]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ubifs/replay.c
Merge tag 'for-4.18-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-eoan-kernel.git] / fs / ubifs / replay.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
37
38 /**
39 * struct replay_entry - replay list entry.
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
43 * @deletion: non-zero if this entry corresponds to a node deletion
44 * @sqnum: node sequence number
45 * @list: links the replay list
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
50 *
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
54 */
55 struct replay_entry {
56 int lnum;
57 int offs;
58 int len;
59 unsigned int deletion:1;
60 unsigned long long sqnum;
61 struct list_head list;
62 union ubifs_key key;
63 union {
64 struct fscrypt_name nm;
65 struct {
66 loff_t old_size;
67 loff_t new_size;
68 };
69 };
70 };
71
72 /**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
76 * @sqnum: reference node sequence number
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
79 */
80 struct bud_entry {
81 struct list_head list;
82 struct ubifs_bud *bud;
83 unsigned long long sqnum;
84 int free;
85 int dirty;
86 };
87
88 /**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
91 * @b: bud entry which describes the bud
92 *
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
96 */
97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98 {
99 const struct ubifs_lprops *lp;
100 int err = 0, dirty;
101
102 ubifs_get_lprops(c);
103
104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 if (IS_ERR(lp)) {
106 err = PTR_ERR(lp);
107 goto out;
108 }
109
110 dirty = lp->dirty;
111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112 /*
113 * The LEB was added to the journal with a starting offset of
114 * zero which means the LEB must have been empty. The LEB
115 * property values should be @lp->free == @c->leb_size and
116 * @lp->dirty == 0, but that is not the case. The reason is that
117 * the LEB had been garbage collected before it became the bud,
118 * and there was not commit inbetween. The garbage collector
119 * resets the free and dirty space without recording it
120 * anywhere except lprops, so if there was no commit then
121 * lprops does not have that information.
122 *
123 * We do not need to adjust free space because the scan has told
124 * us the exact value which is recorded in the replay entry as
125 * @b->free.
126 *
127 * However we do need to subtract from the dirty space the
128 * amount of space that the garbage collector reclaimed, which
129 * is the whole LEB minus the amount of space that was free.
130 */
131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 lp->free, lp->dirty);
133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 lp->free, lp->dirty);
135 dirty -= c->leb_size - lp->free;
136 /*
137 * If the replay order was perfect the dirty space would now be
138 * zero. The order is not perfect because the journal heads
139 * race with each other. This is not a problem but is does mean
140 * that the dirty space may temporarily exceed c->leb_size
141 * during the replay.
142 */
143 if (dirty != 0)
144 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
145 b->bud->lnum, lp->free, lp->dirty, b->free,
146 b->dirty);
147 }
148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 lp->flags | LPROPS_TAKEN, 0);
150 if (IS_ERR(lp)) {
151 err = PTR_ERR(lp);
152 goto out;
153 }
154
155 /* Make sure the journal head points to the latest bud */
156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 b->bud->lnum, c->leb_size - b->free);
158
159 out:
160 ubifs_release_lprops(c);
161 return err;
162 }
163
164 /**
165 * set_buds_lprops - set free and dirty space for all replayed buds.
166 * @c: UBIFS file-system description object
167 *
168 * This function sets LEB properties for all replayed buds. Returns zero in
169 * case of success and a negative error code in case of failure.
170 */
171 static int set_buds_lprops(struct ubifs_info *c)
172 {
173 struct bud_entry *b;
174 int err;
175
176 list_for_each_entry(b, &c->replay_buds, list) {
177 err = set_bud_lprops(c, b);
178 if (err)
179 return err;
180 }
181
182 return 0;
183 }
184
185 /**
186 * trun_remove_range - apply a replay entry for a truncation to the TNC.
187 * @c: UBIFS file-system description object
188 * @r: replay entry of truncation
189 */
190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191 {
192 unsigned min_blk, max_blk;
193 union ubifs_key min_key, max_key;
194 ino_t ino;
195
196 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 min_blk += 1;
199
200 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 max_blk -= 1;
203
204 ino = key_inum(c, &r->key);
205
206 data_key_init(c, &min_key, ino, min_blk);
207 data_key_init(c, &max_key, ino, max_blk);
208
209 return ubifs_tnc_remove_range(c, &min_key, &max_key);
210 }
211
212 /**
213 * apply_replay_entry - apply a replay entry to the TNC.
