]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ubifs/lpt_commit.c
Merge tag 'perf-urgent-for-mingo-4.20-20181106' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / fs / ubifs / lpt_commit.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32
33 static int dbg_populate_lsave(struct ubifs_info *c);
34
35 /**
36 * first_dirty_cnode - find first dirty cnode.
37 * @c: UBIFS file-system description object
38 * @nnode: nnode at which to start
39 *
40 * This function returns the first dirty cnode or %NULL if there is not one.
41 */
42 static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode)
43 {
44 ubifs_assert(c, nnode);
45 while (1) {
46 int i, cont = 0;
47
48 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 struct ubifs_cnode *cnode;
50
51 cnode = nnode->nbranch[i].cnode;
52 if (cnode &&
53 test_bit(DIRTY_CNODE, &cnode->flags)) {
54 if (cnode->level == 0)
55 return cnode;
56 nnode = (struct ubifs_nnode *)cnode;
57 cont = 1;
58 break;
59 }
60 }
61 if (!cont)
62 return (struct ubifs_cnode *)nnode;
63 }
64 }
65
66 /**
67 * next_dirty_cnode - find next dirty cnode.
68 * @c: UBIFS file-system description object
69 * @cnode: cnode from which to begin searching
70 *
71 * This function returns the next dirty cnode or %NULL if there is not one.
72 */
73 static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode)
74 {
75 struct ubifs_nnode *nnode;
76 int i;
77
78 ubifs_assert(c, cnode);
79 nnode = cnode->parent;
80 if (!nnode)
81 return NULL;
82 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
83 cnode = nnode->nbranch[i].cnode;
84 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
85 if (cnode->level == 0)
86 return cnode; /* cnode is a pnode */
87 /* cnode is a nnode */
88 return first_dirty_cnode(c, (struct ubifs_nnode *)cnode);
89 }
90 }
91 return (struct ubifs_cnode *)nnode;
92 }
93
94 /**
95 * get_cnodes_to_commit - create list of dirty cnodes to commit.
96 * @c: UBIFS file-system description object
97 *
98 * This function returns the number of cnodes to commit.
99 */
100 static int get_cnodes_to_commit(struct ubifs_info *c)
101 {
102 struct ubifs_cnode *cnode, *cnext;
103 int cnt = 0;
104
105 if (!c->nroot)
106 return 0;
107
108 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
109 return 0;
110
111 c->lpt_cnext = first_dirty_cnode(c, c->nroot);
112 cnode = c->lpt_cnext;
113 if (!cnode)
114 return 0;
115 cnt += 1;
116 while (1) {
117 ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags));
118 __set_bit(COW_CNODE, &cnode->flags);
119 cnext = next_dirty_cnode(c, cnode);
120 if (!cnext) {
121 cnode->cnext = c->lpt_cnext;
122 break;
123 }
124 cnode->cnext = cnext;
125 cnode = cnext;
126 cnt += 1;
127 }
128 dbg_cmt("committing %d cnodes", cnt);
129 dbg_lp("committing %d cnodes", cnt);
130 ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
131 return cnt;
132 }
133
134 /**
135 * upd_ltab - update LPT LEB properties.
136 * @c: UBIFS file-system description object
137 * @lnum: LEB number
138 * @free: amount of free space
139 * @dirty: amount of dirty space to add
140 */
141 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
142 {
143 dbg_lp("LEB %d free %d dirty %d to %d +%d",
144 lnum, c->ltab[lnum - c->lpt_first].free,
145 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
146 ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
147 c->ltab[lnum - c->lpt_first].free = free;
148 c->ltab[lnum - c->lpt_first].dirty += dirty;
149 }
150
151 /**
152 * alloc_lpt_leb - allocate an LPT LEB that is empty.
153 * @c: UBIFS file-system description object
154 * @lnum: LEB number is passed and returned here
155 *
156 * This function finds the next empty LEB in the ltab starting from @lnum. If a
157 * an empty LEB is found it is returned in @lnum and the function returns %0.
158 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
159 * never to run out of space.
160 */
161 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
162 {
163 int i, n;
164
165 n = *lnum - c->lpt_first + 1;
166 for (i = n; i < c->lpt_lebs; i++) {
167 if (c->ltab[i].tgc || c->ltab[i].cmt)
168 continue;
169 if (c->ltab[i].free == c->leb_size) {
170 c->ltab[i].cmt = 1;
171 *lnum = i + c->lpt_first;
172 return 0;
173 }
174 }
175
176 for (i = 0; i < n; i++) {
177 if (c->ltab[i].tgc || c->ltab[i].cmt)
178 continue;
179 if (c->ltab[i].free == c->leb_size) {
180 c->ltab[i].cmt = 1;
181 *lnum = i + c->lpt_first;
182 return 0;
183 }
184 }
185 return -ENOSPC;
186 }
187
188 /**
189 * layout_cnodes - layout cnodes for commit.
190 * @c: UBIFS file-system description object
191 *
192 * This function returns %0 on success and a negative error code on failure.
193 */
194 static int layout_cnodes(struct ubifs_info *c)
195 {
196 int lnum, offs, len, alen, done_lsave, done_ltab, err;
197 struct ubifs_cnode *cnode;
198
199 err = dbg_chk_lpt_sz(c, 0, 0);
200 if (err)
201 return err;
202 cnode = c->lpt_cnext;
203 if (!cnode)
204 return 0;
205 lnum = c->nhead_lnum;
206 offs = c->nhead_offs;
207 /* Try to place lsave and ltab nicely */
208 done_lsave = !c->big_lpt;
209 done_ltab = 0;
210 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
211 done_lsave = 1;
212 c->lsave_lnum = lnum;
213 c->lsave_offs = offs;
214 offs += c->lsave_sz;
215 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
216 }
217
218 if (offs + c->ltab_sz <= c->leb_size) {
219 done_ltab = 1;
220 c->ltab_lnum = lnum;
221 c->ltab_offs = offs;
222 offs += c->ltab_sz;
223 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
224 }
225
226 do {
227 if (cnode->level) {
228 len = c->nnode_sz;
229 c->dirty_nn_cnt -= 1;
230 } else {
231 len = c->pnode_sz;
232 c->dirty_pn_cnt -= 1;
233 }
234 while (offs + len > c->leb_size) {
235 alen = ALIGN(offs, c->min_io_size);
236 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
237 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
238 err = alloc_lpt_leb(c, &lnum);
239 if (err)
240 goto no_space;
241 offs = 0;
242 ubifs_assert(c, lnum >= c->lpt_first &&
243 lnum <= c->lpt_last);
244 /* Try to place lsave and ltab nicely */
245 if (!done_lsave) {
246 done_lsave = 1;
247 c->lsave_lnum = lnum;
248 c->lsave_offs = offs;
249 offs += c->lsave_sz;
250 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
251 continue;
252 }
253 if (!done_ltab) {
254 done_ltab = 1;
255 c->ltab_lnum = lnum;
256 c->ltab_offs = offs;
257 offs += c->ltab_sz;
258 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
259 continue;
260 }
261 break;
262 }
263 if (cnode->parent) {
264 cnode->parent->nbranch[cnode->iip].lnum = lnum;
265 cnode->parent->nbranch[cnode->iip].offs = offs;
266 } else {
267 c->lpt_lnum = lnum;
268 c->lpt_offs = offs;
269 }
270 offs += len;
271 dbg_chk_lpt_sz(c, 1, len);
272 cnode = cnode->cnext;
273 } while (cnode && cnode != c->lpt_cnext);
274
275 /* Make sure to place LPT's save table */
276 if (!done_lsave) {
277 if (offs + c->lsave_sz > c->leb_size) {
278 alen = ALIGN(offs, c->min_io_size);
279 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
280 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
281 err = alloc_lpt_leb(c, &lnum);
282 if (err)
283 goto no_space;
284 offs = 0;
285 ubifs_assert(c, lnum >= c->lpt_first &&
286 lnum <= c->lpt_last);
287 }
288 done_lsave = 1;
289 c->lsave_lnum = lnum;
290 c->lsave_offs = offs;
291 offs += c->lsave_sz;
292 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
293 }
294
295 /* Make sure to place LPT's own lprops table */
296 if (!done_ltab) {
297 if (offs + c->ltab_sz > c->leb_size) {
298 alen = ALIGN(offs, c->min_io_size);
299 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
300 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
301 err = alloc_lpt_leb(c, &lnum);
302 if (err)
303 goto no_space;
304 offs = 0;
305 ubifs_assert(c, lnum >= c->lpt_first &&
306 lnum <= c->lpt_last);
307 }
308 c->ltab_lnum = lnum;
309 c->ltab_offs = offs;
310 offs += c->ltab_sz;
311 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
312 }
313
314 alen = ALIGN(offs, c->min_io_size);
315 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 dbg_chk_lpt_sz(c, 4, alen - offs);
317 err = dbg_chk_lpt_sz(c, 3, alen);
318 if (err)
319 return err;
320 return 0;
321
322 no_space:
323 ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324 lnum, offs, len, done_ltab, done_lsave);
325 ubifs_dump_lpt_info(c);
326 ubifs_dump_lpt_lebs(c);
327 dump_stack();
328 return err;
329 }
330
331 /**
332 * realloc_lpt_leb - allocate an LPT LEB that is empty.
