1034 if (err)
1035 ubifs_ro_mode(c, err);
1036 else
1037 ubifs_delete_orphan(c, inode->i_ino);
1038 up_read(&c->commit_sem);
1039 return err;
1040 }
1041
1042 /**
1043 * ubifs_jnl_xrename - cross rename two directory entries.
1044 * @c: UBIFS file-system description object
1045 * @fst_dir: parent inode of 1st directory entry to exchange
1046 * @fst_inode: 1st inode to exchange
1047 * @fst_nm: name of 1st inode to exchange
1048 * @snd_dir: parent inode of 2nd directory entry to exchange
1049 * @snd_inode: 2nd inode to exchange
1050 * @snd_nm: name of 2nd inode to exchange
1051 * @sync: non-zero if the write-buffer has to be synchronized
1052 *
1053 * This function implements the cross rename operation which may involve
1054 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1055 * and returns zero on success. In case of failure, a negative error code is
1056 * returned.
1057 */
1058 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1059 const struct inode *fst_inode,
1060 const struct fscrypt_name *fst_nm,
1061 const struct inode *snd_dir,
1062 const struct inode *snd_inode,
1063 const struct fscrypt_name *snd_nm, int sync)
1064 {
1065 union ubifs_key key;
1066 struct ubifs_dent_node *dent1, *dent2;
1067 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1068 int aligned_dlen1, aligned_dlen2;
1069 int twoparents = (fst_dir != snd_dir);
1070 void *p;
1071 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1072 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1073 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1074 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1075
1076 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1077 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1078 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1079 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1080
1081 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1082 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1083 aligned_dlen1 = ALIGN(dlen1, 8);
1084 aligned_dlen2 = ALIGN(dlen2, 8);
1085
1086 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1087 if (twoparents)
1088 len += plen;
1089
1090 len += ubifs_auth_node_sz(c);
1091
1092 dent1 = kzalloc(len, GFP_NOFS);
1093 if (!dent1)
1094 return -ENOMEM;
1095
1096 /* Make reservation before allocating sequence numbers */
1097 err = make_reservation(c, BASEHD, len);
1098 if (err)
1099 goto out_free;
1100
1101 /* Make new dent for 1st entry */
1102 dent1->ch.node_type = UBIFS_DENT_NODE;
1103 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1104 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1105 dent1->type = get_dent_type(fst_inode->i_mode);
1106 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1107 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1108 dent1->name[fname_len(snd_nm)] = '\0';
1109 set_dent_cookie(c, dent1);
1110 zero_dent_node_unused(dent1);
1111 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1112 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1113 if (err)
1114 goto out_release;
1115
1116 /* Make new dent for 2nd entry */
1117 dent2 = (void *)dent1 + aligned_dlen1;
1118 dent2->ch.node_type = UBIFS_DENT_NODE;
1119 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1120 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1121 dent2->type = get_dent_type(snd_inode->i_mode);
1122 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1123 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1124 dent2->name[fname_len(fst_nm)] = '\0';
1125 set_dent_cookie(c, dent2);
1126 zero_dent_node_unused(dent2);
1127 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1128 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1129 if (err)
1130 goto out_release;
1131
1132 p = (void *)dent2 + aligned_dlen2;
1133 if (!twoparents) {
1134 pack_inode(c, p, fst_dir, 1);
1135 err = ubifs_node_calc_hash(c, p, hash_p1);
1136 if (err)
1137 goto out_release;
1138 } else {
1139 pack_inode(c, p, fst_dir, 0);
1140 err = ubifs_node_calc_hash(c, p, hash_p1);
1141 if (err)
1142 goto out_release;
1143 p += ALIGN(plen, 8);
1144 pack_inode(c, p, snd_dir, 1);
1145 err = ubifs_node_calc_hash(c, p, hash_p2);
1146 if (err)
1147 goto out_release;
1148 }
1149
1150 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1151 if (err)
1152 goto out_release;
1153 if (!sync) {
1154 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1155
1156 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1157 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1158 }
1159 release_head(c, BASEHD);
1160
1161 ubifs_add_auth_dirt(c, lnum);
1162
1163 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1164 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1165 if (err)
1166 goto out_ro;
1167
1168 offs += aligned_dlen1;
1169 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1170 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1171 if (err)
1172 goto out_ro;
1173
1174 offs += aligned_dlen2;
1175
1176 ino_key_init(c, &key, fst_dir->i_ino);
1177 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1178 if (err)
1179 goto out_ro;
1180
1181 if (twoparents) {
1182 offs += ALIGN(plen, 8);
1183 ino_key_init(c, &key, snd_dir->i_ino);
1184 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1185 if (err)
1186 goto out_ro;
1187 }
1188
1189 finish_reservation(c);
1190
1191 mark_inode_clean(c, ubifs_inode(fst_dir));
1192 if (twoparents)
1193 mark_inode_clean(c, ubifs_inode(snd_dir));
1194 kfree(dent1);
1195 return 0;
1196
1197 out_release:
1198 release_head(c, BASEHD);
1199 out_ro:
1200 ubifs_ro_mode(c, err);
1201 finish_reservation(c);
1202 out_free:
1203 kfree(dent1);
1204 return err;
1205 }
1206
1207 /**
1208 * ubifs_jnl_rename - rename a directory entry.