214 * @c: UBIFS file-system description object
215 * @r: replay entry to apply
216 *
217 * Apply a replay entry to the TNC.
218 */
219 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
220 {
221 int err;
222
223 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
224 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
225
226 if (is_hash_key(c, &r->key)) {
227 if (r->deletion)
228 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
229 else
230 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
231 r->len, &r->nm);
232 } else {
233 if (r->deletion)
234 switch (key_type(c, &r->key)) {
235 case UBIFS_INO_KEY:
236 {
237 ino_t inum = key_inum(c, &r->key);
238
239 err = ubifs_tnc_remove_ino(c, inum);
240 break;
241 }
242 case UBIFS_TRUN_KEY:
243 err = trun_remove_range(c, r);
244 break;
245 default:
246 err = ubifs_tnc_remove(c, &r->key);
247 break;
248 }
249 else
250 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
251 r->len);
252 if (err)
253 return err;
254
255 if (c->need_recovery)
256 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
257 r->new_size);
258 }
259
260 return err;
261 }
262
263 /**
264 * replay_entries_cmp - compare 2 replay entries.
265 * @priv: UBIFS file-system description object
266 * @a: first replay entry
267 * @b: second replay entry
268 *
269 * This is a comparios function for 'list_sort()' which compares 2 replay
270 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
271 * greater sequence number and %-1 otherwise.
272 */
273 static int replay_entries_cmp(void *priv, struct list_head *a,
274 struct list_head *b)
275 {
276 struct replay_entry *ra, *rb;
277
278 cond_resched();
279 if (a == b)
280 return 0;
281
282 ra = list_entry(a, struct replay_entry, list);
283 rb = list_entry(b, struct replay_entry, list);
284 ubifs_assert(ra->sqnum != rb->sqnum);
285 if (ra->sqnum > rb->sqnum)
286 return 1;
287 return -1;
288 }
289
290 /**
291 * apply_replay_list - apply the replay list to the TNC.
292 * @c: UBIFS file-system description object
293 *
294 * Apply all entries in the replay list to the TNC. Returns zero in case of
295 * success and a negative error code in case of failure.
296 */
297 static int apply_replay_list(struct ubifs_info *c)
298 {
299 struct replay_entry *r;
300 int err;
301
302 list_sort(c, &c->replay_list, &replay_entries_cmp);
303
304 list_for_each_entry(r, &c->replay_list, list) {
305 cond_resched();
306
307 err = apply_replay_entry(c, r);
308 if (err)
309 return err;
310 }
311
312 return 0;
313 }
314
315 /**
316 * destroy_replay_list - destroy the replay.
317 * @c: UBIFS file-system description object
318 *
319 * Destroy the replay list.
320 */
321 static void destroy_replay_list(struct ubifs_info *c)
322 {
323 struct replay_entry *r, *tmp;
324
325 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
326 if (is_hash_key(c, &r->key))
327 kfree(fname_name(&r->nm));
328 list_del(&r->list);
329 kfree(r);
330 }
331 }
332
333 /**
334 * insert_node - insert a node to the replay list
335 * @c: UBIFS file-system description object
336 * @lnum: node logical eraseblock number
337 * @offs: node offset
338 * @len: node length
339 * @key: node key
340 * @sqnum: sequence number
341 * @deletion: non-zero if this is a deletion
342 * @used: number of bytes in use in a LEB
343 * @old_size: truncation old size
344 * @new_size: truncation new size
345 *
346 * This function inserts a scanned non-direntry node to the replay list. The
347 * replay list contains @struct replay_entry elements, and we sort this list in
348 * sequence number order before applying it. The replay list is applied at the
349 * very end of the replay process. Since the list is sorted in sequence number
350 * order, the older modifications are applied first. This function returns zero
351 * in case of success and a negative error code in case of failure.
