]>
git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ubifs/recovery.c
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
62 static int is_empty(void *buf
, int len
)
67 for (i
= 0; i
< len
; i
++)
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf
, int len
)
86 for (i
= 0; i
< len
; i
++)
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
110 struct ubifs_mst_node
**mst
, void **cor
)
112 const int sz
= c
->mst_node_alsz
;
116 sbuf
= vmalloc(c
->leb_size
);
120 err
= ubifs_leb_read(c
, lnum
, sbuf
, 0, c
->leb_size
, 0);
121 if (err
&& err
!= -EBADMSG
)
124 /* Find the first position that is definitely not a node */
128 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
129 struct ubifs_ch
*ch
= buf
;
131 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
137 /* See if there was a valid master node before that */
144 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
145 if (ret
!= SCANNED_A_NODE
&& offs
) {
146 /* Could have been corruption so check one place back */
150 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
151 if (ret
!= SCANNED_A_NODE
)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
159 if (ret
== SCANNED_A_NODE
) {
160 struct ubifs_ch
*ch
= buf
;
162 if (ch
->node_type
!= UBIFS_MST_NODE
)
164 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
171 /* Check for corruption */
172 if (offs
< c
->leb_size
) {
173 if (!is_empty(buf
, min_t(int, len
, sz
))) {
175 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
181 /* Check remaining empty space */
182 if (offs
< c
->leb_size
)
183 if (!is_empty(buf
, len
))
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
205 struct ubifs_mst_node
*mst
)
207 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
210 dbg_rcvry("recovery");
212 save_flags
= mst
->flags
;
213 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
215 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
216 err
= ubifs_leb_change(c
, lnum
, mst
, sz
);
219 err
= ubifs_leb_change(c
, lnum
+ 1, mst
, sz
);
223 mst
->flags
= save_flags
;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info
*c
)
238 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
239 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
240 const int sz
= c
->mst_node_alsz
;
241 int err
, offs1
, offs2
;
243 dbg_rcvry("recovery");
245 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
249 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
254 offs1
= (void *)mst1
- buf1
;
255 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
256 (offs1
== 0 && !cor1
)) {
258 * mst1 was written by recovery at offset 0 with no
261 dbg_rcvry("recovery recovery");
264 offs2
= (void *)mst2
- buf2
;
265 if (offs1
== offs2
) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
268 (void *)mst2
+ UBIFS_CH_SZ
,
269 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
272 } else if (offs2
+ sz
== offs1
) {
273 /* 1st LEB was written, 2nd was not */
277 } else if (offs1
== 0 &&
278 c
->leb_size
- offs2
- sz
< sz
) {
279 /* 1st LEB was unmapped and written, 2nd not */
287 * 2nd LEB was unmapped and about to be written, so
288 * there must be only one master node in the first LEB
291 if (offs1
!= 0 || cor1
)
299 * 1st LEB was unmapped and about to be written, so there must
300 * be no room left in 2nd LEB.
302 offs2
= (void *)mst2
- buf2
;
303 if (offs2
+ sz
+ sz
<= c
->leb_size
)
308 ubifs_msg(c
, "recovered master node from LEB %d",
309 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
311 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
314 /* Read-only mode. Keep a copy for switching to rw mode */
315 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
316 if (!c
->rcvrd_mst_node
) {
320 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
323 * We had to recover the master node, which means there was an
324 * unclean reboot. However, it is possible that the master node
325 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
326 * E.g., consider the following chain of events:
328 * 1. UBIFS was cleanly unmounted, so the master node is clean
329 * 2. UBIFS is being mounted R/W and starts changing the master
330 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
331 * so this LEB ends up with some amount of garbage at the
333 * 3. UBIFS is being mounted R/O. We reach this place and
334 * recover the master node from the second LEB
335 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
336 * because we are being mounted R/O. We have to defer the
338 * 4. However, this master node (@c->mst_node) is marked as
339 * clean (since the step 1). And if we just return, the
340 * mount code will be confused and won't recover the master
341 * node when it is re-mounter R/W later.