333 * @c: UBIFS file-system description object
334 * @lnum: LEB number is passed and returned here
335 *
336 * This function duplicates exactly the results of the function alloc_lpt_leb.
337 * It is used during end commit to reallocate the same LEB numbers that were
338 * allocated by alloc_lpt_leb during start commit.
339 *
340 * This function finds the next LEB that was allocated by the alloc_lpt_leb
341 * function starting from @lnum. If a LEB is found it is returned in @lnum and
342 * the function returns %0. Otherwise the function returns -ENOSPC.
343 * Note however, that LPT is designed never to run out of space.
344 */
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346 {
347 int i, n;
348
349 n = *lnum - c->lpt_first + 1;
350 for (i = n; i < c->lpt_lebs; i++)
351 if (c->ltab[i].cmt) {
352 c->ltab[i].cmt = 0;
353 *lnum = i + c->lpt_first;
354 return 0;
355 }
356
357 for (i = 0; i < n; i++)
358 if (c->ltab[i].cmt) {
359 c->ltab[i].cmt = 0;
360 *lnum = i + c->lpt_first;
361 return 0;
362 }
363 return -ENOSPC;
364 }
365
366 /**
367 * write_cnodes - write cnodes for commit.
368 * @c: UBIFS file-system description object
369 *
370 * This function returns %0 on success and a negative error code on failure.
371 */
372 static int write_cnodes(struct ubifs_info *c)
373 {
374 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 struct ubifs_cnode *cnode;
376 void *buf = c->lpt_buf;
377
378 cnode = c->lpt_cnext;
379 if (!cnode)
380 return 0;
381 lnum = c->nhead_lnum;
382 offs = c->nhead_offs;
383 from = offs;
384 /* Ensure empty LEB is unmapped */
385 if (offs == 0) {
386 err = ubifs_leb_unmap(c, lnum);
387 if (err)
388 return err;
389 }
390 /* Try to place lsave and ltab nicely */
391 done_lsave = !c->big_lpt;
392 done_ltab = 0;
393 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 done_lsave = 1;
395 ubifs_pack_lsave(c, buf + offs, c->lsave);
396 offs += c->lsave_sz;
397 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
398 }
399
400 if (offs + c->ltab_sz <= c->leb_size) {
401 done_ltab = 1;
402 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 offs += c->ltab_sz;
404 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
405 }
406
407 /* Loop for each cnode */
408 do {
409 if (cnode->level)
410 len = c->nnode_sz;
411 else
412 len = c->pnode_sz;
413 while (offs + len > c->leb_size) {
414 wlen = offs - from;
415 if (wlen) {
416 alen = ALIGN(wlen, c->min_io_size);
417 memset(buf + offs, 0xff, alen - wlen);
418 err = ubifs_leb_write(c, lnum, buf + from, from,
419 alen);
420 if (err)
421 return err;
422 }
423 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 err = realloc_lpt_leb(c, &lnum);
425 if (err)
426 goto no_space;
427 offs = from = 0;
428 ubifs_assert(c, lnum >= c->lpt_first &&
429 lnum <= c->lpt_last);
430 err = ubifs_leb_unmap(c, lnum);
431 if (err)
432 return err;
433 /* Try to place lsave and ltab nicely */
434 if (!done_lsave) {
435 done_lsave = 1;
436 ubifs_pack_lsave(c, buf + offs, c->lsave);
437 offs += c->lsave_sz;
438 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
439 continue;
440 }
441 if (!done_ltab) {
442 done_ltab = 1;
443 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 offs += c->ltab_sz;
445 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
446 continue;
447 }
448 break;
449 }
450 if (cnode->level)
451 ubifs_pack_nnode(c, buf + offs,
452 (struct ubifs_nnode *)cnode);
453 else
454 ubifs_pack_pnode(c, buf + offs,
455 (struct ubifs_pnode *)cnode);
456 /*
457 * The reason for the barriers is the same as in case of TNC.
458 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 * 'dirty_cow_pnode()' are the functions for which this is
460 * important.
461 */
462 clear_bit(DIRTY_CNODE, &cnode->flags);
463 smp_mb__before_atomic();
464 clear_bit(COW_CNODE, &cnode->flags);
465 smp_mb__after_atomic();
466 offs += len;
467 dbg_chk_lpt_sz(c, 1, len);
468 cnode = cnode->cnext;
469 } while (cnode && cnode != c->lpt_cnext);
470
471 /* Make sure to place LPT's save table */
472 if (!done_lsave) {
473 if (offs + c->lsave_sz > c->leb_size) {
474 wlen = offs - from;
475 alen = ALIGN(wlen, c->min_io_size);
476 memset(buf + offs, 0xff, alen - wlen);
477 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
478 if (err)
479 return err;
480 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 err = realloc_lpt_leb(c, &lnum);
482 if (err)
483 goto no_space;
484 offs = from = 0;
485 ubifs_assert(c, lnum >= c->lpt_first &&
486 lnum <= c->lpt_last);
487 err = ubifs_leb_unmap(c, lnum);
488 if (err)
489 return err;
490 }
491 done_lsave = 1;
492 ubifs_pack_lsave(c, buf + offs, c->lsave);
493 offs += c->lsave_sz;
494 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 }
496
497 /* Make sure to place LPT's own lprops table */
498 if (!done_ltab) {
499 if (offs + c->ltab_sz > c->leb_size) {
500 wlen = offs - from;
501 alen = ALIGN(wlen, c->min_io_size);
502 memset(buf + offs, 0xff, alen - wlen);
503 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
504 if (err)
505 return err;
506 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 err = realloc_lpt_leb(c, &lnum);
508 if (err)
509 goto no_space;
510 offs = from = 0;
511 ubifs_assert(c, lnum >= c->lpt_first &&
512 lnum <= c->lpt_last);
513 err = ubifs_leb_unmap(c, lnum);
514 if (err)
515 return err;
516 }
517 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 offs += c->ltab_sz;
519 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 }
521
522 /* Write remaining data in buffer */
523 wlen = offs - from;
524 alen = ALIGN(wlen, c->min_io_size);
525 memset(buf + offs, 0xff, alen - wlen);
526 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
527 if (err)
528 return err;
529
530 dbg_chk_lpt_sz(c, 4, alen - wlen);
531 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 if (err)
533 return err;
534
535 c->nhead_lnum = lnum;
536 c->nhead_offs = ALIGN(offs, c->min_io_size);
537
538 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 if (c->big_lpt)
542 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543
544 return 0;
545
546 no_space:
547 ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
548 lnum, offs, len, done_ltab, done_lsave);
549 ubifs_dump_lpt_info(c);
550 ubifs_dump_lpt_lebs(c);
551 dump_stack();
552 return err;
553 }
554
555 /**
556 * next_pnode_to_dirty - find next pnode to dirty.