352 */
353 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
354 union ubifs_key *key, unsigned long long sqnum,
355 int deletion, int *used, loff_t old_size,
356 loff_t new_size)
357 {
358 struct replay_entry *r;
359
360 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
361
362 if (key_inum(c, key) >= c->highest_inum)
363 c->highest_inum = key_inum(c, key);
364
365 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
366 if (!r)
367 return -ENOMEM;
368
369 if (!deletion)
370 *used += ALIGN(len, 8);
371 r->lnum = lnum;
372 r->offs = offs;
373 r->len = len;
374 r->deletion = !!deletion;
375 r->sqnum = sqnum;
376 key_copy(c, key, &r->key);
377 r->old_size = old_size;
378 r->new_size = new_size;
379
380 list_add_tail(&r->list, &c->replay_list);
381 return 0;
382 }
383
384 /**
385 * insert_dent - insert a directory entry node into the replay list.
386 * @c: UBIFS file-system description object
387 * @lnum: node logical eraseblock number
388 * @offs: node offset
389 * @len: node length
390 * @key: node key
391 * @name: directory entry name
392 * @nlen: directory entry name length
393 * @sqnum: sequence number
394 * @deletion: non-zero if this is a deletion
395 * @used: number of bytes in use in a LEB
396 *
397 * This function inserts a scanned directory entry node or an extended
398 * attribute entry to the replay list. Returns zero in case of success and a
399 * negative error code in case of failure.
400 */
401 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
402 union ubifs_key *key, const char *name, int nlen,
403 unsigned long long sqnum, int deletion, int *used)
404 {
405 struct replay_entry *r;
406 char *nbuf;
407
408 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
409 if (key_inum(c, key) >= c->highest_inum)
410 c->highest_inum = key_inum(c, key);
411
412 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
413 if (!r)
414 return -ENOMEM;
415
416 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
417 if (!nbuf) {
418 kfree(r);
419 return -ENOMEM;
420 }
421
422 if (!deletion)
423 *used += ALIGN(len, 8);
424 r->lnum = lnum;
425 r->offs = offs;
426 r->len = len;
427 r->deletion = !!deletion;
428 r->sqnum = sqnum;
429 key_copy(c, key, &r->key);
430 fname_len(&r->nm) = nlen;
431 memcpy(nbuf, name, nlen);
432 nbuf[nlen] = '\0';
433 fname_name(&r->nm) = nbuf;
434
435 list_add_tail(&r->list, &c->replay_list);
436 return 0;
437 }
438
439 /**
440 * ubifs_validate_entry - validate directory or extended attribute entry node.
441 * @c: UBIFS file-system description object
442 * @dent: the node to validate
443 *
444 * This function validates directory or extended attribute entry node @dent.
445 * Returns zero if the node is all right and a %-EINVAL if not.
446 */
447 int ubifs_validate_entry(struct ubifs_info *c,
448 const struct ubifs_dent_node *dent)
449 {
450 int key_type = key_type_flash(c, dent->key);
451 int nlen = le16_to_cpu(dent->nlen);
452
453 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
454 dent->type >= UBIFS_ITYPES_CNT ||
455 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
456 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
457 le64_to_cpu(dent->inum) > MAX_INUM) {
458 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
459 "directory entry" : "extended attribute entry");
460 return -EINVAL;
461 }
462
463 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
464 ubifs_err(c, "bad key type %d", key_type);
465 return -EINVAL;
466 }
467
468 return 0;
469 }
470
471 /**
472 * is_last_bud - check if the bud is the last in the journal head.
473 * @c: UBIFS file-system description object
474 * @bud: bud description object
475 *
476 * This function checks if bud @bud is the last bud in its journal head. This
477 * information is then used by 'replay_bud()' to decide whether the bud can
478 * have corruptions or not. Indeed, only last buds can be corrupted by power
479 * cuts. Returns %1 if this is the last bud, and %0 if not.
480 */
481 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
482 {
483 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
484 struct ubifs_bud *next;
485 uint32_t data;
486 int err;
487
488 if (list_is_last(&bud->list, &jh->buds_list))
489 return 1;
490
491 /*
492 * The following is a quirk to make sure we work correctly with UBIFS
493 * images used with older UBIFS.
494 *
495 * Normally, the last bud will be the last in the journal head's list
496 * of bud. However, there is one exception if the UBIFS image belongs
497 * to older UBIFS. This is fairly unlikely: one would need to use old
498 * UBIFS, then have a power cut exactly at the right point, and then
499 * try to mount this image with new UBIFS.