343 * Thus, to force the recovery by marking the master node as
346 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
348 /* Write the recovered master node */
349 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
350 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
363 ubifs_err(c
, "failed to recover master node");
365 ubifs_err(c
, "dumping first master node");
366 ubifs_dump_node(c
, mst1
);
369 ubifs_err(c
, "dumping second master node");
370 ubifs_dump_node(c
, mst2
);
378 * ubifs_write_rcvrd_mst_node - write the recovered master node.
379 * @c: UBIFS file-system description object
381 * This function writes the master node that was recovered during mounting in
382 * read-only mode and must now be written because we are remounting rw.
384 * This function returns %0 on success and a negative error code on failure.
386 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
390 if (!c
->rcvrd_mst_node
)
392 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
393 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
394 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
397 kfree(c
->rcvrd_mst_node
);
398 c
->rcvrd_mst_node
= NULL
;
403 * is_last_write - determine if an offset was in the last write to a LEB.
404 * @c: UBIFS file-system description object
405 * @buf: buffer to check
406 * @offs: offset to check
408 * This function returns %1 if @offs was in the last write to the LEB whose data
409 * is in @buf, otherwise %0 is returned. The determination is made by checking
410 * for subsequent empty space starting from the next @c->max_write_size
413 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
415 int empty_offs
, check_len
;
419 * Round up to the next @c->max_write_size boundary i.e. @offs is in
420 * the last wbuf written. After that should be empty space.
422 empty_offs
= ALIGN(offs
+ 1, c
->max_write_size
);
423 check_len
= c
->leb_size
- empty_offs
;
424 p
= buf
+ empty_offs
- offs
;
425 return is_empty(p
, check_len
);
429 * clean_buf - clean the data from an LEB sitting in a buffer.
430 * @c: UBIFS file-system description object
431 * @buf: buffer to clean
432 * @lnum: LEB number to clean
433 * @offs: offset from which to clean
434 * @len: length of buffer
436 * This function pads up to the next min_io_size boundary (if there is one) and
437 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
438 * @c->min_io_size boundary.
440 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
443 int empty_offs
, pad_len
;
445 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
447 ubifs_assert(c
, !(*offs
& 7));
448 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
449 pad_len
= empty_offs
- *offs
;
450 ubifs_pad(c
, *buf
, pad_len
);
454 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
458 * no_more_nodes - determine if there are no more nodes in a buffer.
459 * @c: UBIFS file-system description object
460 * @buf: buffer to check
461 * @len: length of buffer
462 * @lnum: LEB number of the LEB from which @buf was read
463 * @offs: offset from which @buf was read
465 * This function ensures that the corrupted node at @offs is the last thing
466 * written to a LEB. This function returns %1 if more data is not found and
467 * %0 if more data is found.
469 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
472 struct ubifs_ch
*ch
= buf
;
473 int skip
, dlen
= le32_to_cpu(ch
->len
);
475 /* Check for empty space after the corrupt node's common header */
476 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->max_write_size
) - offs
;
477 if (is_empty(buf
+ skip
, len
- skip
))
480 * The area after the common header size is not empty, so the common
481 * header must be intact. Check it.
483 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
484 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
487 /* Now we know the corrupt node's length we can skip over it */
488 skip
= ALIGN(offs
+ dlen
, c
->max_write_size
) - offs
;
489 /* After which there should be empty space */
490 if (is_empty(buf
+ skip
, len
- skip
))
492 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
497 * fix_unclean_leb - fix an unclean LEB.
498 * @c: UBIFS file-system description object
499 * @sleb: scanned LEB information
500 * @start: offset where scan started
502 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
505 int lnum
= sleb
->lnum
, endpt
= start
;
507 /* Get the end offset of the last node we are keeping */
508 if (!list_empty(&sleb
->nodes
)) {
509 struct ubifs_scan_node
*snod
;
511 snod
= list_entry(sleb
->nodes
.prev
,
512 struct ubifs_scan_node
, list
);
513 endpt
= snod
->offs
+ snod
->len
;
516 if (c
->ro_mount
&& !c
->remounting_rw
) {
517 /* Add to recovery list */
518 struct ubifs_unclean_leb
*ucleb
;
520 dbg_rcvry("need to fix LEB %d start %d endpt %d",
521 lnum
, start
, sleb
->endpt
);
522 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
526 ucleb
->endpt
= endpt
;
527 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
529 /* Write the fixed LEB back to flash */
532 dbg_rcvry("fixing LEB %d start %d endpt %d",
533 lnum
, start
, sleb
->endpt
);
535 err
= ubifs_leb_unmap(c
, lnum
);
539 int len
= ALIGN(endpt
, c
->min_io_size
);
542 err
= ubifs_leb_read(c
, lnum
, sleb
->buf
, 0,
547 /* Pad to min_io_size */
549 int pad_len
= len
- ALIGN(endpt
, 8);
552 void *buf
= sleb
->buf
+ len
- pad_len
;
554 ubifs_pad(c
, buf
, pad_len
);
557 err
= ubifs_leb_change(c
, lnum
, sleb
->buf
, len
);
566 * drop_last_group - drop the last group of nodes.