1209 * @c: UBIFS file-system description object
1210 * @old_dir: parent inode of directory entry to rename
1211 * @old_dentry: directory entry to rename
1212 * @new_dir: parent inode of directory entry to rename
1213 * @new_dentry: new directory entry (or directory entry to replace)
1214 * @sync: non-zero if the write-buffer has to be synchronized
1215 *
1216 * This function implements the re-name operation which may involve writing up
1217 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1218 * and returns zero on success. In case of failure, a negative error code is
1219 * returned.
1220 */
1221 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1222 const struct inode *old_inode,
1223 const struct fscrypt_name *old_nm,
1224 const struct inode *new_dir,
1225 const struct inode *new_inode,
1226 const struct fscrypt_name *new_nm,
1227 const struct inode *whiteout, int sync)
1228 {
1229 void *p;
1230 union ubifs_key key;
1231 struct ubifs_dent_node *dent, *dent2;
1232 int err, dlen1, dlen2, ilen, lnum, offs, len;
1233 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1234 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1235 int move = (old_dir != new_dir);
1236 struct ubifs_inode *uninitialized_var(new_ui);
1237 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1238 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1239 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1240 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1241 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1242
1243 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1244 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1245 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1246 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1247
1248 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1249 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1250 if (new_inode) {
1251 new_ui = ubifs_inode(new_inode);
1252 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1253 ilen = UBIFS_INO_NODE_SZ;
1254 if (!last_reference)
1255 ilen += new_ui->data_len;
1256 } else
1257 ilen = 0;
1258
1259 aligned_dlen1 = ALIGN(dlen1, 8);
1260 aligned_dlen2 = ALIGN(dlen2, 8);
1261 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1262 if (move)
1263 len += plen;
1264
1265 len += ubifs_auth_node_sz(c);
1266
1267 dent = kzalloc(len, GFP_NOFS);
1268 if (!dent)
1269 return -ENOMEM;
1270
1271 /* Make reservation before allocating sequence numbers */
1272 err = make_reservation(c, BASEHD, len);
1273 if (err)
1274 goto out_free;
1275
1276 /* Make new dent */
1277 dent->ch.node_type = UBIFS_DENT_NODE;
1278 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1279 dent->inum = cpu_to_le64(old_inode->i_ino);
1280 dent->type = get_dent_type(old_inode->i_mode);
1281 dent->nlen = cpu_to_le16(fname_len(new_nm));
1282 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1283 dent->name[fname_len(new_nm)] = '\0';
1284 set_dent_cookie(c, dent);
1285 zero_dent_node_unused(dent);
1286 ubifs_prep_grp_node(c, dent, dlen1, 0);
1287 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1288 if (err)
1289 goto out_release;
1290
1291 dent2 = (void *)dent + aligned_dlen1;
1292 dent2->ch.node_type = UBIFS_DENT_NODE;
1293 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1294
1295 if (whiteout) {
1296 dent2->inum = cpu_to_le64(whiteout->i_ino);
1297 dent2->type = get_dent_type(whiteout->i_mode);
1298 } else {
1299 /* Make deletion dent */
1300 dent2->inum = 0;
1301 dent2->type = DT_UNKNOWN;
1302 }
1303 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1304 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1305 dent2->name[fname_len(old_nm)] = '\0';
1306 set_dent_cookie(c, dent2);
1307 zero_dent_node_unused(dent2);