500 *
501 * The exception is: it is possible to have 2 buds A and B, A goes
502 * before B, and B is the last, bud B is contains no data, and bud A is
503 * corrupted at the end. The reason is that in older versions when the
504 * journal code switched the next bud (from A to B), it first added a
505 * log reference node for the new bud (B), and only after this it
506 * synchronized the write-buffer of current bud (A). But later this was
507 * changed and UBIFS started to always synchronize the write-buffer of
508 * the bud (A) before writing the log reference for the new bud (B).
509 *
510 * But because older UBIFS always synchronized A's write-buffer before
511 * writing to B, we can recognize this exceptional situation but
512 * checking the contents of bud B - if it is empty, then A can be
513 * treated as the last and we can recover it.
514 *
515 * TODO: remove this piece of code in a couple of years (today it is
516 * 16.05.2011).
517 */
518 next = list_entry(bud->list.next, struct ubifs_bud, list);
519 if (!list_is_last(&next->list, &jh->buds_list))
520 return 0;
521
522 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
523 if (err)
524 return 0;
525
526 return data == 0xFFFFFFFF;
527 }
528
529 /**
530 * replay_bud - replay a bud logical eraseblock.
531 * @c: UBIFS file-system description object
532 * @b: bud entry which describes the bud
533 *
534 * This function replays bud @bud, recovers it if needed, and adds all nodes
535 * from this bud to the replay list. Returns zero in case of success and a
536 * negative error code in case of failure.
537 */
538 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
539 {
540 int is_last = is_last_bud(c, b->bud);
541 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
542 struct ubifs_scan_leb *sleb;
543 struct ubifs_scan_node *snod;
544
545 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
546 lnum, b->bud->jhead, offs, is_last);
547
548 if (c->need_recovery && is_last)
549 /*
550 * Recover only last LEBs in the journal heads, because power
551 * cuts may cause corruptions only in these LEBs, because only
552 * these LEBs could possibly be written to at the power cut
553 * time.
554 */
555 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
556 else
557 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
558 if (IS_ERR(sleb))
559 return PTR_ERR(sleb);
560
561 /*
562 * The bud does not have to start from offset zero - the beginning of
563 * the 'lnum' LEB may contain previously committed data. One of the
564 * things we have to do in replay is to correctly update lprops with
565 * newer information about this LEB.
566 *
567 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
568 * bytes of free space because it only contain information about
569 * committed data.
570 *
571 * But we know that real amount of free space is 'c->leb_size -
572 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
573 * 'sleb->endpt' is used by bud data. We have to correctly calculate
574 * how much of these data are dirty and update lprops with this
575 * information.
576 *
577 * The dirt in that LEB region is comprised of padding nodes, deletion
578 * nodes, truncation nodes and nodes which are obsoleted by subsequent
579 * nodes in this LEB. So instead of calculating clean space, we
580 * calculate used space ('used' variable).
581 */
582
583 list_for_each_entry(snod, &sleb->nodes, list) {
584 int deletion = 0;
585
586 cond_resched();
587
588 if (snod->sqnum >= SQNUM_WATERMARK) {
589 ubifs_err(c, "file system's life ended");
590 goto out_dump;
591 }
592
593 if (snod->sqnum > c->max_sqnum)
594 c->max_sqnum = snod->sqnum;
595
596 switch (snod->type) {
597 case UBIFS_INO_NODE:
598 {
599 struct ubifs_ino_node *ino = snod->node;
600 loff_t new_size = le64_to_cpu(ino->size);
601
602 if (le32_to_cpu(ino->nlink) == 0)
603 deletion = 1;
604 err = insert_node(c, lnum, snod->offs, snod->len,
605 &snod->key, snod->sqnum, deletion,
606 &used, 0, new_size);
607 break;
608 }
609 case UBIFS_DATA_NODE:
610 {
611 struct ubifs_data_node *dn = snod->node;
612 loff_t new_size = le32_to_cpu(dn->size) +
613 key_block(c, &snod->key) *
614 UBIFS_BLOCK_SIZE;
615
616 err = insert_node(c, lnum, snod->offs, snod->len,
617 &snod->key, snod->sqnum, deletion,
618 &used, 0, new_size);
619 break;
620 }
621 case UBIFS_DENT_NODE:
622 case UBIFS_XENT_NODE:
623 {
624 struct ubifs_dent_node *dent = snod->node;
625
626 err = ubifs_validate_entry(c, dent);
627 if (err)
628 goto out_dump;
629
630 err = insert_dent(c, lnum, snod->offs, snod->len,
631 &snod->key, dent->name,
632 le16_to_cpu(dent->nlen), snod->sqnum,
633 !le64_to_cpu(dent->inum), &used);
634 break;
635 }
636 case UBIFS_TRUN_NODE:
637 {
638 struct ubifs_trun_node *trun = snod->node;
639 loff_t old_size = le64_to_cpu(trun->old_size);
640 loff_t new_size = le64_to_cpu(trun->new_size);
641 union ubifs_key key;
642
643 /* Validate truncation node */
644 if (old_size < 0 || old_size > c->max_inode_sz ||
645 new_size < 0 || new_size > c->max_inode_sz ||
646 old_size <= new_size) {
647 ubifs_err(c, "bad truncation node");
648 goto out_dump;
649 }
650
651 /*
652 * Create a fake truncation key just to use the same
653 * functions which expect nodes to have keys.