557 * @c: UBIFS file-system description object
558 * @pnode: pnode
559 *
560 * This function returns the next pnode to dirty or %NULL if there are no more
561 * pnodes. Note that pnodes that have never been written (lnum == 0) are
562 * skipped.
563 */
564 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
565 struct ubifs_pnode *pnode)
566 {
567 struct ubifs_nnode *nnode;
568 int iip;
569
570 /* Try to go right */
571 nnode = pnode->parent;
572 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
573 if (nnode->nbranch[iip].lnum)
574 return ubifs_get_pnode(c, nnode, iip);
575 }
576
577 /* Go up while can't go right */
578 do {
579 iip = nnode->iip + 1;
580 nnode = nnode->parent;
581 if (!nnode)
582 return NULL;
583 for (; iip < UBIFS_LPT_FANOUT; iip++) {
584 if (nnode->nbranch[iip].lnum)
585 break;
586 }
587 } while (iip >= UBIFS_LPT_FANOUT);
588
589 /* Go right */
590 nnode = ubifs_get_nnode(c, nnode, iip);
591 if (IS_ERR(nnode))
592 return (void *)nnode;
593
594 /* Go down to level 1 */
595 while (nnode->level > 1) {
596 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
597 if (nnode->nbranch[iip].lnum)
598 break;
599 }
600 if (iip >= UBIFS_LPT_FANOUT) {
601 /*
602 * Should not happen, but we need to keep going
603 * if it does.
604 */
605 iip = 0;
606 }
607 nnode = ubifs_get_nnode(c, nnode, iip);
608 if (IS_ERR(nnode))
609 return (void *)nnode;
610 }
611
612 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
613 if (nnode->nbranch[iip].lnum)
614 break;
615 if (iip >= UBIFS_LPT_FANOUT)
616 /* Should not happen, but we need to keep going if it does */
617 iip = 0;
618 return ubifs_get_pnode(c, nnode, iip);
619 }
620
621 /**
622 * add_pnode_dirt - add dirty space to LPT LEB properties.
623 * @c: UBIFS file-system description object
624 * @pnode: pnode for which to add dirt
625 */
626 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
627 {
628 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
629 c->pnode_sz);
630 }
631
632 /**
633 * do_make_pnode_dirty - mark a pnode dirty.
634 * @c: UBIFS file-system description object
635 * @pnode: pnode to mark dirty
636 */
637 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
638 {
639 /* Assumes cnext list is empty i.e. not called during commit */
640 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
641 struct ubifs_nnode *nnode;
642
643 c->dirty_pn_cnt += 1;
644 add_pnode_dirt(c, pnode);
645 /* Mark parent and ancestors dirty too */
646 nnode = pnode->parent;
647 while (nnode) {
648 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
649 c->dirty_nn_cnt += 1;
650 ubifs_add_nnode_dirt(c, nnode);
651 nnode = nnode->parent;
652 } else
653 break;
654 }
655 }
656 }
657
658 /**
659 * make_tree_dirty - mark the entire LEB properties tree dirty.
660 * @c: UBIFS file-system description object
661 *
662 * This function is used by the "small" LPT model to cause the entire LEB
663 * properties tree to be written. The "small" LPT model does not use LPT
664 * garbage collection because it is more efficient to write the entire tree
665 * (because it is small).
666 *
667 * This function returns %0 on success and a negative error code on failure.
668 */
669 static int make_tree_dirty(struct ubifs_info *c)
670 {
671 struct ubifs_pnode *pnode;
672
673 pnode = ubifs_pnode_lookup(c, 0);
674 if (IS_ERR(pnode))
675 return PTR_ERR(pnode);
676
677 while (pnode) {
678 do_make_pnode_dirty(c, pnode);
679 pnode = next_pnode_to_dirty(c, pnode);
680 if (IS_ERR(pnode))
681 return PTR_ERR(pnode);
682 }
683 return 0;
684 }
685
686 /**
687 * need_write_all - determine if the LPT area is running out of free space.
688 * @c: UBIFS file-system description object
689 *
690 * This function returns %1 if the LPT area is running out of free space and %0
691 * if it is not.
692 */
693 static int need_write_all(struct ubifs_info *c)
694 {
695 long long free = 0;
696 int i;
697
698 for (i = 0; i < c->lpt_lebs; i++) {
699 if (i + c->lpt_first == c->nhead_lnum)
700 free += c->leb_size - c->nhead_offs;
701 else if (c->ltab[i].free == c->leb_size)
702 free += c->leb_size;
703 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
704 free += c->leb_size;
705 }
706 /* Less than twice the size left */
707 if (free <= c->lpt_sz * 2)
708 return 1;
709 return 0;
710 }
711
712 /**
713 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
714 * @c: UBIFS file-system description object
715 *
716 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
717 * free space and so may be reused as soon as the next commit is completed.
718 * This function is called during start commit to mark LPT LEBs for trivial GC.
719 */
720 static void lpt_tgc_start(struct ubifs_info *c)
721 {
722 int i;
723
724 for (i = 0; i < c->lpt_lebs; i++) {
725 if (i + c->lpt_first == c->nhead_lnum)
726 continue;
727 if (c->ltab[i].dirty > 0 &&
728 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
729 c->ltab[i].tgc = 1;
730 c->ltab[i].free = c->leb_size;
731 c->ltab[i].dirty = 0;
732 dbg_lp("LEB %d", i + c->lpt_first);
733 }
734 }
735 }
736
737 /**
738 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
739 * @c: UBIFS file-system description object
740 *
741 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
742 * free space and so may be reused as soon as the next commit is completed.
743 * This function is called after the commit is completed (master node has been
744 * written) and un-maps LPT LEBs that were marked for trivial GC.
745 */
746 static int lpt_tgc_end(struct ubifs_info *c)
747 {
748 int i, err;
749
750 for (i = 0; i < c->lpt_lebs; i++)
751 if (c->ltab[i].tgc) {
752 err = ubifs_leb_unmap(c, i + c->lpt_first);
753 if (err)
754 return err;
755 c->ltab[i].tgc = 0;
756 dbg_lp("LEB %d", i + c->lpt_first);
757 }
758 return 0;
759 }
760
761 /**
762 * populate_lsave - fill the lsave array with important LEB numbers.
763 * @c: the UBIFS file-system description object
764 *
765 * This function is only called for the "big" model. It records a small number
766 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
767 * most important to least important): empty, freeable, freeable index, dirty
768 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
769 * their pnodes into memory. That will stop us from having to scan the LPT
770 * straight away. For the "small" model we assume that scanning the LPT is no
771 * big deal.