1308 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1309 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1310 if (err)
1311 goto out_release;
1312
1313 p = (void *)dent2 + aligned_dlen2;
1314 if (new_inode) {
1315 pack_inode(c, p, new_inode, 0);
1316 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1317 if (err)
1318 goto out_release;
1319
1320 p += ALIGN(ilen, 8);
1321 }
1322
1323 if (!move) {
1324 pack_inode(c, p, old_dir, 1);
1325 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1326 if (err)
1327 goto out_release;
1328 } else {
1329 pack_inode(c, p, old_dir, 0);
1330 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1331 if (err)
1332 goto out_release;
1333
1334 p += ALIGN(plen, 8);
1335 pack_inode(c, p, new_dir, 1);
1336 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1337 if (err)
1338 goto out_release;
1339 }
1340
1341 if (last_reference) {
1342 err = ubifs_add_orphan(c, new_inode->i_ino);
1343 if (err) {
1344 release_head(c, BASEHD);
1345 goto out_finish;
1346 }
1347 new_ui->del_cmtno = c->cmt_no;
1348 }
1349
1350 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1351 if (err)
1352 goto out_release;
1353 if (!sync) {
1354 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1355
1356 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1357 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1358 if (new_inode)
1359 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1360 new_inode->i_ino);
1361 }
1362 release_head(c, BASEHD);
1363
1364 ubifs_add_auth_dirt(c, lnum);
1365
1366 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1367 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1368 if (err)
1369 goto out_ro;
1370
1371 offs += aligned_dlen1;
1372 if (whiteout) {
1373 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1374 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1375 if (err)
1376 goto out_ro;
1377
1378 ubifs_delete_orphan(c, whiteout->i_ino);
1379 } else {
1380 err = ubifs_add_dirt(c, lnum, dlen2);
1381 if (err)
1382 goto out_ro;
1383
1384 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1385 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1386 if (err)
1387 goto out_ro;
1388 }
1389
1390 offs += aligned_dlen2;
1391 if (new_inode) {
1392 ino_key_init(c, &key, new_inode->i_ino);
1393 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1394 if (err)
1395 goto out_ro;
1396 offs += ALIGN(ilen, 8);
1397 }
1398
1399 ino_key_init(c, &key, old_dir->i_ino);
1400 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1401 if (err)
1402 goto out_ro;
1403
1404 if (move) {
1405 offs += ALIGN(plen, 8);
1406 ino_key_init(c, &key, new_dir->i_ino);
1407 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1408 if (err)
1409 goto out_ro;
1410 }
1411
1412 finish_reservation(c);
1413 if (new_inode) {
1414 mark_inode_clean(c, new_ui);
1415 spin_lock(&new_ui->ui_lock);
1416 new_ui->synced_i_size = new_ui->ui_size;
1417 spin_unlock(&new_ui->ui_lock);
1418 }
1419 mark_inode_clean(c, ubifs_inode(old_dir));
1420 if (move)
1421 mark_inode_clean(c, ubifs_inode(new_dir));
1422 kfree(dent);
1423 return 0;
1424
1425 out_release:
1426 release_head(c, BASEHD);
1427 out_ro:
1428 ubifs_ro_mode(c, err);
1429 if (last_reference)
1430 ubifs_delete_orphan(c, new_inode->i_ino);
1431 out_finish:
1432 finish_reservation(c);
1433 out_free:
1434 kfree(dent);
1435 return err;
1436 }
1437
1438 /**
1439 * truncate_data_node - re-compress/encrypt a truncated data node.
1440 * @c: UBIFS file-system description object
1441 * @inode: inode which referes to the data node
1442 * @block: data block number
1443 * @dn: data node to re-compress
1444 * @new_len: new length
1445 *
1446 * This function is used when an inode is truncated and the last data node of
1447 * the inode has to be re-compressed/encrypted and re-written.