567 * @sleb: scanned LEB information
568 * @offs: offset of dropped nodes is returned here
570 * This is a helper function for 'ubifs_recover_leb()' which drops the last
571 * group of nodes of the scanned LEB.
573 static void drop_last_group(struct ubifs_scan_leb
*sleb
, int *offs
)
575 while (!list_empty(&sleb
->nodes
)) {
576 struct ubifs_scan_node
*snod
;
579 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
582 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
585 dbg_rcvry("dropping grouped node at %d:%d",
586 sleb
->lnum
, snod
->offs
);
588 list_del(&snod
->list
);
590 sleb
->nodes_cnt
-= 1;
595 * drop_last_node - drop the last node.
596 * @sleb: scanned LEB information
597 * @offs: offset of dropped nodes is returned here
599 * This is a helper function for 'ubifs_recover_leb()' which drops the last
600 * node of the scanned LEB.
602 static void drop_last_node(struct ubifs_scan_leb
*sleb
, int *offs
)
604 struct ubifs_scan_node
*snod
;
606 if (!list_empty(&sleb
->nodes
)) {
607 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
610 dbg_rcvry("dropping last node at %d:%d",
611 sleb
->lnum
, snod
->offs
);
613 list_del(&snod
->list
);
615 sleb
->nodes_cnt
-= 1;
620 * ubifs_recover_leb - scan and recover a LEB.
621 * @c: UBIFS file-system description object
624 * @sbuf: LEB-sized buffer to use
625 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
626 * belong to any journal head)
628 * This function does a scan of a LEB, but caters for errors that might have
629 * been caused by the unclean unmount from which we are attempting to recover.
630 * Returns the scanned information on success and a negative error code on
633 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
634 int offs
, void *sbuf
, int jhead
)
636 int ret
= 0, err
, len
= c
->leb_size
- offs
, start
= offs
, min_io_unit
;
637 int grouped
= jhead
== -1 ? 0 : c
->jheads
[jhead
].grouped
;
638 struct ubifs_scan_leb
*sleb
;
639 void *buf
= sbuf
+ offs
;
641 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum
, offs
, jhead
, grouped
);
643 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
647 ubifs_assert(c
, len
>= 8);
649 dbg_scan("look at LEB %d:%d (%d bytes left)",
655 * Scan quietly until there is an error from which we cannot
658 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
659 if (ret
== SCANNED_A_NODE
) {
660 /* A valid node, and not a padding node */
661 struct ubifs_ch
*ch
= buf
;
664 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
667 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
671 } else if (ret
> 0) {
672 /* Padding bytes or a valid padding node */
676 } else if (ret
== SCANNED_EMPTY_SPACE
||
677 ret
== SCANNED_GARBAGE
||
678 ret
== SCANNED_A_BAD_PAD_NODE
||
679 ret
== SCANNED_A_CORRUPT_NODE
) {
680 dbg_rcvry("found corruption (%d) at %d:%d",
684 ubifs_err(c
, "unexpected return value %d", ret
);
690 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
) {
691 if (!is_last_write(c
, buf
, offs
))
692 goto corrupted_rescan
;
693 } else if (ret
== SCANNED_A_CORRUPT_NODE
) {
694 if (!no_more_nodes(c
, buf
, len
, lnum
, offs
))
695 goto corrupted_rescan
;
696 } else if (!is_empty(buf
, len
)) {
697 if (!is_last_write(c
, buf
, offs
)) {
698 int corruption
= first_non_ff(buf
, len
);
701 * See header comment for this file for more
702 * explanations about the reasons we have this check.