772 */
773 static void populate_lsave(struct ubifs_info *c)
774 {
775 struct ubifs_lprops *lprops;
776 struct ubifs_lpt_heap *heap;
777 int i, cnt = 0;
778
779 ubifs_assert(c, c->big_lpt);
780 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
781 c->lpt_drty_flgs |= LSAVE_DIRTY;
782 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
783 }
784
785 if (dbg_populate_lsave(c))
786 return;
787
788 list_for_each_entry(lprops, &c->empty_list, list) {
789 c->lsave[cnt++] = lprops->lnum;
790 if (cnt >= c->lsave_cnt)
791 return;
792 }
793 list_for_each_entry(lprops, &c->freeable_list, list) {
794 c->lsave[cnt++] = lprops->lnum;
795 if (cnt >= c->lsave_cnt)
796 return;
797 }
798 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
799 c->lsave[cnt++] = lprops->lnum;
800 if (cnt >= c->lsave_cnt)
801 return;
802 }
803 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
804 for (i = 0; i < heap->cnt; i++) {
805 c->lsave[cnt++] = heap->arr[i]->lnum;
806 if (cnt >= c->lsave_cnt)
807 return;
808 }
809 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
810 for (i = 0; i < heap->cnt; i++) {
811 c->lsave[cnt++] = heap->arr[i]->lnum;
812 if (cnt >= c->lsave_cnt)
813 return;
814 }
815 heap = &c->lpt_heap[LPROPS_FREE - 1];
816 for (i = 0; i < heap->cnt; i++) {
817 c->lsave[cnt++] = heap->arr[i]->lnum;
818 if (cnt >= c->lsave_cnt)
819 return;
820 }
821 /* Fill it up completely */
822 while (cnt < c->lsave_cnt)
823 c->lsave[cnt++] = c->main_first;
824 }
825
826 /**
827 * nnode_lookup - lookup a nnode in the LPT.
828 * @c: UBIFS file-system description object
829 * @i: nnode number
830 *
831 * This function returns a pointer to the nnode on success or a negative
832 * error code on failure.
833 */
834 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
835 {
836 int err, iip;
837 struct ubifs_nnode *nnode;
838
839 if (!c->nroot) {
840 err = ubifs_read_nnode(c, NULL, 0);
841 if (err)
842 return ERR_PTR(err);
843 }
844 nnode = c->nroot;
845 while (1) {
846 iip = i & (UBIFS_LPT_FANOUT - 1);
847 i >>= UBIFS_LPT_FANOUT_SHIFT;
848 if (!i)
849 break;
850 nnode = ubifs_get_nnode(c, nnode, iip);
851 if (IS_ERR(nnode))
852 return nnode;
853 }
854 return nnode;
855 }
856
857 /**
858 * make_nnode_dirty - find a nnode and, if found, make it dirty.
859 * @c: UBIFS file-system description object
860 * @node_num: nnode number of nnode to make dirty
861 * @lnum: LEB number where nnode was written
862 * @offs: offset where nnode was written
863 *
864 * This function is used by LPT garbage collection. LPT garbage collection is
865 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
866 * simply involves marking all the nodes in the LEB being garbage-collected as
867 * dirty. The dirty nodes are written next commit, after which the LEB is free
868 * to be reused.
869 *
870 * This function returns %0 on success and a negative error code on failure.
871 */
872 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
873 int offs)
874 {
875 struct ubifs_nnode *nnode;
876
877 nnode = nnode_lookup(c, node_num);
878 if (IS_ERR(nnode))
879 return PTR_ERR(nnode);
880 if (nnode->parent) {
881 struct ubifs_nbranch *branch;
882
883 branch = &nnode->parent->nbranch[nnode->iip];
884 if (branch->lnum != lnum || branch->offs != offs)
885 return 0; /* nnode is obsolete */
886 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
887 return 0; /* nnode is obsolete */
888 /* Assumes cnext list is empty i.e. not called during commit */
889 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
890 c->dirty_nn_cnt += 1;
891 ubifs_add_nnode_dirt(c, nnode);
892 /* Mark parent and ancestors dirty too */
893 nnode = nnode->parent;
894 while (nnode) {
895 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
896 c->dirty_nn_cnt += 1;
897 ubifs_add_nnode_dirt(c, nnode);
898 nnode = nnode->parent;
899 } else
900 break;
901 }
902 }
903 return 0;
904 }
905
906 /**
907 * make_pnode_dirty - find a pnode and, if found, make it dirty.
908 * @c: UBIFS file-system description object
909 * @node_num: pnode number of pnode to make dirty
910 * @lnum: LEB number where pnode was written
911 * @offs: offset where pnode was written
912 *
913 * This function is used by LPT garbage collection. LPT garbage collection is
914 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
915 * simply involves marking all the nodes in the LEB being garbage-collected as
916 * dirty. The dirty nodes are written next commit, after which the LEB is free
917 * to be reused.
918 *
919 * This function returns %0 on success and a negative error code on failure.
920 */
921 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
922 int offs)
923 {
924 struct ubifs_pnode *pnode;
925 struct ubifs_nbranch *branch;
926
927 pnode = ubifs_pnode_lookup(c, node_num);
928 if (IS_ERR(pnode))
929 return PTR_ERR(pnode);
930 branch = &pnode->parent->nbranch[pnode->iip];
931 if (branch->lnum != lnum || branch->offs != offs)
932 return 0;
933 do_make_pnode_dirty(c, pnode);
934 return 0;
935 }
936
937 /**
938 * make_ltab_dirty - make ltab node dirty.
939 * @c: UBIFS file-system description object
940 * @lnum: LEB number where ltab was written
941 * @offs: offset where ltab was written
942 *
943 * This function is used by LPT garbage collection. LPT garbage collection is
944 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
945 * simply involves marking all the nodes in the LEB being garbage-collected as
946 * dirty. The dirty nodes are written next commit, after which the LEB is free
947 * to be reused.
948 *
949 * This function returns %0 on success and a negative error code on failure.
950 */
951 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
952 {
953 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
954 return 0; /* This ltab node is obsolete */
955 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
956 c->lpt_drty_flgs |= LTAB_DIRTY;
957 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
958 }
959 return 0;
960 }
961
962 /**
963 * make_lsave_dirty - make lsave node dirty.
964 * @c: UBIFS file-system description object
965 * @lnum: LEB number where lsave was written
966 * @offs: offset where lsave was written
967 *
968 * This function is used by LPT garbage collection. LPT garbage collection is
969 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
970 * simply involves marking all the nodes in the LEB being garbage-collected as
971 * dirty. The dirty nodes are written next commit, after which the LEB is free
972 * to be reused.
973 *
974 * This function returns %0 on success and a negative error code on failure.
975 */
976 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
977 {
978 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
979 return 0; /* This lsave node is obsolete */
980 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
981 c->lpt_drty_flgs |= LSAVE_DIRTY;
982 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
983 }
984 return 0;
985 }
986
987 /**
988 * make_node_dirty - make node dirty.
989 * @c: UBIFS file-system description object
990 * @node_type: LPT node type
991 * @node_num: node number
992 * @lnum: LEB number where node was written
993 * @offs: offset where node was written
994 *
995 * This function is used by LPT garbage collection. LPT garbage collection is
996 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
997 * simply involves marking all the nodes in the LEB being garbage-collected as
998 * dirty. The dirty nodes are written next commit, after which the LEB is free
999 * to be reused.