1448 */
1449 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1450 unsigned int block, struct ubifs_data_node *dn,
1451 int *new_len)
1452 {
1453 void *buf;
1454 int err, dlen, compr_type, out_len, old_dlen;
1455
1456 out_len = le32_to_cpu(dn->size);
1457 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1458 if (!buf)
1459 return -ENOMEM;
1460
1461 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1462 compr_type = le16_to_cpu(dn->compr_type);
1463
1464 if (ubifs_crypt_is_encrypted(inode)) {
1465 err = ubifs_decrypt(inode, dn, &dlen, block);
1466 if (err)
1467 goto out;
1468 }
1469
1470 if (compr_type == UBIFS_COMPR_NONE) {
1471 out_len = *new_len;
1472 } else {
1473 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1474 if (err)
1475 goto out;
1476
1477 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1478 }
1479
1480 if (ubifs_crypt_is_encrypted(inode)) {
1481 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1482 if (err)
1483 goto out;
1484
1485 out_len = old_dlen;
1486 } else {
1487 dn->compr_size = 0;
1488 }
1489
1490 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1491 dn->compr_type = cpu_to_le16(compr_type);
1492 dn->size = cpu_to_le32(*new_len);
1493 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1494 err = 0;
1495 out:
1496 kfree(buf);
1497 return err;
1498 }
1499
1500 /**
1501 * ubifs_jnl_truncate - update the journal for a truncation.
1502 * @c: UBIFS file-system description object
1503 * @inode: inode to truncate
1504 * @old_size: old size
1505 * @new_size: new size
1506 *
1507 * When the size of a file decreases due to truncation, a truncation node is
1508 * written, the journal tree is updated, and the last data block is re-written
1509 * if it has been affected. The inode is also updated in order to synchronize
1510 * the new inode size.
1511 *
1512 * This function marks the inode as clean and returns zero on success. In case
1513 * of failure, a negative error code is returned.
1514 */
1515 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1516 loff_t old_size, loff_t new_size)
1517 {
1518 union ubifs_key key, to_key;
1519 struct ubifs_ino_node *ino;
1520 struct ubifs_trun_node *trun;
1521 struct ubifs_data_node *uninitialized_var(dn);
1522 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1523 struct ubifs_inode *ui = ubifs_inode(inode);
1524 ino_t inum = inode->i_ino;
1525 unsigned int blk;
1526 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1527 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1528
1529 dbg_jnl("ino %lu, size %lld -> %lld",
1530 (unsigned long)inum, old_size, new_size);
1531 ubifs_assert(c, !ui->data_len);
1532 ubifs_assert(c, S_ISREG(inode->i_mode));
1533 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1534
1535 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1536 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1537
1538 sz += ubifs_auth_node_sz(c);
1539
1540 ino = kmalloc(sz, GFP_NOFS);
1541 if (!ino)
1542 return -ENOMEM;
1543
1544 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1545 trun->ch.node_type = UBIFS_TRUN_NODE;
1546 trun->inum = cpu_to_le32(inum);
1547 trun->old_size = cpu_to_le64(old_size);
1548 trun->new_size = cpu_to_le64(new_size);
1549 zero_trun_node_unused(trun);
1550
1551 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1552 if (dlen) {
1553 /* Get last data block so it can be truncated */
1554 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1555 blk = new_size >> UBIFS_BLOCK_SHIFT;
1556 data_key_init(c, &key, inum, blk);
1557 dbg_jnlk(&key, "last block key ");
1558 err = ubifs_tnc_lookup(c, &key, dn);
1559 if (err == -ENOENT)
1560 dlen = 0; /* Not found (so it is a hole) */
1561 else if (err)
1562 goto out_free;
1563 else {
1564 int dn_len = le32_to_cpu(dn->size);
1565
1566 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1567 ubifs_err(c, "bad data node (block %u, inode %lu)",
1568 blk, inode->i_ino);
1569 ubifs_dump_node(c, dn);
1570 goto out_free;
1571 }
1572
1573 if (dn_len <= dlen)
1574 dlen = 0; /* Nothing to do */
1575 else {
1576 err = truncate_data_node(c, inode, blk, dn, &dlen);
1577 if (err)
1578 goto out_free;
1579 }
1580 }
1581 }
1582
1583 /* Must make reservation before allocating sequence numbers */
1584 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1585
1586 if (ubifs_authenticated(c))
1587 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1588 else
1589 len += dlen;
1590
1591 err = make_reservation(c, BASEHD, len);
1592 if (err)
1593 goto out_free;
1594
1595 pack_inode(c, ino, inode, 0);
1596 err = ubifs_node_calc_hash(c, ino, hash_ino);
1597 if (err)
1598 goto out_release;