654 */
655 trun_key_init(c, &key, le32_to_cpu(trun->inum));
656 err = insert_node(c, lnum, snod->offs, snod->len,
657 &key, snod->sqnum, 1, &used,
658 old_size, new_size);
659 break;
660 }
661 default:
662 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
663 snod->type, lnum, snod->offs);
664 err = -EINVAL;
665 goto out_dump;
666 }
667 if (err)
668 goto out;
669 }
670
671 ubifs_assert(ubifs_search_bud(c, lnum));
672 ubifs_assert(sleb->endpt - offs >= used);
673 ubifs_assert(sleb->endpt % c->min_io_size == 0);
674
675 b->dirty = sleb->endpt - offs - used;
676 b->free = c->leb_size - sleb->endpt;
677 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
678 lnum, b->dirty, b->free);
679
680 out:
681 ubifs_scan_destroy(sleb);
682 return err;
683
684 out_dump:
685 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
686 ubifs_dump_node(c, snod->node);
687 ubifs_scan_destroy(sleb);
688 return -EINVAL;
689 }
690
691 /**
692 * replay_buds - replay all buds.
693 * @c: UBIFS file-system description object
694 *
695 * This function returns zero in case of success and a negative error code in
696 * case of failure.
697 */
698 static int replay_buds(struct ubifs_info *c)
699 {
700 struct bud_entry *b;
701 int err;
702 unsigned long long prev_sqnum = 0;
703
704 list_for_each_entry(b, &c->replay_buds, list) {
705 err = replay_bud(c, b);
706 if (err)
707 return err;
708
709 ubifs_assert(b->sqnum > prev_sqnum);
710 prev_sqnum = b->sqnum;
711 }
712
713 return 0;
714 }
715
716 /**
717 * destroy_bud_list - destroy the list of buds to replay.
718 * @c: UBIFS file-system description object
719 */
720 static void destroy_bud_list(struct ubifs_info *c)
721 {
722 struct bud_entry *b;
723
724 while (!list_empty(&c->replay_buds)) {
725 b = list_entry(c->replay_buds.next, struct bud_entry, list);
726 list_del(&b->list);
727 kfree(b);
728 }
729 }
730
731 /**
732 * add_replay_bud - add a bud to the list of buds to replay.
733 * @c: UBIFS file-system description object
734 * @lnum: bud logical eraseblock number to replay
735 * @offs: bud start offset
736 * @jhead: journal head to which this bud belongs
737 * @sqnum: reference node sequence number
738 *
739 * This function returns zero in case of success and a negative error code in
740 * case of failure.
741 */
742 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
743 unsigned long long sqnum)
744 {
745 struct ubifs_bud *bud;
746 struct bud_entry *b;
747
748 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
749
750 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
751 if (!bud)
752 return -ENOMEM;
753
754 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
755 if (!b) {
756 kfree(bud);
757 return -ENOMEM;
758 }
759
760 bud->lnum = lnum;
761 bud->start = offs;
762 bud->jhead = jhead;
763 ubifs_add_bud(c, bud);
764
765 b->bud = bud;
766 b->sqnum = sqnum;
767 list_add_tail(&b->list, &c->replay_buds);
768
769 return 0;
770 }
771
772 /**
773 * validate_ref - validate a reference node.