704 ubifs_err(c
, "corrupt empty space LEB %d:%d, corruption starts at %d",
705 lnum
, offs
, corruption
);
706 /* Make sure we dump interesting non-0xFF data */
713 min_io_unit
= round_down(offs
, c
->min_io_size
);
716 * If nodes are grouped, always drop the incomplete group at
719 drop_last_group(sleb
, &offs
);
723 * If this LEB belongs to the GC head then while we are in the
724 * middle of the same min. I/O unit keep dropping nodes. So
725 * basically, what we want is to make sure that the last min.
726 * I/O unit where we saw the corruption is dropped completely
727 * with all the uncorrupted nodes which may possibly sit there.
729 * In other words, let's name the min. I/O unit where the
730 * corruption starts B, and the previous min. I/O unit A. The
731 * below code tries to deal with a situation when half of B
732 * contains valid nodes or the end of a valid node, and the
733 * second half of B contains corrupted data or garbage. This
734 * means that UBIFS had been writing to B just before the power
735 * cut happened. I do not know how realistic is this scenario
736 * that half of the min. I/O unit had been written successfully
737 * and the other half not, but this is possible in our 'failure
738 * mode emulation' infrastructure at least.
740 * So what is the problem, why we need to drop those nodes? Why
741 * can't we just clean-up the second half of B by putting a
742 * padding node there? We can, and this works fine with one
743 * exception which was reproduced with power cut emulation
744 * testing and happens extremely rarely.
746 * Imagine the file-system is full, we run GC which starts
747 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
748 * the current GC head LEB). The @c->gc_lnum is -1, which means
749 * that GC will retain LEB X and will try to continue. Imagine
750 * that LEB X is currently the dirtiest LEB, and the amount of
751 * used space in LEB Y is exactly the same as amount of free
754 * And a power cut happens when nodes are moved from LEB X to
755 * LEB Y. We are here trying to recover LEB Y which is the GC
756 * head LEB. We find the min. I/O unit B as described above.
757 * Then we clean-up LEB Y by padding min. I/O unit. And later
758 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
759 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
760 * does not match because the amount of valid nodes there does
761 * not fit the free space in LEB Y any more! And this is
762 * because of the padding node which we added to LEB Y. The
763 * user-visible effect of this which I once observed and
764 * analysed is that we cannot mount the file-system with
767 * So obviously, to make sure that situation does not happen we
768 * should free min. I/O unit B in LEB Y completely and the last
769 * used min. I/O unit in LEB Y should be A. This is basically
770 * what the below code tries to do.
772 while (offs
> min_io_unit
)
773 drop_last_node(sleb
, &offs
);
777 len
= c
->leb_size
- offs
;
779 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
780 ubifs_end_scan(c
, sleb
, lnum
, offs
);
782 err
= fix_unclean_leb(c
, sleb
, start
);
789 /* Re-scan the corrupted data with verbose messages */
790 ubifs_err(c
, "corruption %d", ret
);
791 ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 0);
793 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
796 ubifs_err(c
, "LEB %d scanning failed", lnum
);
797 ubifs_scan_destroy(sleb
);
802 * get_cs_sqnum - get commit start sequence number.
803 * @c: UBIFS file-system description object
804 * @lnum: LEB number of commit start node
805 * @offs: offset of commit start node
806 * @cs_sqnum: commit start sequence number is returned here
808 * This function returns %0 on success and a negative error code on failure.
810 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
811 unsigned long long *cs_sqnum
)
813 struct ubifs_cs_node
*cs_node
= NULL
;
816 dbg_rcvry("at %d:%d", lnum
, offs
);
817 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
820 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
822 err
= ubifs_leb_read(c
, lnum
, (void *)cs_node
, offs
,
823 UBIFS_CS_NODE_SZ
, 0);
824 if (err
&& err
!= -EBADMSG
)
826 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
827 if (ret
!= SCANNED_A_NODE
) {
828 ubifs_err(c
, "Not a valid node");
831 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
832 ubifs_err(c
, "Node a CS node, type is %d", cs_node
->ch
.node_type
);
835 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
836 ubifs_err(c
, "CS node cmt_no %llu != current cmt_no %llu",
837 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
841 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
842 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
849 ubifs_err(c
, "failed to get CS sqnum");
855 * ubifs_recover_log_leb - scan and recover a log LEB.