1599
1600 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1601 if (dlen) {
1602 ubifs_prep_grp_node(c, dn, dlen, 1);
1603 err = ubifs_node_calc_hash(c, dn, hash_dn);
1604 if (err)
1605 goto out_release;
1606 }
1607
1608 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1609 if (err)
1610 goto out_release;
1611 if (!sync)
1612 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1613 release_head(c, BASEHD);
1614
1615 ubifs_add_auth_dirt(c, lnum);
1616
1617 if (dlen) {
1618 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1619 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1620 if (err)
1621 goto out_ro;
1622 }
1623
1624 ino_key_init(c, &key, inum);
1625 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1626 if (err)
1627 goto out_ro;
1628
1629 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1630 if (err)
1631 goto out_ro;
1632
1633 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1634 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1635 data_key_init(c, &key, inum, blk);
1636
1637 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1638 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1639 data_key_init(c, &to_key, inum, blk);
1640
1641 err = ubifs_tnc_remove_range(c, &key, &to_key);
1642 if (err)
1643 goto out_ro;
1644
1645 finish_reservation(c);
1646 spin_lock(&ui->ui_lock);
1647 ui->synced_i_size = ui->ui_size;
1648 spin_unlock(&ui->ui_lock);
1649 mark_inode_clean(c, ui);
1650 kfree(ino);
1651 return 0;
1652
1653 out_release:
1654 release_head(c, BASEHD);
1655 out_ro:
1656 ubifs_ro_mode(c, err);
1657 finish_reservation(c);
1658 out_free:
1659 kfree(ino);
1660 return err;
1661 }
1662
1663
1664 /**
1665 * ubifs_jnl_delete_xattr - delete an extended attribute.
1666 * @c: UBIFS file-system description object
1667 * @host: host inode
1668 * @inode: extended attribute inode
1669 * @nm: extended attribute entry name
1670 *
1671 * This function delete an extended attribute which is very similar to
1672 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1673 * updates the target inode. Returns zero in case of success and a negative
1674 * error code in case of failure.
1675 */
1676 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1677 const struct inode *inode,
1678 const struct fscrypt_name *nm)
1679 {
1680 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1681 struct ubifs_dent_node *xent;
1682 struct ubifs_ino_node *ino;
1683 union ubifs_key xent_key, key1, key2;
1684 int sync = IS_DIRSYNC(host);
1685 struct ubifs_inode *host_ui = ubifs_inode(host);
1686 u8 hash[UBIFS_HASH_ARR_SZ];
1687
1688 ubifs_assert(c, inode->i_nlink == 0);
1689 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1690
1691 /*
1692 * Since we are deleting the inode, we do not bother to attach any data
1693 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1694 */
1695 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1696 aligned_xlen = ALIGN(xlen, 8);
1697 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1698 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1699
1700 write_len = len + ubifs_auth_node_sz(c);
1701
1702 xent = kzalloc(write_len, GFP_NOFS);
1703 if (!xent)
1704 return -ENOMEM;
1705
1706 /* Make reservation before allocating sequence numbers */
1707 err = make_reservation(c, BASEHD, write_len);
1708 if (err) {
1709 kfree(xent);
1710 return err;
1711 }
1712
1713 xent->ch.node_type = UBIFS_XENT_NODE;
1714 xent_key_init(c, &xent_key, host->i_ino, nm);
1715 key_write(c, &xent_key, xent->key);
1716 xent->inum = 0;
1717 xent->type = get_dent_type(inode->i_mode);
1718 xent->nlen = cpu_to_le16(fname_len(nm));
1719 memcpy(xent->name, fname_name(nm), fname_len(nm));
1720 xent->name[fname_len(nm)] = '\0';
1721 zero_dent_node_unused(xent);
1722 ubifs_prep_grp_node(c, xent, xlen, 0);
1723
1724 ino = (void *)xent + aligned_xlen;
1725 pack_inode(c, ino, inode, 0);
1726 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1727 pack_inode(c, ino, host, 1);
1728 err = ubifs_node_calc_hash(c, ino, hash);
1729 if (err)
1730 goto out_release;
1731
1732 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1733 if (!sync && !err)
1734 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1735 release_head(c, BASEHD);
1736
1737 ubifs_add_auth_dirt(c, lnum);
1738 kfree(xent);
1739 if (err)
1740 goto out_ro;
1741
1742 /* Remove the extended attribute entry from TNC */
1743 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1744 if (err)
1745 goto out_ro;
1746 err = ubifs_add_dirt(c, lnum, xlen);
1747 if (err)
1748 goto out_ro;
1749
1750 /*
1751 * Remove all nodes belonging to the extended attribute inode from TNC.