1000 *
1001 * This function returns %0 on success and a negative error code on failure.
1002 */
1003 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1004 int lnum, int offs)
1005 {
1006 switch (node_type) {
1007 case UBIFS_LPT_NNODE:
1008 return make_nnode_dirty(c, node_num, lnum, offs);
1009 case UBIFS_LPT_PNODE:
1010 return make_pnode_dirty(c, node_num, lnum, offs);
1011 case UBIFS_LPT_LTAB:
1012 return make_ltab_dirty(c, lnum, offs);
1013 case UBIFS_LPT_LSAVE:
1014 return make_lsave_dirty(c, lnum, offs);
1015 }
1016 return -EINVAL;
1017 }
1018
1019 /**
1020 * get_lpt_node_len - return the length of a node based on its type.
1021 * @c: UBIFS file-system description object
1022 * @node_type: LPT node type
1023 */
1024 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1025 {
1026 switch (node_type) {
1027 case UBIFS_LPT_NNODE:
1028 return c->nnode_sz;
1029 case UBIFS_LPT_PNODE:
1030 return c->pnode_sz;
1031 case UBIFS_LPT_LTAB:
1032 return c->ltab_sz;
1033 case UBIFS_LPT_LSAVE:
1034 return c->lsave_sz;
1035 }
1036 return 0;
1037 }
1038
1039 /**
1040 * get_pad_len - return the length of padding in a buffer.
1041 * @c: UBIFS file-system description object
1042 * @buf: buffer
1043 * @len: length of buffer
1044 */
1045 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1046 {
1047 int offs, pad_len;
1048
1049 if (c->min_io_size == 1)
1050 return 0;
1051 offs = c->leb_size - len;
1052 pad_len = ALIGN(offs, c->min_io_size) - offs;
1053 return pad_len;
1054 }
1055
1056 /**
1057 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1058 * @c: UBIFS file-system description object
1059 * @buf: buffer
1060 * @node_num: node number is returned here
1061 */
1062 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1063 int *node_num)
1064 {
1065 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1066 int pos = 0, node_type;
1067
1068 node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1069 *node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1070 return node_type;
1071 }
1072
1073 /**
1074 * is_a_node - determine if a buffer contains a node.
1075 * @c: UBIFS file-system description object
1076 * @buf: buffer
1077 * @len: length of buffer
1078 *
1079 * This function returns %1 if the buffer contains a node or %0 if it does not.
1080 */
1081 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1082 {
1083 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1084 int pos = 0, node_type, node_len;
1085 uint16_t crc, calc_crc;
1086
1087 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1088 return 0;
1089 node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1090 if (node_type == UBIFS_LPT_NOT_A_NODE)
1091 return 0;
1092 node_len = get_lpt_node_len(c, node_type);
1093 if (!node_len || node_len > len)
1094 return 0;
1095 pos = 0;
1096 addr = buf;
1097 crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
1098 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1099 node_len - UBIFS_LPT_CRC_BYTES);
1100 if (crc != calc_crc)
1101 return 0;
1102 return 1;
1103 }
1104
1105 /**
1106 * lpt_gc_lnum - garbage collect a LPT LEB.
1107 * @c: UBIFS file-system description object
1108 * @lnum: LEB number to garbage collect
1109 *
1110 * LPT garbage collection is used only for the "big" LPT model
1111 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1112 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1113 * next commit, after which the LEB is free to be reused.
1114 *
1115 * This function returns %0 on success and a negative error code on failure.
1116 */
1117 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1118 {
1119 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1120 void *buf = c->lpt_buf;
1121
1122 dbg_lp("LEB %d", lnum);
1123
1124 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1125 if (err)
1126 return err;
1127
1128 while (1) {
1129 if (!is_a_node(c, buf, len)) {
1130 int pad_len;
1131
1132 pad_len = get_pad_len(c, buf, len);
1133 if (pad_len) {
1134 buf += pad_len;
1135 len -= pad_len;
1136 continue;
1137 }
1138 return 0;
1139 }
1140 node_type = get_lpt_node_type(c, buf, &node_num);
1141 node_len = get_lpt_node_len(c, node_type);
1142 offs = c->leb_size - len;
1143 ubifs_assert(c, node_len != 0);
1144 mutex_lock(&c->lp_mutex);
1145 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1146 mutex_unlock(&c->lp_mutex);
1147 if (err)
1148 return err;
1149 buf += node_len;
1150 len -= node_len;
1151 }
1152 return 0;
1153 }
1154
1155 /**
1156 * lpt_gc - LPT garbage collection.
1157 * @c: UBIFS file-system description object
1158 *
1159 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1160 * Returns %0 on success and a negative error code on failure.
1161 */
1162 static int lpt_gc(struct ubifs_info *c)
1163 {
1164 int i, lnum = -1, dirty = 0;
1165
1166 mutex_lock(&c->lp_mutex);
1167 for (i = 0; i < c->lpt_lebs; i++) {
1168 ubifs_assert(c, !c->ltab[i].tgc);
1169 if (i + c->lpt_first == c->nhead_lnum ||
1170 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1171 continue;
1172 if (c->ltab[i].dirty > dirty) {
1173 dirty = c->ltab[i].dirty;
1174 lnum = i + c->lpt_first;
1175 }
1176 }
1177 mutex_unlock(&c->lp_mutex);
1178 if (lnum == -1)
1179 return -ENOSPC;
1180 return lpt_gc_lnum(c, lnum);
1181 }
1182
1183 /**
1184 * ubifs_lpt_start_commit - UBIFS commit starts.
1185 * @c: the UBIFS file-system description object
1186 *
1187 * This function has to be called when UBIFS starts the commit operation.
1188 * This function "freezes" all currently dirty LEB properties and does not
1189 * change them anymore. Further changes are saved and tracked separately
1190 * because they are not part of this commit. This function returns zero in case
1191 * of success and a negative error code in case of failure.
1192 */
1193 int ubifs_lpt_start_commit(struct ubifs_info *c)
1194 {
1195 int err, cnt;
1196
1197 dbg_lp("");
1198
1199 mutex_lock(&c->lp_mutex);
1200 err = dbg_chk_lpt_free_spc(c);
1201 if (err)
1202 goto out;
1203 err = dbg_check_ltab(c);
1204 if (err)
1205 goto out;
1206
1207 if (c->check_lpt_free) {
1208 /*
1209 * We ensure there is enough free space in
1210 * ubifs_lpt_post_commit() by marking nodes dirty. That
1211 * information is lost when we unmount, so we also need
1212 * to check free space once after mounting also.