774 * @c: UBIFS file-system description object
775 * @ref: the reference node to validate
776 * @ref_lnum: LEB number of the reference node
777 * @ref_offs: reference node offset
778 *
779 * This function returns %1 if a bud reference already exists for the LEB. %0 is
780 * returned if the reference node is new, otherwise %-EINVAL is returned if
781 * validation failed.
782 */
783 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
784 {
785 struct ubifs_bud *bud;
786 int lnum = le32_to_cpu(ref->lnum);
787 unsigned int offs = le32_to_cpu(ref->offs);
788 unsigned int jhead = le32_to_cpu(ref->jhead);
789
790 /*
791 * ref->offs may point to the end of LEB when the journal head points
792 * to the end of LEB and we write reference node for it during commit.
793 * So this is why we require 'offs > c->leb_size'.
794 */
795 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
796 lnum < c->main_first || offs > c->leb_size ||
797 offs & (c->min_io_size - 1))
798 return -EINVAL;
799
800 /* Make sure we have not already looked at this bud */
801 bud = ubifs_search_bud(c, lnum);
802 if (bud) {
803 if (bud->jhead == jhead && bud->start <= offs)
804 return 1;
805 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
806 return -EINVAL;
807 }
808
809 return 0;
810 }
811
812 /**
813 * replay_log_leb - replay a log logical eraseblock.
814 * @c: UBIFS file-system description object
815 * @lnum: log logical eraseblock to replay
816 * @offs: offset to start replaying from
817 * @sbuf: scan buffer
818 *
819 * This function replays a log LEB and returns zero in case of success, %1 if
820 * this is the last LEB in the log, and a negative error code in case of
821 * failure.
822 */
823 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
824 {
825 int err;
826 struct ubifs_scan_leb *sleb;
827 struct ubifs_scan_node *snod;
828 const struct ubifs_cs_node *node;
829
830 dbg_mnt("replay log LEB %d:%d", lnum, offs);
831 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
832 if (IS_ERR(sleb)) {
833 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
834 return PTR_ERR(sleb);
835 /*
836 * Note, the below function will recover this log LEB only if
837 * it is the last, because unclean reboots can possibly corrupt
838 * only the tail of the log.
839 */
840 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
841 if (IS_ERR(sleb))
842 return PTR_ERR(sleb);
843 }
844
845 if (sleb->nodes_cnt == 0) {
846 err = 1;
847 goto out;
848 }
849
850 node = sleb->buf;
851 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
852 if (c->cs_sqnum == 0) {
853 /*
854 * This is the first log LEB we are looking at, make sure that
855 * the first node is a commit start node. Also record its
856 * sequence number so that UBIFS can determine where the log
857 * ends, because all nodes which were have higher sequence
858 * numbers.
859 */
860 if (snod->type != UBIFS_CS_NODE) {
861 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
862 lnum, offs);
863 goto out_dump;
864 }
865 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
866 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
867 lnum, offs,
868 (unsigned long long)le64_to_cpu(node->cmt_no),
869 c->cmt_no);
870 goto out_dump;
871 }
872
873 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
874 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
875 }
876
877 if (snod->sqnum < c->cs_sqnum) {
878 /*
879 * This means that we reached end of log and now
880 * look to the older log data, which was already
881 * committed but the eraseblock was not erased (UBIFS
882 * only un-maps it). So this basically means we have to
883 * exit with "end of log" code.