1752 * Well, there actually must be only one node - the inode itself.
1753 */
1754 lowest_ino_key(c, &key1, inode->i_ino);
1755 highest_ino_key(c, &key2, inode->i_ino);
1756 err = ubifs_tnc_remove_range(c, &key1, &key2);
1757 if (err)
1758 goto out_ro;
1759 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1760 if (err)
1761 goto out_ro;
1762
1763 /* And update TNC with the new host inode position */
1764 ino_key_init(c, &key1, host->i_ino);
1765 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1766 if (err)
1767 goto out_ro;
1768
1769 finish_reservation(c);
1770 spin_lock(&host_ui->ui_lock);
1771 host_ui->synced_i_size = host_ui->ui_size;
1772 spin_unlock(&host_ui->ui_lock);
1773 mark_inode_clean(c, host_ui);
1774 return 0;
1775
1776 out_release:
1777 kfree(xent);
1778 release_head(c, BASEHD);
1779 out_ro:
1780 ubifs_ro_mode(c, err);
1781 finish_reservation(c);
1782 return err;
1783 }
1784
1785 /**
1786 * ubifs_jnl_change_xattr - change an extended attribute.
1787 * @c: UBIFS file-system description object
1788 * @inode: extended attribute inode
1789 * @host: host inode
1790 *
1791 * This function writes the updated version of an extended attribute inode and
1792 * the host inode to the journal (to the base head). The host inode is written
1793 * after the extended attribute inode in order to guarantee that the extended
1794 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1795 * consequently, the write-buffer is synchronized. This function returns zero
1796 * in case of success and a negative error code in case of failure.
1797 */
1798 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1799 const struct inode *host)
1800 {
1801 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1802 struct ubifs_inode *host_ui = ubifs_inode(host);
1803 struct ubifs_ino_node *ino;
1804 union ubifs_key key;
1805 int sync = IS_DIRSYNC(host);
1806 u8 hash_host[UBIFS_HASH_ARR_SZ];
1807 u8 hash[UBIFS_HASH_ARR_SZ];
1808
1809 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1810 ubifs_assert(c, host->i_nlink > 0);
1811 ubifs_assert(c, inode->i_nlink > 0);
1812 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1813
1814 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1815 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1816 aligned_len1 = ALIGN(len1, 8);
1817 aligned_len = aligned_len1 + ALIGN(len2, 8);
1818
1819 aligned_len += ubifs_auth_node_sz(c);
1820
1821 ino = kzalloc(aligned_len, GFP_NOFS);
1822 if (!ino)
1823 return -ENOMEM;
1824
1825 /* Make reservation before allocating sequence numbers */
1826 err = make_reservation(c, BASEHD, aligned_len);
1827 if (err)
1828 goto out_free;
1829
1830 pack_inode(c, ino, host, 0);
1831 err = ubifs_node_calc_hash(c, ino, hash_host);
1832 if (err)
1833 goto out_release;
1834 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1835 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1836 if (err)
1837 goto out_release;
1838
1839 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1840 if (!sync && !err) {
1841 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1842
1843 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1844 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1845 }
1846 release_head(c, BASEHD);
1847 if (err)
1848 goto out_ro;
1849
1850 ubifs_add_auth_dirt(c, lnum);
1851
1852 ino_key_init(c, &key, host->i_ino);
1853 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1854 if (err)
1855 goto out_ro;
1856
1857 ino_key_init(c, &key, inode->i_ino);
1858 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1859 if (err)
1860 goto out_ro;
1861
1862 finish_reservation(c);
1863 spin_lock(&host_ui->ui_lock);
1864 host_ui->synced_i_size = host_ui->ui_size;
1865 spin_unlock(&host_ui->ui_lock);
1866 mark_inode_clean(c, host_ui);
1867 kfree(ino);
1868 return 0;
1869
1870 out_release:
1871 release_head(c, BASEHD);
1872 out_ro:
1873 ubifs_ro_mode(c, err);
1874 finish_reservation(c);
1875 out_free:
1876 kfree(ino);
1877 return err;
1878 }
1879