1213 */
1214 c->check_lpt_free = 0;
1215 while (need_write_all(c)) {
1216 mutex_unlock(&c->lp_mutex);
1217 err = lpt_gc(c);
1218 if (err)
1219 return err;
1220 mutex_lock(&c->lp_mutex);
1221 }
1222 }
1223
1224 lpt_tgc_start(c);
1225
1226 if (!c->dirty_pn_cnt) {
1227 dbg_cmt("no cnodes to commit");
1228 err = 0;
1229 goto out;
1230 }
1231
1232 if (!c->big_lpt && need_write_all(c)) {
1233 /* If needed, write everything */
1234 err = make_tree_dirty(c);
1235 if (err)
1236 goto out;
1237 lpt_tgc_start(c);
1238 }
1239
1240 if (c->big_lpt)
1241 populate_lsave(c);
1242
1243 cnt = get_cnodes_to_commit(c);
1244 ubifs_assert(c, cnt != 0);
1245
1246 err = layout_cnodes(c);
1247 if (err)
1248 goto out;
1249
1250 err = ubifs_lpt_calc_hash(c, c->mst_node->hash_lpt);
1251 if (err)
1252 goto out;
1253
1254 /* Copy the LPT's own lprops for end commit to write */
1255 memcpy(c->ltab_cmt, c->ltab,
1256 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1257 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1258
1259 out:
1260 mutex_unlock(&c->lp_mutex);
1261 return err;
1262 }
1263
1264 /**
1265 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1266 * @c: UBIFS file-system description object
1267 */
1268 static void free_obsolete_cnodes(struct ubifs_info *c)
1269 {
1270 struct ubifs_cnode *cnode, *cnext;
1271
1272 cnext = c->lpt_cnext;
1273 if (!cnext)
1274 return;
1275 do {
1276 cnode = cnext;
1277 cnext = cnode->cnext;
1278 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1279 kfree(cnode);
1280 else
1281 cnode->cnext = NULL;
1282 } while (cnext != c->lpt_cnext);
1283 c->lpt_cnext = NULL;
1284 }
1285
1286 /**
1287 * ubifs_lpt_end_commit - finish the commit operation.
1288 * @c: the UBIFS file-system description object
1289 *
1290 * This function has to be called when the commit operation finishes. It
1291 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1292 * the media. Returns zero in case of success and a negative error code in case
1293 * of failure.
1294 */
1295 int ubifs_lpt_end_commit(struct ubifs_info *c)
1296 {
1297 int err;
1298
1299 dbg_lp("");
1300
1301 if (!c->lpt_cnext)
1302 return 0;
1303
1304 err = write_cnodes(c);
1305 if (err)
1306 return err;
1307
1308 mutex_lock(&c->lp_mutex);
1309 free_obsolete_cnodes(c);
1310 mutex_unlock(&c->lp_mutex);
1311
1312 return 0;
1313 }
1314
1315 /**
1316 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1317 * @c: UBIFS file-system description object
1318 *
1319 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1320 * commit for the "big" LPT model.
1321 */
1322 int ubifs_lpt_post_commit(struct ubifs_info *c)
1323 {
1324 int err;
1325
1326 mutex_lock(&c->lp_mutex);
1327 err = lpt_tgc_end(c);
1328 if (err)
1329 goto out;
1330 if (c->big_lpt)
1331 while (need_write_all(c)) {
1332 mutex_unlock(&c->lp_mutex);
1333 err = lpt_gc(c);
1334 if (err)
1335 return err;
1336 mutex_lock(&c->lp_mutex);
1337 }
1338 out:
1339 mutex_unlock(&c->lp_mutex);
1340 return err;
1341 }
1342
1343 /**
1344 * first_nnode - find the first nnode in memory.
1345 * @c: UBIFS file-system description object
1346 * @hght: height of tree where nnode found is returned here
1347 *
1348 * This function returns a pointer to the nnode found or %NULL if no nnode is
1349 * found. This function is a helper to 'ubifs_lpt_free()'.
1350 */
1351 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1352 {
1353 struct ubifs_nnode *nnode;
1354 int h, i, found;
1355
1356 nnode = c->nroot;
1357 *hght = 0;
1358 if (!nnode)
1359 return NULL;
1360 for (h = 1; h < c->lpt_hght; h++) {
1361 found = 0;
1362 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1363 if (nnode->nbranch[i].nnode) {
1364 found = 1;
1365 nnode = nnode->nbranch[i].nnode;
1366 *hght = h;
1367 break;
1368 }
1369 }
1370 if (!found)
1371 break;
1372 }
1373 return nnode;
1374 }
1375
1376 /**
1377 * next_nnode - find the next nnode in memory.
1378 * @c: UBIFS file-system description object
1379 * @nnode: nnode from which to start.
1380 * @hght: height of tree where nnode is, is passed and returned here
1381 *
1382 * This function returns a pointer to the nnode found or %NULL if no nnode is
1383 * found. This function is a helper to 'ubifs_lpt_free()'.
1384 */
1385 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1386 struct ubifs_nnode *nnode, int *hght)
1387 {
1388 struct ubifs_nnode *parent;
1389 int iip, h, i, found;
1390
1391 parent = nnode->parent;
1392 if (!parent)
1393 return NULL;
1394 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1395 *hght -= 1;
1396 return parent;
1397 }
1398 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1399 nnode = parent->nbranch[iip].nnode;
1400 if (nnode)
1401 break;
1402 }
1403 if (!nnode) {
1404 *hght -= 1;
1405 return parent;
1406 }
1407 for (h = *hght + 1; h < c->lpt_hght; h++) {
1408 found = 0;
1409 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1410 if (nnode->nbranch[i].nnode) {
1411 found = 1;
1412 nnode = nnode->nbranch[i].nnode;
1413 *hght = h;
1414 break;
1415 }
1416 }
1417 if (!found)
1418 break;
1419 }
1420 return nnode;
1421 }
1422
1423 /**
1424 * ubifs_lpt_free - free resources owned by the LPT.
1425 * @c: UBIFS file-system description object
1426 * @wr_only: free only resources used for writing
1427 */
1428 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1429 {
1430 struct ubifs_nnode *nnode;
1431 int i, hght;
1432
1433 /* Free write-only things first */
1434
1435 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1436
1437 vfree(c->ltab_cmt);
1438 c->ltab_cmt = NULL;
1439 vfree(c->lpt_buf);
1440 c->lpt_buf = NULL;
1441 kfree(c->lsave);
1442 c->lsave = NULL;
1443
1444 if (wr_only)
1445 return;
1446
1447 /* Now free the rest */
1448
1449 nnode = first_nnode(c, &hght);
1450 while (nnode) {
1451 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1452 kfree(nnode->nbranch[i].nnode);
1453 nnode = next_nnode(c, nnode, &hght);
1454 }
1455 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1456 kfree(c->lpt_heap[i].arr);
1457 kfree(c->dirty_idx.arr);
1458 kfree(c->nroot);
1459 vfree(c->ltab);
1460 kfree(c->lpt_nod_buf);
1461 }
1462
1463 /*
1464 * Everything below is related to debugging.