856 * @c: UBIFS file-system description object
859 * @sbuf: LEB-sized buffer to use
861 * This function does a scan of a LEB, but caters for errors that might have
862 * been caused by unclean reboots from which we are attempting to recover
863 * (assume that only the last log LEB can be corrupted by an unclean reboot).
865 * This function returns %0 on success and a negative error code on failure.
867 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
868 int offs
, void *sbuf
)
870 struct ubifs_scan_leb
*sleb
;
873 dbg_rcvry("LEB %d", lnum
);
874 next_lnum
= lnum
+ 1;
875 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
876 next_lnum
= UBIFS_LOG_LNUM
;
877 if (next_lnum
!= c
->ltail_lnum
) {
879 * We can only recover at the end of the log, so check that the
880 * next log LEB is empty or out of date.
882 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
, 0);
885 if (sleb
->nodes_cnt
) {
886 struct ubifs_scan_node
*snod
;
887 unsigned long long cs_sqnum
= c
->cs_sqnum
;
889 snod
= list_entry(sleb
->nodes
.next
,
890 struct ubifs_scan_node
, list
);
894 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
896 ubifs_scan_destroy(sleb
);
900 if (snod
->sqnum
> cs_sqnum
) {
901 ubifs_err(c
, "unrecoverable log corruption in LEB %d",
903 ubifs_scan_destroy(sleb
);
904 return ERR_PTR(-EUCLEAN
);
907 ubifs_scan_destroy(sleb
);
909 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, -1);
913 * recover_head - recover a head.
914 * @c: UBIFS file-system description object
915 * @lnum: LEB number of head to recover
916 * @offs: offset of head to recover
917 * @sbuf: LEB-sized buffer to use
919 * This function ensures that there is no data on the flash at a head location.
921 * This function returns %0 on success and a negative error code on failure.
923 static int recover_head(struct ubifs_info
*c
, int lnum
, int offs
, void *sbuf
)
925 int len
= c
->max_write_size
, err
;
927 if (offs
+ len
> c
->leb_size
)
928 len
= c
->leb_size
- offs
;
933 /* Read at the head location and check it is empty flash */
934 err
= ubifs_leb_read(c
, lnum
, sbuf
, offs
, len
, 1);
935 if (err
|| !is_empty(sbuf
, len
)) {
936 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
938 return ubifs_leb_unmap(c
, lnum
);
939 err
= ubifs_leb_read(c
, lnum
, sbuf
, 0, offs
, 1);
942 return ubifs_leb_change(c
, lnum
, sbuf
, offs
);
949 * ubifs_recover_inl_heads - recover index and LPT heads.
950 * @c: UBIFS file-system description object
951 * @sbuf: LEB-sized buffer to use
953 * This function ensures that there is no data on the flash at the index and
954 * LPT head locations.
956 * This deals with the recovery of a half-completed journal commit. UBIFS is
957 * careful never to overwrite the last version of the index or the LPT. Because
958 * the index and LPT are wandering trees, data from a half-completed commit will
959 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
960 * assumed to be empty and will be unmapped anyway before use, or in the index
963 * This function returns %0 on success and a negative error code on failure.
965 int ubifs_recover_inl_heads(struct ubifs_info
*c
, void *sbuf
)
969 ubifs_assert(c
, !c
->ro_mount
|| c
->remounting_rw
);
971 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
972 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
976 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
978 return recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
982 * clean_an_unclean_leb - read and write a LEB to remove corruption.
983 * @c: UBIFS file-system description object
984 * @ucleb: unclean LEB information
985 * @sbuf: LEB-sized buffer to use
987 * This function reads a LEB up to a point pre-determined by the mount recovery,
988 * checks the nodes, and writes the result back to the flash, thereby cleaning
989 * off any following corruption, or non-fatal ECC errors.
991 * This function returns %0 on success and a negative error code on failure.