884 */
885 err = 1;
886 goto out;
887 }
888
889 /* Make sure the first node sits at offset zero of the LEB */
890 if (snod->offs != 0) {
891 ubifs_err(c, "first node is not at zero offset");
892 goto out_dump;
893 }
894
895 list_for_each_entry(snod, &sleb->nodes, list) {
896 cond_resched();
897
898 if (snod->sqnum >= SQNUM_WATERMARK) {
899 ubifs_err(c, "file system's life ended");
900 goto out_dump;
901 }
902
903 if (snod->sqnum < c->cs_sqnum) {
904 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
905 snod->sqnum, c->cs_sqnum);
906 goto out_dump;
907 }
908
909 if (snod->sqnum > c->max_sqnum)
910 c->max_sqnum = snod->sqnum;
911
912 switch (snod->type) {
913 case UBIFS_REF_NODE: {
914 const struct ubifs_ref_node *ref = snod->node;
915
916 err = validate_ref(c, ref);
917 if (err == 1)
918 break; /* Already have this bud */
919 if (err)
920 goto out_dump;
921
922 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
923 le32_to_cpu(ref->offs),
924 le32_to_cpu(ref->jhead),
925 snod->sqnum);
926 if (err)
927 goto out;
928
929 break;
930 }
931 case UBIFS_CS_NODE:
932 /* Make sure it sits at the beginning of LEB */
933 if (snod->offs != 0) {
934 ubifs_err(c, "unexpected node in log");
935 goto out_dump;
936 }
937 break;
938 default:
939 ubifs_err(c, "unexpected node in log");
940 goto out_dump;
941 }
942 }
943
944 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
945 c->lhead_lnum = lnum;
946 c->lhead_offs = sleb->endpt;
947 }
948
949 err = !sleb->endpt;
950 out:
951 ubifs_scan_destroy(sleb);
952 return err;
953
954 out_dump:
955 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
956 lnum, offs + snod->offs);
957 ubifs_dump_node(c, snod->node);
958 ubifs_scan_destroy(sleb);
959 return -EINVAL;
960 }
961
962 /**
963 * take_ihead - update the status of the index head in lprops to 'taken'.
964 * @c: UBIFS file-system description object
965 *
966 * This function returns the amount of free space in the index head LEB or a
967 * negative error code.
968 */
969 static int take_ihead(struct ubifs_info *c)
970 {
971 const struct ubifs_lprops *lp;
972 int err, free;
973
974 ubifs_get_lprops(c);
975
976 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
977 if (IS_ERR(lp)) {
978 err = PTR_ERR(lp);
979 goto out;
980 }
981
982 free = lp->free;
983
984 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
985 lp->flags | LPROPS_TAKEN, 0);
986 if (IS_ERR(lp)) {
987 err = PTR_ERR(lp);
988 goto out;
989 }
990
991 err = free;
992 out:
993 ubifs_release_lprops(c);
994 return err;
995 }
996
997 /**
998 * ubifs_replay_journal - replay journal.
999 * @c: UBIFS file-system description object
1000 *
1001 * This function scans the journal, replays and cleans it up. It makes sure all
1002 * memory data structures related to uncommitted journal are built (dirty TNC
1003 * tree, tree of buds, modified lprops, etc).
1004 */
1005 int ubifs_replay_journal(struct ubifs_info *c)
1006 {
1007 int err, lnum, free;
1008
1009 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1010
1011 /* Update the status of the index head in lprops to 'taken' */
1012 free = take_ihead(c);
1013 if (free < 0)
1014 return free; /* Error code */
1015
1016 if (c->ihead_offs != c->leb_size - free) {
1017 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1018 c->ihead_offs);
1019 return -EINVAL;
1020 }
1021
1022 dbg_mnt("start replaying the journal");
1023 c->replaying = 1;
1024 lnum = c->ltail_lnum = c->lhead_lnum;
1025
1026 do {
1027 err = replay_log_leb(c, lnum, 0, c->sbuf);
1028 if (err == 1) {
1029 if (lnum != c->lhead_lnum)
1030 /* We hit the end of the log */
1031 break;
1032
1033 /*
1034 * The head of the log must always start with the
1035 * "commit start" node on a properly formatted UBIFS.
1036 * But we found no nodes at all, which means that
1037 * something went wrong and we cannot proceed mounting
1038 * the file-system.
1039 */
1040 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1041 lnum, 0);
1042 err = -EINVAL;
1043 }
1044 if (err)
1045 goto out;
1046 lnum = ubifs_next_log_lnum(c, lnum);
1047 } while (lnum != c->ltail_lnum);
1048
1049 err = replay_buds(c);
1050 if (err)
1051 goto out;
1052
1053 err = apply_replay_list(c);
1054 if (err)
1055 goto out;
1056
1057 err = set_buds_lprops(c);
1058 if (err)
1059 goto out;
1060
1061 /*
1062 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1063 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1064 * depend on it. This means we have to initialize it to make sure
1065 * budgeting works properly.
1066 */
1067 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1068 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1069
1070 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1071 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1072 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1073 (unsigned long)c->highest_inum);
1074 out:
1075 destroy_replay_list(c);
1076 destroy_bud_list(c);
1077 c->replaying = 0;
1078 return err;
1079 }