1465 */
1466
1467 /**
1468 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1469 * @buf: buffer
1470 * @len: buffer length
1471 */
1472 static int dbg_is_all_ff(uint8_t *buf, int len)
1473 {
1474 int i;
1475
1476 for (i = 0; i < len; i++)
1477 if (buf[i] != 0xff)
1478 return 0;
1479 return 1;
1480 }
1481
1482 /**
1483 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1484 * @c: the UBIFS file-system description object
1485 * @lnum: LEB number where nnode was written
1486 * @offs: offset where nnode was written
1487 */
1488 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1489 {
1490 struct ubifs_nnode *nnode;
1491 int hght;
1492
1493 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1494 nnode = first_nnode(c, &hght);
1495 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1496 struct ubifs_nbranch *branch;
1497
1498 cond_resched();
1499 if (nnode->parent) {
1500 branch = &nnode->parent->nbranch[nnode->iip];
1501 if (branch->lnum != lnum || branch->offs != offs)
1502 continue;
1503 if (test_bit(DIRTY_CNODE, &nnode->flags))
1504 return 1;
1505 return 0;
1506 } else {
1507 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1508 continue;
1509 if (test_bit(DIRTY_CNODE, &nnode->flags))
1510 return 1;
1511 return 0;
1512 }
1513 }
1514 return 1;
1515 }
1516
1517 /**
1518 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1519 * @c: the UBIFS file-system description object
1520 * @lnum: LEB number where pnode was written
1521 * @offs: offset where pnode was written
1522 */
1523 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1524 {
1525 int i, cnt;
1526
1527 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1528 for (i = 0; i < cnt; i++) {
1529 struct ubifs_pnode *pnode;
1530 struct ubifs_nbranch *branch;
1531
1532 cond_resched();
1533 pnode = ubifs_pnode_lookup(c, i);
1534 if (IS_ERR(pnode))
1535 return PTR_ERR(pnode);
1536 branch = &pnode->parent->nbranch[pnode->iip];
1537 if (branch->lnum != lnum || branch->offs != offs)
1538 continue;
1539 if (test_bit(DIRTY_CNODE, &pnode->flags))
1540 return 1;
1541 return 0;
1542 }
1543 return 1;
1544 }
1545
1546 /**
1547 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1548 * @c: the UBIFS file-system description object
1549 * @lnum: LEB number where ltab node was written
1550 * @offs: offset where ltab node was written
1551 */
1552 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1553 {
1554 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1555 return 1;
1556 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1557 }
1558
1559 /**
1560 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1561 * @c: the UBIFS file-system description object
1562 * @lnum: LEB number where lsave node was written
1563 * @offs: offset where lsave node was written
1564 */
1565 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1566 {
1567 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1568 return 1;
1569 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1570 }
1571
1572 /**
1573 * dbg_is_node_dirty - determine if a node is dirty.
1574 * @c: the UBIFS file-system description object
1575 * @node_type: node type
1576 * @lnum: LEB number where node was written
1577 * @offs: offset where node was written
1578 */
1579 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1580 int offs)
1581 {
1582 switch (node_type) {
1583 case UBIFS_LPT_NNODE:
1584 return dbg_is_nnode_dirty(c, lnum, offs);
1585 case UBIFS_LPT_PNODE:
1586 return dbg_is_pnode_dirty(c, lnum, offs);
1587 case UBIFS_LPT_LTAB:
1588 return dbg_is_ltab_dirty(c, lnum, offs);
1589 case UBIFS_LPT_LSAVE:
1590 return dbg_is_lsave_dirty(c, lnum, offs);
1591 }
1592 return 1;
1593 }
1594
1595 /**
1596 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1597 * @c: the UBIFS file-system description object
1598 * @lnum: LEB number where node was written
1599 *
1600 * This function returns %0 on success and a negative error code on failure.
1601 */
1602 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1603 {
1604 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1605 int ret;
1606 void *buf, *p;
1607
1608 if (!dbg_is_chk_lprops(c))
1609 return 0;
1610
1611 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1612 if (!buf) {
1613 ubifs_err(c, "cannot allocate memory for ltab checking");
1614 return 0;
1615 }
1616
1617 dbg_lp("LEB %d", lnum);
1618
1619 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1620 if (err)
1621 goto out;
1622
1623 while (1) {
1624 if (!is_a_node(c, p, len)) {
1625 int i, pad_len;
1626
1627 pad_len = get_pad_len(c, p, len);
1628 if (pad_len) {
1629 p += pad_len;
1630 len -= pad_len;
1631 dirty += pad_len;
1632 continue;
1633 }
1634 if (!dbg_is_all_ff(p, len)) {
1635 ubifs_err(c, "invalid empty space in LEB %d at %d",
1636 lnum, c->leb_size - len);
1637 err = -EINVAL;
1638 }
1639 i = lnum - c->lpt_first;
1640 if (len != c->ltab[i].free) {
1641 ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1642 lnum, len, c->ltab[i].free);
1643 err = -EINVAL;
1644 }
1645 if (dirty != c->ltab[i].dirty) {
1646 ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1647 lnum, dirty, c->ltab[i].dirty);
1648 err = -EINVAL;
1649 }
1650 goto out;
1651 }
1652 node_type = get_lpt_node_type(c, p, &node_num);
1653 node_len = get_lpt_node_len(c, node_type);
1654 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1655 if (ret == 1)
1656 dirty += node_len;
1657 p += node_len;
1658 len -= node_len;
1659 }
1660
1661 err = 0;
1662 out:
1663 vfree(buf);
1664 return err;
1665 }
1666
1667 /**
1668 * dbg_check_ltab - check the free and dirty space in the ltab.
1669 * @c: the UBIFS file-system description object
1670 *
1671 * This function returns %0 on success and a negative error code on failure.
1672 */
1673 int dbg_check_ltab(struct ubifs_info *c)
1674 {
1675 int lnum, err, i, cnt;
1676
1677 if (!dbg_is_chk_lprops(c))
1678 return 0;
1679
1680 /* Bring the entire tree into memory */
1681 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1682 for (i = 0; i < cnt; i++) {
1683 struct ubifs_pnode *pnode;
1684
1685 pnode = ubifs_pnode_lookup(c, i);
1686 if (IS_ERR(pnode))
1687 return PTR_ERR(pnode);
1688 cond_resched();
1689 }
1690
1691 /* Check nodes */
1692 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1693 if (err)
1694 return err;
1695
1696 /* Check each LEB */
1697 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1698 err = dbg_check_ltab_lnum(c, lnum);
1699 if (err) {
1700 ubifs_err(c, "failed at LEB %d", lnum);
1701 return err;
1702 }
1703 }
1704
1705 dbg_lp("succeeded");
1706 return 0;
1707 }
1708
1709 /**
1710 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1711 * @c: the UBIFS file-system description object
1712 *
1713 * This function returns %0 on success and a negative error code on failure.
1714 */
1715 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1716 {
1717 long long free = 0;
1718 int i;
1719
1720 if (!dbg_is_chk_lprops(c))
1721 return 0;
1722
1723 for (i = 0; i < c->lpt_lebs; i++) {
1724 if (c->ltab[i].tgc || c->ltab[i].cmt)
1725 continue;
1726 if (i + c->lpt_first == c->nhead_lnum)
1727 free += c->leb_size - c->nhead_offs;
1728 else if (c->ltab[i].free == c->leb_size)
1729 free += c->leb_size;
1730 }
1731 if (free < c->lpt_sz) {
1732 ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1733 free, c->lpt_sz);
1734 ubifs_dump_lpt_info(c);
1735 ubifs_dump_lpt_lebs(c);
1736 dump_stack();
1737 return -EINVAL;
1738 }
1739 return 0;
1740 }
1741
1742 /**
1743 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1744 * @c: the UBIFS file-system description object
1745 * @action: what to do
1746 * @len: length written
1747 *
1748 * This function returns %0 on success and a negative error code on failure.
1749 * The @action argument may be one of:
1750 * o %0 - LPT debugging checking starts, initialize debugging variables;
1751 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1752 * o %2 - switched to a different LEB and wasted @len bytes;
1753 * o %3 - check that we've written the right number of bytes.