993 static int clean_an_unclean_leb(struct ubifs_info
*c
,
994 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
996 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
999 dbg_rcvry("LEB %d len %d", lnum
, len
);
1002 /* Nothing to read, just unmap it */
1003 return ubifs_leb_unmap(c
, lnum
);
1006 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1007 if (err
&& err
!= -EBADMSG
)
1015 /* Scan quietly until there is an error */
1016 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
1018 if (ret
== SCANNED_A_NODE
) {
1019 /* A valid node, and not a padding node */
1020 struct ubifs_ch
*ch
= buf
;
1023 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
1031 /* Padding bytes or a valid padding node */
1038 if (ret
== SCANNED_EMPTY_SPACE
) {
1039 ubifs_err(c
, "unexpected empty space at %d:%d",
1045 /* Redo the last scan but noisily */
1050 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
1054 /* Pad to min_io_size */
1055 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
1056 if (len
> ucleb
->endpt
) {
1057 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
1060 buf
= c
->sbuf
+ len
- pad_len
;
1061 ubifs_pad(c
, buf
, pad_len
);
1065 /* Write back the LEB atomically */
1066 err
= ubifs_leb_change(c
, lnum
, sbuf
, len
);
1070 dbg_rcvry("cleaned LEB %d", lnum
);
1076 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1077 * @c: UBIFS file-system description object
1078 * @sbuf: LEB-sized buffer to use
1080 * This function cleans a LEB identified during recovery that needs to be
1081 * written but was not because UBIFS was mounted read-only. This happens when
1082 * remounting to read-write mode.
1084 * This function returns %0 on success and a negative error code on failure.
1086 int ubifs_clean_lebs(struct ubifs_info
*c
, void *sbuf
)
1088 dbg_rcvry("recovery");
1089 while (!list_empty(&c
->unclean_leb_list
)) {
1090 struct ubifs_unclean_leb
*ucleb
;
1093 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1094 struct ubifs_unclean_leb
, list
);
1095 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1098 list_del(&ucleb
->list
);
1105 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1106 * @c: UBIFS file-system description object
1108 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1109 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1110 * zero in case of success and a negative error code in case of failure.
1112 static int grab_empty_leb(struct ubifs_info
*c
)
1117 * Note, it is very important to first search for an empty LEB and then
1118 * run the commit, not vice-versa. The reason is that there might be
1119 * only one empty LEB at the moment, the one which has been the
1120 * @c->gc_lnum just before the power cut happened. During the regular
1121 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1122 * one but GC can grab it. But at this moment this single empty LEB is
1123 * not marked as taken, so if we run commit - what happens? Right, the
1124 * commit will grab it and write the index there. Remember that the
1125 * index always expands as long as there is free space, and it only
1126 * starts consolidating when we run out of space.
1128 * IOW, if we run commit now, we might not be able to find a free LEB
1131 lnum
= ubifs_find_free_leb_for_idx(c
);
1133 ubifs_err(c
, "could not find an empty LEB");
1134 ubifs_dump_lprops(c
);
1135 ubifs_dump_budg(c
, &c
->bi
);
1139 /* Reset the index flag */
1140 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1146 dbg_rcvry("found empty LEB %d, run commit", lnum
);
1148 return ubifs_run_commit(c
);
1152 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1153 * @c: UBIFS file-system description object
1155 * Out-of-place garbage collection requires always one empty LEB with which to
1156 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1157 * written to the master node on unmounting. In the case of an unclean unmount
1158 * the value of gc_lnum recorded in the master node is out of date and cannot
1159 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1160 * However, there may not be enough empty space, in which case it must be
1161 * possible to GC the dirtiest LEB into the GC head LEB.
1163 * This function also runs the commit which causes the TNC updates from
1164 * size-recovery and orphans to be written to the flash. That is important to
1165 * ensure correct replay order for subsequent mounts.
1167 * This function returns %0 on success and a negative error code on failure.
1169 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1171 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1172 struct ubifs_lprops lp
;
1175 dbg_rcvry("GC head LEB %d, offs %d", wbuf
->lnum
, wbuf
->offs
);
1178 if (wbuf
->lnum
== -1 || wbuf
->offs
== c
->leb_size
)
1179 return grab_empty_leb(c
);
1181 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1186 dbg_rcvry("could not find a dirty LEB");
1187 return grab_empty_leb(c
);
1190 ubifs_assert(c
, !(lp
.flags
& LPROPS_INDEX
));
1191 ubifs_assert(c
, lp
.free
+ lp
.dirty
>= wbuf
->offs
);
1194 * We run the commit before garbage collection otherwise subsequent
1195 * mounts will see the GC and orphan deletion in a different order.