1754 * o %4 - wasted @len bytes;
1755 */
1756 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1757 {
1758 struct ubifs_debug_info *d = c->dbg;
1759 long long chk_lpt_sz, lpt_sz;
1760 int err = 0;
1761
1762 if (!dbg_is_chk_lprops(c))
1763 return 0;
1764
1765 switch (action) {
1766 case 0:
1767 d->chk_lpt_sz = 0;
1768 d->chk_lpt_sz2 = 0;
1769 d->chk_lpt_lebs = 0;
1770 d->chk_lpt_wastage = 0;
1771 if (c->dirty_pn_cnt > c->pnode_cnt) {
1772 ubifs_err(c, "dirty pnodes %d exceed max %d",
1773 c->dirty_pn_cnt, c->pnode_cnt);
1774 err = -EINVAL;
1775 }
1776 if (c->dirty_nn_cnt > c->nnode_cnt) {
1777 ubifs_err(c, "dirty nnodes %d exceed max %d",
1778 c->dirty_nn_cnt, c->nnode_cnt);
1779 err = -EINVAL;
1780 }
1781 return err;
1782 case 1:
1783 d->chk_lpt_sz += len;
1784 return 0;
1785 case 2:
1786 d->chk_lpt_sz += len;
1787 d->chk_lpt_wastage += len;
1788 d->chk_lpt_lebs += 1;
1789 return 0;
1790 case 3:
1791 chk_lpt_sz = c->leb_size;
1792 chk_lpt_sz *= d->chk_lpt_lebs;
1793 chk_lpt_sz += len - c->nhead_offs;
1794 if (d->chk_lpt_sz != chk_lpt_sz) {
1795 ubifs_err(c, "LPT wrote %lld but space used was %lld",
1796 d->chk_lpt_sz, chk_lpt_sz);
1797 err = -EINVAL;
1798 }
1799 if (d->chk_lpt_sz > c->lpt_sz) {
1800 ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1801 d->chk_lpt_sz, c->lpt_sz);
1802 err = -EINVAL;
1803 }
1804 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1805 ubifs_err(c, "LPT layout size %lld but wrote %lld",
1806 d->chk_lpt_sz, d->chk_lpt_sz2);
1807 err = -EINVAL;
1808 }
1809 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1810 ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1811 d->new_nhead_offs, len);
1812 err = -EINVAL;
1813 }
1814 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1815 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1816 lpt_sz += c->ltab_sz;
1817 if (c->big_lpt)
1818 lpt_sz += c->lsave_sz;
1819 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1820 ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1821 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1822 err = -EINVAL;
1823 }
1824 if (err) {
1825 ubifs_dump_lpt_info(c);
1826 ubifs_dump_lpt_lebs(c);
1827 dump_stack();
1828 }
1829 d->chk_lpt_sz2 = d->chk_lpt_sz;
1830 d->chk_lpt_sz = 0;
1831 d->chk_lpt_wastage = 0;
1832 d->chk_lpt_lebs = 0;
1833 d->new_nhead_offs = len;
1834 return err;
1835 case 4:
1836 d->chk_lpt_sz += len;
1837 d->chk_lpt_wastage += len;
1838 return 0;
1839 default:
1840 return -EINVAL;
1841 }
1842 }
1843
1844 /**
1845 * dump_lpt_leb - dump an LPT LEB.
1846 * @c: UBIFS file-system description object
1847 * @lnum: LEB number to dump
1848 *
1849 * This function dumps an LEB from LPT area. Nodes in this area are very
1850 * different to nodes in the main area (e.g., they do not have common headers,
1851 * they do not have 8-byte alignments, etc), so we have a separate function to
1852 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1853 */
1854 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1855 {
1856 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1857 void *buf, *p;
1858
1859 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1860 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1861 if (!buf) {
1862 ubifs_err(c, "cannot allocate memory to dump LPT");
1863 return;
1864 }
1865
1866 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1867 if (err)
1868 goto out;
1869
1870 while (1) {
1871 offs = c->leb_size - len;
1872 if (!is_a_node(c, p, len)) {
1873 int pad_len;
1874
1875 pad_len = get_pad_len(c, p, len);
1876 if (pad_len) {
1877 pr_err("LEB %d:%d, pad %d bytes\n",
1878 lnum, offs, pad_len);
1879 p += pad_len;
1880 len -= pad_len;
1881 continue;
1882 }
1883 if (len)
1884 pr_err("LEB %d:%d, free %d bytes\n",
1885 lnum, offs, len);
1886 break;
1887 }
1888
1889 node_type = get_lpt_node_type(c, p, &node_num);
1890 switch (node_type) {
1891 case UBIFS_LPT_PNODE:
1892 {
1893 node_len = c->pnode_sz;
1894 if (c->big_lpt)
1895 pr_err("LEB %d:%d, pnode num %d\n",
1896 lnum, offs, node_num);
1897 else
1898 pr_err("LEB %d:%d, pnode\n", lnum, offs);
1899 break;
1900 }
1901 case UBIFS_LPT_NNODE:
1902 {
1903 int i;
1904 struct ubifs_nnode nnode;
1905
1906 node_len = c->nnode_sz;
1907 if (c->big_lpt)
1908 pr_err("LEB %d:%d, nnode num %d, ",
1909 lnum, offs, node_num);
1910 else
1911 pr_err("LEB %d:%d, nnode, ",
1912 lnum, offs);
1913 err = ubifs_unpack_nnode(c, p, &nnode);
1914 if (err) {
1915 pr_err("failed to unpack_node, error %d\n",
1916 err);
1917 break;
1918 }
1919 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1920 pr_cont("%d:%d", nnode.nbranch[i].lnum,
1921 nnode.nbranch[i].offs);
1922 if (i != UBIFS_LPT_FANOUT - 1)
1923 pr_cont(", ");
1924 }
1925 pr_cont("\n");
1926 break;
1927 }
1928 case UBIFS_LPT_LTAB:
1929 node_len = c->ltab_sz;
1930 pr_err("LEB %d:%d, ltab\n", lnum, offs);
1931 break;
1932 case UBIFS_LPT_LSAVE:
1933 node_len = c->lsave_sz;
1934 pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1935 break;
1936 default:
1937 ubifs_err(c, "LPT node type %d not recognized", node_type);
1938 goto out;
1939 }
1940
1941 p += node_len;
1942 len -= node_len;
1943 }
1944
1945 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1946 out:
1947 vfree(buf);
1948 return;
1949 }
1950
1951 /**
1952 * ubifs_dump_lpt_lebs - dump LPT lebs.
1953 * @c: UBIFS file-system description object
1954 *
1955 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1956 * locked.
1957 */
1958 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1959 {
1960 int i;
1961
1962 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1963 for (i = 0; i < c->lpt_lebs; i++)
1964 dump_lpt_leb(c, i + c->lpt_first);
1965 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1966 }
1967
1968 /**
1969 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1970 * @c: UBIFS file-system description object
1971 *
1972 * This is a debugging version for 'populate_lsave()' which populates lsave
1973 * with random LEBs instead of useful LEBs, which is good for test coverage.
1974 * Returns zero if lsave has not been populated (this debugging feature is
1975 * disabled) an non-zero if lsave has been populated.
1976 */
1977 static int dbg_populate_lsave(struct ubifs_info *c)
1978 {
1979 struct ubifs_lprops *lprops;
1980 struct ubifs_lpt_heap *heap;
1981 int i;
1982
1983 if (!dbg_is_chk_gen(c))
1984 return 0;
1985 if (prandom_u32() & 3)
1986 return 0;
1987
1988 for (i = 0; i < c->lsave_cnt; i++)
1989 c->lsave[i] = c->main_first;
1990
1991 list_for_each_entry(lprops, &c->empty_list, list)
1992 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1993 list_for_each_entry(lprops, &c->freeable_list, list)
1994 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1995 list_for_each_entry(lprops, &c->frdi_idx_list, list)
1996 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1997
1998 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
1999 for (i = 0; i < heap->cnt; i++)
2000 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2001 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2002 for (i = 0; i < heap->cnt; i++)
2003 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2004 heap = &c->lpt_heap[LPROPS_FREE - 1];
2005 for (i = 0; i < heap->cnt; i++)
2006 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2007
2008 return 1;
2009 }