1197 dbg_rcvry("committing");
1198 err
= ubifs_run_commit(c
);
1202 dbg_rcvry("GC'ing LEB %d", lp
.lnum
);
1203 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1204 err
= ubifs_garbage_collect_leb(c
, &lp
);
1206 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1211 mutex_unlock(&wbuf
->io_mutex
);
1213 ubifs_err(c
, "GC failed, error %d", err
);
1219 ubifs_assert(c
, err
== LEB_RETAINED
);
1220 if (err
!= LEB_RETAINED
)
1223 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1227 dbg_rcvry("allocated LEB %d for GC", lp
.lnum
);
1232 * struct size_entry - inode size information for recovery.
1233 * @rb: link in the RB-tree of sizes
1234 * @inum: inode number
1235 * @i_size: size on inode
1236 * @d_size: maximum size based on data nodes
1237 * @exists: indicates whether the inode exists
1238 * @inode: inode if pinned in memory awaiting rw mode to fix it
1246 struct inode
*inode
;
1250 * add_ino - add an entry to the size tree.
1251 * @c: UBIFS file-system description object
1252 * @inum: inode number
1253 * @i_size: size on inode
1254 * @d_size: maximum size based on data nodes
1255 * @exists: indicates whether the inode exists
1257 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1258 loff_t d_size
, int exists
)
1260 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1261 struct size_entry
*e
;
1265 e
= rb_entry(parent
, struct size_entry
, rb
);
1269 p
= &(*p
)->rb_right
;
1272 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1281 rb_link_node(&e
->rb
, parent
, p
);
1282 rb_insert_color(&e
->rb
, &c
->size_tree
);
1288 * find_ino - find an entry on the size tree.
1289 * @c: UBIFS file-system description object
1290 * @inum: inode number
1292 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1294 struct rb_node
*p
= c
->size_tree
.rb_node
;
1295 struct size_entry
*e
;
1298 e
= rb_entry(p
, struct size_entry
, rb
);
1301 else if (inum
> e
->inum
)
1310 * remove_ino - remove an entry from the size tree.
1311 * @c: UBIFS file-system description object
1312 * @inum: inode number
1314 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1316 struct size_entry
*e
= find_ino(c
, inum
);
1320 rb_erase(&e
->rb
, &c
->size_tree
);
1325 * ubifs_destroy_size_tree - free resources related to the size tree.
1326 * @c: UBIFS file-system description object
1328 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1330 struct size_entry
*e
, *n
;
1332 rbtree_postorder_for_each_entry_safe(e
, n
, &c
->size_tree
, rb
) {
1337 c
->size_tree
= RB_ROOT
;
1341 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1342 * @c: UBIFS file-system description object
1344 * @deletion: node is for a deletion
1345 * @new_size: inode size
1347 * This function has two purposes:
1348 * 1) to ensure there are no data nodes that fall outside the inode size
1349 * 2) to ensure there are no data nodes for inodes that do not exist
1350 * To accomplish those purposes, a rb-tree is constructed containing an entry
1351 * for each inode number in the journal that has not been deleted, and recording
1352 * the size from the inode node, the maximum size of any data node (also altered
1353 * by truncations) and a flag indicating a inode number for which no inode node
1354 * was present in the journal.
1356 * Note that there is still the possibility that there are data nodes that have
1357 * been committed that are beyond the inode size, however the only way to find
1358 * them would be to scan the entire index. Alternatively, some provision could
1359 * be made to record the size of inodes at the start of commit, which would seem
1360 * very cumbersome for a scenario that is quite unlikely and the only negative
1361 * consequence of which is wasted space.
1363 * This functions returns %0 on success and a negative error code on failure.
1365 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1366 int deletion
, loff_t new_size
)
1368 ino_t inum
= key_inum(c
, key
);
1369 struct size_entry
*e
;
1372 switch (key_type(c
, key
)) {
1375 remove_ino(c
, inum
);
1377 e
= find_ino(c
, inum
);
1379 e
->i_size
= new_size
;
1382 err
= add_ino(c
, inum
, new_size
, 0, 1);
1388 case UBIFS_DATA_KEY
:
1389 e
= find_ino(c
, inum
);
1391 if (new_size
> e
->d_size
)
1392 e
->d_size
= new_size
;
1394 err
= add_ino(c
, inum
, 0, new_size
, 0);
1399 case UBIFS_TRUN_KEY
:
1400 e
= find_ino(c
, inum
);
1402 e
->d_size
= new_size
;
1409 * fix_size_in_place - fix inode size in place on flash.
1410 * @c: UBIFS file-system description object
1411 * @e: inode size information for recovery
1413 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1415 struct ubifs_ino_node
*ino
= c
->sbuf
;
1417 union ubifs_key key
;
1418 int err
, lnum
, offs
, len
;
1422 /* Locate the inode node LEB number and offset */
1423 ino_key_init(c
, &key
, e
->inum
);
1424 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1428 * If the size recorded on the inode node is greater than the size that
1429 * was calculated from nodes in the journal then don't change the inode.
1431 i_size
= le64_to_cpu(ino
->size
);
1432 if (i_size
>= e
->d_size
)
1435 err
= ubifs_leb_read(c
, lnum
, c
->sbuf
, 0, c
->leb_size
, 1);
1438 /* Change the size field and recalculate the CRC */
1439 ino
= c
->sbuf
+ offs
;
1440 ino
->size
= cpu_to_le64(e
->d_size
);
1441 len
= le32_to_cpu(ino
->ch
.len
);
1442 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1443 ino
->ch
.crc
= cpu_to_le32(crc
);
1444 /* Work out where data in the LEB ends and free space begins */
1446 len
= c
->leb_size
- 1;
1447 while (p
[len
] == 0xff)
1449 len
= ALIGN(len
+ 1, c
->min_io_size
);
1450 /* Atomically write the fixed LEB back again */
1451 err
= ubifs_leb_change(c
, lnum
, c
->sbuf
, len
);
1454 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1455 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1459 ubifs_warn(c
, "inode %lu failed to fix size %lld -> %lld error %d",
1460 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1465 * ubifs_recover_size - recover inode size.
1466 * @c: UBIFS file-system description object
1468 * This function attempts to fix inode size discrepancies identified by the
1469 * 'ubifs_recover_size_accum()' function.
1471 * This functions returns %0 on success and a negative error code on failure.
1473 int ubifs_recover_size(struct ubifs_info
*c
)
1475 struct rb_node
*this = rb_first(&c
->size_tree
);
1478 struct size_entry
*e
;
1481 e
= rb_entry(this, struct size_entry
, rb
);
1483 union ubifs_key key
;
1485 ino_key_init(c
, &key
, e
->inum
);
1486 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1487 if (err
&& err
!= -ENOENT
)
1489 if (err
== -ENOENT
) {
1490 /* Remove data nodes that have no inode */
1491 dbg_rcvry("removing ino %lu",
1492 (unsigned long)e
->inum
);
1493 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1497 struct ubifs_ino_node
*ino
= c
->sbuf
;
1500 e
->i_size
= le64_to_cpu(ino
->size
);
1504 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1506 /* Fix the inode size and pin it in memory */
1507 struct inode
*inode
;
1508 struct ubifs_inode
*ui
;
1510 ubifs_assert(c
, !e
->inode
);
1512 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1514 return PTR_ERR(inode
);
1516 ui
= ubifs_inode(inode
);
1517 if (inode
->i_size
< e
->d_size
) {
1518 dbg_rcvry("ino %lu size %lld -> %lld",
1519 (unsigned long)e
->inum
,
1520 inode
->i_size
, e
->d_size
);
1521 inode
->i_size
= e
->d_size
;
1522 ui
->ui_size
= e
->d_size
;
1523 ui
->synced_i_size
= e
->d_size
;
1525 this = rb_next(this);
1530 /* Fix the size in place */
1531 err
= fix_size_in_place(c
, e
);
1538 this = rb_next(this);
1539 rb_erase(&e
->rb
, &c
->size_tree
);